LORENTZMETRIK IN DER ALGEBRA DER KOMPLEXEN 4-MATRIZEN

JOSEF WEIER

Sei $(\gamma_1, \ldots, \gamma_4)$ ein Diracquadrupel. Die γ_r seien also komplexe 4-Matrizen mit $\gamma_\mu \gamma_r + \gamma_r \gamma_\mu = 2\delta_{\mu r}$. Die Matrizen

(*)
$$\gamma_{\nu}$$
, $\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}$, $i\gamma_{\mu}\gamma_{\nu}$, $\mu < \nu$, $i\gamma_{\lambda}\gamma_{\mu}\gamma_{\nu}$, $\lambda < \mu < \nu$, 1

in dieser Reihenfolge mögen $\Gamma_1, \Gamma_2, \ldots, \Gamma_{16}$ heissen. Dann lässt sich jede komplexe 4-Matrix ξ eindeutig als $\xi = \sum \xi^r \Gamma_r$ mit komplexen Zahlen ξ^r darstellen. Die Zahl

 $\sum_{\nu=1}^{16} (\xi^{\nu})^2$

ist von der besonderen Wahl des Diracquadrupels $(\gamma_1, \ldots, \gamma_4)$ unabhängig. Die Matrizen γ_r stehen in folgendem Sinne paarweis aufeinander senkrecht. Ordnet man je zwei Matrizen α , β aus der Algebra A der komplexen 4-Matrizen als Skalarprodukt die Zahl

(1)
$$\langle \alpha, \beta \rangle = \frac{1}{4} \operatorname{spur}(\alpha \beta)$$

zu, so ist $\langle \gamma_{\mu}, \gamma_{\nu} \rangle = 0$ für $\mu \neq \nu$.

Das Skalarprodukt (1) induziert in die Algebra A eine Lorentzmetrik: Sei L der reelle Lorentzraum, M der komplexe Lorentzraum und C(M) die Cliffordalgebra über M. Es sei also M der Vektorraum aller Quadrupel $x = (x^1, \ldots, x^4)$ komplexer Zahlen x^r , gemäss

(2)
$$x \cdot y = \sum_{v=1}^{3} x^{v} y^{v} - x^{4} y^{4}$$

mit einem Skalarprodukt versehen. Mit $d_j = (\delta_j^1, \dots, \delta_j^4)$ und

$$e_j = d_j$$
 für $j = 1, 2, 3,$ $e_4 = -id_4$

ist (e_1, \ldots, e_4) eine orthonormale Basis von M. Die Algebra C(M), im besonderen das mit s v t bezeichnete Cliffordprodukt von Elementen s, t aus C(M) ist im ersten Abschnitt erklärt.

Eingegangen am 15. Februar 1964.

Die obige Aussage, das Skalarprodukt $\langle \alpha, \beta \rangle$ induziere in A eine Lorentzmetrik, ist dann näherhin so gemeint: $Man\ kann\ die\ Algebra\ C(M)$ derart isomorph auf die Algebra A der komplexen 4-Matrizen abbilden, dass das über C(M) fortgesetzte Produkt (2) gerade dem Skalarprodukt in A entspricht.

Im zweiten Abschnitt wird erläutert, in welchem Sinne die Gleichung

$$(3) s \vee t = s \wedge t + s \cdot t$$

richtig ist, wobei $s \wedge t$ wie üblich das äussere Produkt und $s \cdot t$ das innere Produkt der, nicht notwendig gleichstufigen, Terme s und t aus C(M) bedeutet. Es ist dann das Cliffordprodukt $s \vee t$ in einen metrikunabhängigen Teil, $s \wedge t$, und einen Teil, $s \cdot t$, in den die Lorentzmetrik eingeht, zerlegt. Nach (3) ist im besonderen

$$d_j \vee d_k = d_j \wedge d_k + d_j \cdot d_k ,$$

wobei

$$d_1 \cdot d_1 = d_2 \cdot d_2 = d_3 \cdot d_3 = -d_4 \cdot d_4 = 1$$

gilt. Dass die »Spurtechnik« in der Theorie der 4-Spinoren mathematisch nicht genügend durchgefeilt ist, hat auch E. A. Hylleraas in [2] mit Recht bemerkt.

1. Cliffordalgebra über dem komplexen Lorentzraume.

Die Bedeutung von M, d_j und e_j sei dieselbe wie oben. Der reelle Lorentzraum L besteht aus den $x = (x^1, \ldots, x^4)$ aus M, für die alle x reell sind. Die Tensoren

$$(**) \qquad e_{\nu}, \quad \nu=1,2,3,4, \qquad e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}, \qquad ie_{\mu} \wedge e_{\nu}, \quad \mu<\nu, \\ \qquad \qquad ie_{\lambda} \wedge e_{\mu} \wedge e_{\nu}, \quad \lambda<\mu<\nu \; ,$$

in dieser Reihenfolge bezeichnen wir auch mit E_{ν} , $\nu=1,2,\ldots,16$. Im besonderen ist also $e_1 \wedge e_2 \wedge e_3 \wedge e_4 = E_5$ gesetzt. Jeder inhomogene schiefsymmetrische kontravariante Tensor s über M schreibt sich dann eindeutig als

 $s = \sum_{\nu=1}^{16} s^{\nu} E_{\nu}$

mit komplexen Zahlen s^{ν} . Mit $t = \sum t^{\nu} E_{\nu}$ sei $s + t = \sum (s^{\nu} + t^{\nu}) E_{\nu}$. Der additive Operator der Cliffordalgebra C(M) über M ist damit erklärt.

Zur Definition des Cliffordproduktes svt der Tensoren s und t genügt es offenbar, die speziellen Produkte $E_{\alpha}vE_{\beta}$, $\alpha,\beta=1,2,\ldots,16$, zu definieren. Im übrigen ist der v-Operator linear:

(1)
$$s \vee (t_1 + t_2) = s \vee t_1 + s \vee t_2$$
,

(2)
$$(\alpha s) \vee \beta t = (\alpha \beta) s \vee t.$$

Es ist also nicht $(\alpha s) \vee \beta t = \alpha \bar{\beta}(s \vee t)$. Das widerspräche der allgemeinen Definition einer Algebra.

Zur Erklärung von $E_{\alpha} \vee E_{\beta}$ seien $\lambda_1, \ldots, \lambda_r$ natürliche Zahlen zwischen 1 und 4, nicht notwendig paarweis verschieden. Sind die λ_j untereinander gleich, so ist $e_{\lambda_1} \vee \ldots \vee e_{\lambda_r} = 1$. Sonst ist

(3)
$$e_{\lambda_1} \vee \ldots \vee e_{\lambda_r} = (-1)^q e_{k_1} \wedge \ldots \wedge e_{k_n}.$$

Dabei bedeutet q die Anzahl der Inversionen in $(\lambda_1, \ldots, \lambda_r)$, und es sind

$$k_1 < k_2 < \ldots < k_o$$

die paarweis verschiedenen unter den Zahlen $\lambda_1, \ldots, \lambda_r$. Hierauf ist

$$(4) \qquad (e_{\lambda_1} \wedge \ldots \wedge e_{\lambda_a}) \vee (e_{\mu_1} \wedge \ldots \wedge e_{\mu_b}) = e_{\lambda_1} \vee \ldots \vee e_{\lambda_a} \vee e_{\mu_1} \vee \ldots \vee e_{\mu_b}.$$

Damit ist $E_{\alpha} \vee E_{\beta}$ für alle α, β erklärt.

Im Unterschied zum »Cliffordprodukt« $s \vee t = \sum_{\alpha, \beta} s^{\alpha} t^{\beta} E_{\alpha} \vee E_{\beta}$ der Tensoren $s = \sum s^{\nu} E_{\nu}$ und $t = \sum t^{\nu} E_{\nu}$ wollen wir die, im allgemeinen echt komplexe, Zahl

$$\langle s,t\rangle = \sum_{\nu=1}^{16} s^{\nu} t^{\nu}$$

als das »Diagonal produkt« von s und t bezeichnen. Sind a, b Vektoren des reellen Lorentzraumes mit $a = \sum a^r E_r$ und $b = \sum b^r E_r$, so ist

$$a^{\nu} = b^{\nu} = 0$$
 für $\nu \ge 5$,

und es gilt

$$a = \sum a^{\nu}e_{\nu}, \qquad b = \sum b^{\nu}e_{\nu}.$$

Das Skalarprodukt von a und b bezüglich der Lorentzmetrik ist

$$a \cdot b = \sum_{\nu=1}^{4} a^{\nu} b^{\nu}.$$

Drückt man a und b bezüglich der Basis (d_1,\ldots,d_4) als $a=\sum \alpha' d_{\nu}$ und $b=\sum \beta' d_{\nu}$ aus, so ist

(7)
$$a \cdot b = \sum_{\nu=1}^{3} \alpha^{\nu} \beta^{\nu} - \alpha^{4} \beta^{4}.$$

Schliesslich ist

(8)
$$a \cdot b = \langle a, b \rangle.$$

Es ist also das Diagonalprodukt eine Fortsetzung des von der Metrik des

komplexen Lorentzraumes M festgelegten Skalarproduktes über die Cliffordalgebra C(M).

Der Satz der Einleitung, dass $\langle \alpha, \beta \rangle = \frac{1}{4}$ spur $\alpha\beta$ in die Algebra der komplexen 4-Matrizen eine Lorentzmetrik induziert, lässt sich jetzt wie folgt präzisieren. Bildet man die Cliffordalgebra C(M) über M vermöge $e_{\nu} \rightarrow \gamma_{\nu}$ isomorph auf A ab, so entspricht dem Diagonalprodukt in C(M) gerade das Skalarprodukt $\frac{1}{4}$ spur $(\alpha\beta)$ in A.

Für Vektoren a, b des reellen Lorentzraumes gilt ausser (6) bis (8), dass

$$a \vee b = a \wedge b + a \cdot b$$
.

Es ist nämlich $e_{\mu} \vee e_{\nu} = e_{\mu} \wedge e_{\nu} + e_{\mu} \cdot e_{\nu}$, daher

$$a \vee b = \sum a^{\mu}b^{\nu}e_{\mu} \vee e_{\nu} = \sum a^{\mu}b^{\nu}(e_{\mu} \wedge e_{\nu} + e_{\mu} \cdot e_{\nu})$$

$$= (\sum a^{\mu}e_{\mu}) \wedge \sum b^{\nu}e_{\nu} + (\sum a^{\mu}e_{\mu}) \cdot \sum b^{\nu}e_{\nu}$$

$$= a \wedge b + a \cdot b.$$

wie behauptet.

2. Cliffordprodukt und Skalarprodukt.

Die Bedeutung von L, M und C(M) sei dieselbe wie oben. Wie oben sei $d_j = (\delta_j^1, \ldots, \delta_j^4)$, ferner

$$e_i = d_i$$
 für $j = 1, 2, 3$ und $e_4 = -id_4$.

In welcher Weise geht die Lorentzmetrik des Vektorraumes L in das Cliffordprodukt ein?

Hierzu bezeichne t ein Element aus C(M), also einen inhomogenen schiefsymmetrischen kontravarianten Tensor über M. Dann ist

$$(1) d_j \vee t = d_j \wedge t + d_j \cdot t ,$$

wie wir zeigen wollen.

Zunächst ist jedoch noch das Skalarprodukt $d_j \cdot t$ zu erklären. Zur Definition des Skalarproduktes von Elementen aus L genügt es, die Produkte $d_j \cdot d_k$ zu erklären und mit $a = \sum \alpha^r d_r$, $b = \sum \beta^r d_r$ wie oben

$$a \cdot b = \sum \alpha^j \beta^k d_j \cdot d_k$$

zu setzen. Entsprechend genügt es zur Definition des Skalarproduktes $s \cdot t$ der Tensoren $s = \sum s^r E_r$ und $t = \sum t^r E_r$, die Ausdrücke

$$(d_{\alpha_1} \otimes \ldots \otimes d_{\alpha_r}) \cdot (d_{\beta_1} \otimes \ldots \otimes d_{\beta_s})$$

zu definieren. Wir setzen nun

$$(2) d_j \cdot (d_{\alpha_1} \otimes \ldots \otimes d_{\alpha_r}) = (d_j \cdot d_{\alpha_1}) d_{\alpha_2} \otimes \ldots \otimes d_{\alpha_r},$$

für r < s allgemein

$$(d_{lpha_1} \otimes \ldots \otimes d_{lpha_r}) \cdot (d_{eta_1} \otimes \ldots \otimes d_{eta_s}) = rac{1}{r\,!} \, (d_{lpha_1} d_{eta_1}) \ldots (d_{lpha_r} d_{eta_r}) \, d_{eta_{r+1}} \otimes \ldots \otimes d_{eta_s}.$$

Wegen $d_j \cdot d_j = 1$, j = 1, 2, 3, und $d_4 \cdot d_4 = -1$ geht in diese Produkte die Lorentzmetrik ein.

Aus (2) folgt

(3)
$$d_{j} \cdot (d_{j} \wedge d_{j_{2}} \wedge \ldots \wedge d_{j_{r}}) = \pm d_{j_{2}} \wedge \ldots \wedge d_{j_{r}},$$

je nachdem $j \leq 3$ oder j = 4 ist.

Beweis von (3). Es ist

$$\begin{array}{ll} d_{j} \cdot (d_{j} \wedge d_{j_{2}} \wedge \ldots \wedge d_{j_{r}}) &=& d_{j} \cdot (\delta_{jj_{2}}^{\alpha_{1}} \ldots_{j_{r}}^{\alpha_{r}} d_{\alpha_{1}} \otimes \ldots \otimes d_{\alpha_{r}}) \\ &=& \delta_{jj_{2}}^{\alpha_{1}} \ldots_{j_{r}}^{\alpha_{r}} (d_{j} \cdot d_{\alpha_{1}}) d_{\alpha_{2}} \otimes \ldots \otimes d_{\alpha_{r}}) \\ &=& \begin{cases} \delta_{jj_{2}}^{j\alpha_{2}} \ldots_{j_{r}}^{\alpha_{r}} d_{\alpha_{2}} \otimes \ldots \otimes d_{\alpha_{r}} & \text{für } j \leq 3 \\ -\delta_{4j_{2}}^{4\alpha_{2}} \ldots_{j_{r}}^{\alpha_{r}} d_{\alpha_{2}} \otimes \ldots \otimes d_{\alpha_{r}} & \text{für } j = 4 \end{cases}.$$

Wegen

$$\delta_{kj_2\ldots j_r}^{k\alpha_2\ldots\alpha_r}=\delta_{j_2\ldots j_r}^{\alpha_2\ldots\alpha_r}$$

folgt hieraus bereits die Behauptung.

Beweis der Formel (1). Man darf $t=d_{\alpha_1} \wedge \ldots \wedge d_{\alpha_r}$ annehmen. Es komme erstens j unter den α_k nicht vor. Aus (2) folgt dann leicht, dass $d_j \cdot t = 0$. Die verbleibende Gleichung $d_j \vee t = d_j \wedge t$ ist aber nach der Definition des v-Produktes richtig. Wenn zweitens j unter den α_k vorkommt, so ist zunächst $d_j \wedge t = 0$. Hier besagt also (1), dass

$$d_i \vee t = d_i \cdot t$$
.

Die Richtigkeit dieser Gleichung folgt leicht aus (3).

Die Beziehung (1) eignet sich auch zur Definition des Cliffordproduktes. Von (1) ausgehend kann man nämlich induktiv

$$(d_{\lambda_1} \wedge \ldots \wedge d_{\lambda_r}) \vee t = (d_{\lambda_1} \wedge \ldots \wedge d_{\lambda_{r-1}}) \vee (d_{\lambda_r} \vee t)$$

setzen und dann das Cliffordprodukt linear fortsetzen.

Berechnet man nach (1) den Ausdruck $e_{\alpha} \mathbf{v}(e_{\beta} \mathbf{v}t)$, so ist zunächst

$$\begin{split} e_{\alpha} \vee (e_{\beta} \vee t) &= e_{\alpha} \vee (e_{\beta} \wedge t + e_{\beta} \cdot t) \\ &= e_{\alpha} \wedge e_{\beta} \wedge t + e_{\alpha} \cdot (e_{\beta} \wedge t) + e_{\alpha} \wedge (e_{\beta} \cdot t) + e_{\alpha} \cdot (e_{\beta} \cdot t) \,, \end{split}$$

daher

$$e_{\alpha} \vee (e_{\alpha} \vee t) = e_{\alpha} \cdot (e_{\alpha} \wedge t) + e_{\alpha} \wedge (e_{\alpha} \cdot t)$$
.

Trivialerweise ist nämlich $e_{\alpha} \wedge e_{\alpha} \wedge t = 0$, und nach (2) und (3) ist $e_{\alpha} \cdot (e_{\alpha} \cdot t) = 0$. Andererseits ist $e_{\alpha} \vee e_{\alpha} = 1$, daher $e_{\alpha} \vee (e_{\alpha} \vee t) = t$. Somit $e_{\alpha} \cdot (e_{\alpha} \wedge t) + e_{\alpha} \wedge (e_{\alpha} \cdot t) = t$.

3. Über die Spur gewisser 4-Matrizen.

Seien wieder $\gamma_1, \ldots, \gamma_4$ Matrizen mit $\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2\delta_{\mu\nu}$. Wie in der Einleitung seien $\Gamma_1, \Gamma_2, \ldots, \Gamma_{16}$ die Matrizen

(*)
$$\gamma_{\nu}$$
, $\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}$, $i\gamma_{\mu}\gamma_{\nu}$, $\mu < \nu$, $i\gamma_{\lambda}\gamma_{\mu}\gamma_{\nu}$, $\lambda < \mu < \nu$, 1.

Dann ist $\Gamma_i^2 = 1$ für alle j. Weiter ist

(1)
$$\operatorname{spur} \Gamma_j = 0 \quad \text{für } \Gamma_j \neq 1.$$

Bei R. H. Good [1] wird (1) wie folgt bewiesen. Es genügt zu zeigen, dass zu jedem $\Gamma_j \neq 1$ ein Γ_k mit $\Gamma_k \Gamma_j \Gamma_k = -\Gamma_j$ existiert. Dann ist nämlich

$$\operatorname{spur}(\Gamma_k \Gamma_i \Gamma_k) = \operatorname{spur}(\Gamma_i \Gamma_k \Gamma_k) = \operatorname{spur} \Gamma_i$$
.

Andererseits ist spur $(-\Gamma_j) = -\operatorname{spur} \Gamma_j$. Ist erstens $\Gamma_j = \gamma_\nu$, so kann man $\Gamma_k = \gamma_1 \gamma_2 \gamma_3 \gamma_4$ setzen. Wenn zweitens $\Gamma_j = i \gamma_\mu \gamma_\nu$ mit $\mu < \nu$, so kann man $\Gamma_k = \gamma_\mu$ setzen. Ist drittens $\Gamma_j = i \gamma_\lambda \gamma_\mu \gamma_\nu$ mit $\lambda < \mu < \nu$, so kann man $\Gamma_k = \gamma_1 \gamma_2 \gamma_3 \gamma_4$ setzen. Im vierten Falle, dass $\Gamma_j = \gamma_1 \gamma_2 \gamma_3 \gamma_4$, liefert $\Gamma_k = \gamma_\nu$ die Relation $\Gamma_k \Gamma_j \Gamma_k = -\Gamma_j$.

Die Matrizen $\Gamma_1, \Gamma_2, \ldots, \Gamma_{16}$ sind linear unabhängig.

Zum Beweis dieser Behauptung seien wie bei R. H. Good [1] z^j komplexe Zahlen mit $\sum z^j \Gamma_j = 0$. Zu zeigen, dass $z^j = 0$ für alle j. Wegen $\Gamma_i^2 = 1$ ist

$$z^r + \sum_{j+r} z^j \Gamma_j \Gamma_r = 0.$$

Wegen spur $\Gamma_k=0$ für $\Gamma_k \neq 1$ genügt es also zu zeigen, dass sich $\Gamma_j \Gamma_r$ für alle $j \neq r$ als $\Gamma_i \Gamma_r = \zeta \Gamma_k$

mit $\Gamma_k \neq 1$ und einer komplexen Zahl ζ darstellen lässt. Das wiederum folgt unmittelbar aus der Definition der Γ_k als Produkt von γ_{ν} .

Aus der linearen Unabhängigkeit der Γ_i folgt, dass

(2)
$$\Gamma_j \neq 1$$
 für $j \leq 15$.

Dabei sind also die von 1 verschiedenen Matrizen (*) mit $\Gamma_1, \Gamma_2, \dots, \Gamma_{15}$ bezeichnet.

Die Cliffordalgebra über dem komplexen Lorentzraume und die Algebra der komplexen 4-Matrizen sind isomorph.

Zur Erklärung eines konkreten Isomorphismus sei wieder L der reelle Lorentzraum, M der komplexe Lorentzraum, C(M) die Cliffordalgebra

über M und $d_j=(\delta_j^1,\ldots,\delta_j^4)$ für j=1,2,3,4, ferner $e_j=d_j$ für j=1,2,3 und $ie_4=d_4$. Die Tensoren (**) seien in der angegebenen Reihenfolge mit E_1,E_2,\ldots,E_{16} bezeichnet. Dann sind die Elemente von C(M) die Tensoren $s=\sum s^rE_r$, $t=\sum t^rE_r$ usw. mit

$$s \vee t = \sum s^{\alpha} t^{\beta} E_{\alpha} \vee E_{\beta}$$

als Produkt.

Die Matrizen (*) in der angegebenen Reihenfolge sind oben mit $\Gamma_1, \Gamma_2, \ldots, \Gamma_{16}$ bezeichnet. Jede komplexe 4-Matrix σ schreibt sich eindeutig als $\sigma = \sum \sigma^{\nu} \Gamma_{\nu}$. Mit $\tau = \sum \tau^{\nu} \Gamma_{\nu}$ ist

$$\sigma\tau = \sum \sigma^{\alpha}\tau^{\beta} \, \Gamma_{\alpha}\Gamma_{\beta} \,.$$

Setzt man daher

$$\Phi(E_{\nu}) = \Gamma_{\nu} \quad \text{für} \quad \nu = 1, 2, \dots, 16 ,$$

so vermittelt Φ einen Isomorphismus der Cliffordalgebra über M auf die Algebra der komplexen 4-Matrizen, da die E, und die Γ , die gleichen Multiplikationstafeln bestimmen.

4. Die durch die Spur vermittelte Lorentzmetrik in der Algebra der komplexen 4-Matrizen.

Wie oben sei A die Algebra der komplexen 4-Matrizen und $(\gamma_1, \ldots, \gamma_4)$ ein Diracquadrupel. Die Matrizen (*) seien wieder mit $\Gamma_1, \Gamma_2, \ldots, \Gamma_{16}$ bezeichnet. Es lässt sich dann jede komplexe 4-Matrix α eindeutig als $\alpha = \sum \alpha^r \Gamma_r$ darstellen. Wir wollen nun zeigen:

Sind α , β komplexe 4-Matrizen und a^{ν} , b^{ν} ihre Koordinaten bezüglich der Γ_{ν} , also $\alpha = \sum a^{\nu} \Gamma_{\nu}$ und $\beta = \sum b^{\nu} \Gamma_{\nu}$, so ist

$$\frac{1}{4}\operatorname{spur}(\alpha\beta) = \sum_{\nu=1}^{16} a^{\nu}b^{\nu}.$$

Insbesondere ist also $\sum_{r=1}^{16} (a^r)^2$ von der besonderen Wahl des Diracquadrupels $(\gamma_1, \ldots, \gamma_4)$ unabhängig.

Beweis. Es ist $\alpha\beta = (\sum a^{\mu}\Gamma_{\mu})(\sum b^{\nu}\Gamma_{\nu}) = \sum a^{\mu}b^{\nu}\Gamma_{\mu}\Gamma_{\nu}$, daher

$$\mathrm{spur}(\alpha\beta) \,=\, \sum a^\mu b^\nu \, \mathrm{spur}(\Gamma_\mu \Gamma_\nu) \;.$$

Für $\mu \neq \nu$ gilt, wie oben gezeigt, $\Gamma_{\mu}\Gamma_{\nu} = z\Gamma_{\lambda}$ mit $\Gamma_{\lambda} \neq 1$ und einer komplexen Zahl z. Wie oben gezeigt, ist ferner

$$\operatorname{spur} \Gamma_{\lambda} = 0$$
 für $\Gamma_{\lambda} \neq 1$.

Daher ist

$$\operatorname{spur}(\alpha\beta) = \sum a^{\nu}b^{\nu}\operatorname{spur}(\Gamma_{\nu})^{2}$$
.

Andererseits ist $(\Gamma_{\nu})^2 = 1$, wie oben gezeigt. Also spur $(\Gamma_{\nu})^2 = 4$, wie behauptet.

Statt $\frac{1}{4}$ spur $(\alpha\beta)$ wollen wir auch $\langle \alpha, \beta \rangle$ schreiben. Dann gilt:

Diagonalprodukt in der Cliffordalgebra C(M) über M und Skalarprodukt in der Algebra A der komplexen 4-Matrizen hängen gemäss

$$\langle x, y \rangle = \langle \Phi(x), \Phi(y) \rangle$$

miteinander zusammen, wobei Φ den oben erklärten Isomorphismus von C(M) auf A bedeutet.

Genauer gilt: Sei (e_1,\ldots,e_4) eine orthonormale Basis im komplexen Lorentzraume M und $(\gamma_1,\ldots,\gamma_4)$ ein Diracquadrupel. Die Tensoren (**) und die Matrizen (*) seien in den angegebenen Reihenfolgen mit E_j bzw. mit Γ_j bezeichnet. Sei Φ der durch $\Phi(E_j) = \Gamma_j$ bestimmte Isomorphismus. Sind dann x, y Elemente aus C(M) mit

$$x = \sum x^j E_j$$
 und $y = \sum y^j E_j$,

so ist

$$\langle x, y \rangle = \sum x^j y^j = \frac{1}{4} \operatorname{spur}(\Phi(x)\Phi(y)) = \langle \Phi(x), \Phi(x) \rangle$$

wie oben behauptet.

Bekanntlich lässt sich jede komplexe 2-Matrix $y = (y_{ik})$ eindeutig als

$$y = \sum_{\nu=1}^{3} x^{\nu} \sigma_{\nu} + x^{4} E$$

darstellen, wo die σ_v die Paulimatrizen und E die Einheitsmatrix bedeuten. Wenn y hermitisch, sind die x^v reell. Gemäss

$$\begin{array}{lll} x^4 \,=\, \frac{1}{2}(y_{11} + y_{22}), & x^3 \,=\, \frac{1}{2}(y_{11} - y_{22}) \;, \\ x^1 \,=\, \frac{1}{2}(y_{12} + y_{21}), & ix^2 \,=\, \frac{1}{2}(y_{21} - y_{12}) \end{array}$$

drücken sich die x^{r} durch die y_{jk} aus.

Sind die Matrizen γ_r des Diracquadrupels $(\gamma_1, \ldots, \gamma_4)$ hermitisch, so sind auch die Γ_r hermitisch. Die Zahlen x^r aus

$$Y = \sum_{\nu=1}^{16} x^{\nu} \Gamma_{\nu}$$

sind sämtlich reell, wenn Y eine hermitische Matrix ist.

Dass die Γ_r hermitisch, ergibt sich unmittelbar aus ihrer Definition als Produkte der γ_r und aus den Vertauschungsrelationen der γ_r . Dann ist

128 Josef Weier

$$Y = \overline{Y}' = \sum \overline{x}^{\nu} \overline{\Gamma}_{\nu}' = \sum \overline{x}^{\nu} \Gamma_{\nu},$$

also $\sum (x^{\nu} - \overline{x}^{\nu}) \Gamma_{\nu} = 0$. Wegen der linearen Unabhängigkeit der Γ_{ν} ist daher $x^{\nu} = \overline{x}^{\nu}$, wie behauptet.

LITERATUR

- 1. R. H. Good, Properties of the Dirac matrices, Rev. Modern Phys. 27 (1955), 187-211.
- 2. E. A. Hylleraas, Über die Darstellung von Spinoren, Z. Physik 167 (1962), 243-249.

UNIVERSITÄT BONN, DEUTSCHLAND