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ON THE QUADRATIC INTEGRABILITY OF
SOLUTIONS OF d2x/de2 +f(t)x = 0

SIGBJORN HALVORSEN
1. Introduction.

In the differential equations considered in this paper, the coefficient
functions f(t), g(f) are real and locally integrable in a real, half-open
interval (@,b), being either semi-infinite or finite but allowing a non-
integrable singularity of f,g at the open end.

The aim of this paper then is to present a few comparison criteria
(Theorems 1 through 5, below) relating the numbers of solutions of class
L*a,b) (shortly, L?) of two equations of the form announced in the
heading. As a solution (and its first derivative) is absolutely continuous
on every closed subinterval, our concern is the behaviour of solutions as
the open end is approached.

Consider first the equation

(1) '+ [A+f(t)e =0,

where 1 is a complex constant. If for a given A this equation has two
linearly independent solutions of class L2, then evidently every solution
for the same A is of class L2 A classical theorem by H. Weyl states
that either (I) for every 4 all solutions of (1) are of class L2, or (II) for
every A at most one solution is of class L? (not counting the trivial solu-
tion £=0). Further, in the alternative (II) for every non-real 4 there is
exactly one L2-solution, while for some or all real values of A there may
be none. In the sequel the terms introduced by Weyl will be used:
limit circle case for the alternative (I), limit point case for the alternative
(II).

Various criteria have been given which ensure that an equation (1) is of
limit point type or of limit circle type, among which are the following:

a) Sufficient that (1) be of limit point type at infinity is (see [8, p. 192])
that (for all sufficiently large ¢)

(2) ft) < k22
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b) Sufficient for (1) to be of limit point type at the origin is [7, Theo-
rem 1] that (for all sufficiently small ¢)

(3) f@) = -4,

c¢) A sufficient condition for (1) to be of limit circle type at infinity
is each of the following [5, p. 38],

(4) |f(2) — k282Q+m| < (n— O)ktn, n>0, 6>0.
(5) If@)—k%e| < (n—08)ke™, n>0,6>0.
d) Sufficient that (1) be of limit circle type at the origin is [5, p. 37]
(6) (—3+0)2 = f(t) = (F-0)2,
or more generally
(7) If()— (2 +E)72] = (2—0)kt~2,
(8) [f() —k%-21m| < (24 n—0)kt-C+™ ,

A few criteria are collected in [4, pp. 24-26 and pp. 11-12] with fur-
ther references.

2. Generalization of Bellman’s comparison theorem.

Weyl’s alternative was generalized by Bellman [2, p. 513, Theorem 2]
or [3, p. 116, Theorem 6] to the following comparison theorem: When

9) " +f(t)x =0

8 of limit circle type, so is

(10) y'+ytly =0,
provided

(1§ sup |g(¢) —f(#)] < oo.

By virtue of the symmetry in this condition, also the property of
being of limit point type is preserved from (9) to (10) under the condition
(11).

A generalisation of Bellman’s theorem is given in the following theorem.

THEOREM 1. When for every solution x(t) of (9)
(12) lg(&)—F@O)} a(t) € L2,

(10) ¢s of limit circle type or of limit point type according as which s the
case for the equation (9). In addition, (12) will be satisfied with any solution
y(t) of (10) in place of x(t).
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REmMARK. In this paper, we are concerned principally with real equa-
tions, and Theorem 1 is proved below for real f,g only. However, it is
not difficult to demonstrate the general validity of Theorem 1, that is
for arbitrary complex f,g; this may be done e.g. by modifying Bellman’s
proof of his theorem [3, pp. 116-117]. In an analogous way, Theorem 2
(below) may be given an appropriate form which is valid for complex
equations. Theorems 3, 4 and 5 cannot be generalized in this way, but
it is seen that only the comparison coefficient f is required to be real,
while ¢ may be complex.

Finally, it is possible to obtain a further extension of Theorem 1, viz.
to classes LP, L? with 1/p+1/g=1, (12) being replaced by the two condi-
tions

lg—fl*xeLPr and |g—f*—xel?,
where the choice of «=1/p, 1 —x=1/q yields the simplest generalization.

In the proof of Theorem 1 we shall need the following lemma, due to

Bellman [1, pp. 644-645], [3, pp. 35-36]:

LemMmaA. Let u(t) 20 be tntegrable, v(t) = 0 continuous for ¢, <t <t,, and
denote by k a positive constant. Then, if

(13) ot) < k + fu(z)v(r) dt
it follows that B

t
(14) o(t) =k expfu(r) dr.

Proor or THrEorREM 1. We denote by x;, z, two solutions of (9) satis-
fying
(15) X%y — Xy = 1.
Then a general solution y of (10) will satisfy the following integral equa-
tion:
(16)  y(t) = [y(c)my'(c) —y'(c)xa(c)]2s(8) — [y(e) ey (€) — 4’ (c) @y (c)]alt) +

t
+ [ GO =N ) m(r) ()] () dr

This may be verified by substituting gy = —y'’ and integrating by parts.
We now write

(17) Z, = gcosw, X, = gsinw,

whence

Math. Scand. 14 — 8
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(18) oo’ = zwy, —w)'x, = 1,
t

(19) o= f@‘zdt provided w(c) =0.
[4

For later use we observe that (9) may be written
(20) @' + (et —e ") = 0.
Substitution of (17) into (16) gves

@)y = =0 + [ lo()~f(D]e()e(t) sin ( | e‘zdS) y(z) dr.
Writing -~ i t

(22) y(&) = e(®)w(t),

one obtains

(23)  w() = e lt) + [ [9(r)—F ()] ) sin ( | e‘zdé‘) w(z) de
c t

hence ;

(24) w®] < & + [ lg(e)—f ()] 0z jw(2)] de

c

Using Bellman’s lemma, (24) implies

t
(25) jwl < kexp [ lg—fle*ds,
further ) ,
(26) 1yl < ke exp [ lg—fle*ds
[

It is a tacit assumption in the formulae above, that t2¢. With ¢ and
¢ interchanged, they are valid for #<c, as Bellman’s lemma may be
modified correspondingly.

Under the assumption (12) of the theorem, i.e.

(27) lg—flto € L2,
(26) yields
lg—flty € L%.

When in addition to (12), x € L* holds, i.e. (9) is of limit circle type,
y € L? ensues, that is, (10) will be of limit circle type as well. This con-
nection being a symmetrical one, Theorem 1 may be implied.

From (26) we deduce the following
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THEOREM 2. When (9) is of limit circle type, the same is the case for (10),
provided

(28) Q exp e L%,

f lg —fle*dr

o being given by (17) and (15).

3. Further limit circle criteria.

Next, a few more limit circle criteria will be deduced, all concerning
the case of a finite interval, with the singularity placed at the left end
point a. Generalizing a method used by Sears [7, pp. 210-211], and
starting with the integral equation (21) one finds

b T
(29) ()] < &0) = ke(® + [ lg(x)=F (@) e(2)e(®) ( [ 9‘2d8> () dr.
t t

Hence

b
(30) £(t) = ko' + 00— ko) — 0 [ lg—/lelyl d
t
yielding
b
(31) o' ~0'¢ = - [lg-flelyl dr
t
(32) e&"—e"& = lg—JSlelyl = lg—fleé.

Putting in (32) {=y and |g—f| <@+ x, one obtains (the functions y, {,
@ and y to be chosen suitably)

(33) Yl + 290+ < (et +p+ )yl .
We choose

(34) py iy’ =0 "+,

and obtain

(35) pl"+2¢'0" £ eyl

or

(36) @*l') £ py?C,

further b

37) PO -y () S [pyelds,

whence
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lIA

b b b
(38) () = 2(b) — y2C'(b) f y2dt + f v2(7) ( f W2Cds) dv

It

b b T

{o) - wzf'(b)f¢‘2dr + ftpzp% (f zp“zds) dr.
12 t 7

Choosing now y~! € L2,

(prpsz—zds e L,
a

and applying Bellman’s lemma to (38) we find {(#) <%, hence
(39) ly@)l = &) = ¢ = ky.
Lastly, choosing y € L? implies y € L?. Hence we have proved

THEOREM 3. The equation (10) will be of limit circle type at a (a finite)
provided

(40) lg—f| < p+x,

where .

(41) <p1pzf1p'2ds e L, ple L2 peL?,
and e

(42) 1=y ly"—o ",

or, using (20)

(43) 1=y +f—0™*,

o being defined by (17) and (15).

As an example we may take yp=¢-1-9 (choosing ¢=0), whence
(44) 4ty = (3—20+6%)12,
(46) ty € L(0,b) .

When f is chosen fairly smooth, the present method cannot yield
results comparable to those obtained in [5]. However, theorem 3 is generally
more flexible, applying easier to a not so smooth f. This remark is
equally valid for Theorems 2, 4 and 5 (below).

4. Non-oscillatory equations.

Further general results may be deduced for non-oscillatory equations
i.e. equations having no solutions with an infinite number of zeros in
the considered interval. Theorem 3 is restricted to the finite interval
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case because in (41), y~'€ L? and y € L? are mutually exclusive on an
infinite interval. In what follows, the restriction to finite intervals is
necessitated by the fact that an equation (2) which is non-oscillatory on
an infinite interval is of limit point type at infinity. This was established
by P. Hartman [6, p. 698 and 703]; see also [4, p. 12].

Assuming now that (2) is non-oscillatory on the finite interval (a,b)
and taking a real, positive solution z,(¢) satisfying z,~! € L%(a,c) (which
may always be found, see [4, pp. 14-15]), another linearly independent
solution is ¢

(46) T, = xlfxl‘zdr ,

a

and z,x," —x,"2,=1. Substituting this in the integral equation (16), we
get
@) 90 = 20 + [ IO - @l ( | xl-zds) y( dr,

11 17

hence
T

[
(48) Ol = &0 = k) + [ lg—flaa(@) ( | xl-zds) ly(o)l dv .
i 12
Replacing first in (48) [fx72ds with [Zx72ds, an application of Bell-
man’s lemma as in the deduction of Theorem 2 leads to

(49) 9] < ko exp [ lg—flay? ( | wds) dv.

a
Hence Theorem 2 is improved for a finite interval in the special case

when (10) is compared to an equation (9) which is non-oscillatory on
(@,b), and we have

THEOREM 4. When on a finite interval equation (9) is mon-oscillatory
and of limit circle type at a, and x; denotes a solution of (9) satisfying

(50) 2,7t e L¥(a,c) ,

and further

(51) z, expf lg—r11 .2 (f x1—2ds) dv e L%,
t a

then (10) is of limit circle type as well.

A last result is obtained by treating (48) by the same method as (29),
which lead to Theorem 3. The results will be analogous, i.e. |y| £ ky when
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t
yly" =ty = 2, wsz‘zdfeli, lg—f1 = o+y.
a

Hence we have

THEOREM 5. Under conditions (40) and (41) of Theorem 3, but where
(52) x=vy'+f,

with the restriction on f that equation (9), &'’ + fr=0, is non-oscillatory near
the singular point a, then equation (10), y'' +gy=0, is of limit circle type
at a.

Putting g=f in Theorem 5, one obtains the following
CoroLLARY. When (9) is non-oscillatory, and further

(53) fO) z -yl —9p,

@ and p being given by (41), then the equation will be of limit-circle type
at a.

The presence of ¢ in (53) constitutes an improvement from the com-
parison criterion annonced in [4, p. 26].

Condition (52) in Theorem 5 clearly constitutes, comparing it with (43)
in Theorem 3, a certain improvement on the latter theorem in the special
case of a non-oscillatory comparison equation (9). In fact, the inequality

g—fl = p9"+f+o,

resulting from (40) and (52), is in a sense the best possible insofar as the
comparison is restricted to non-oscillatory equations, since we have
gained through this inequality a natural lower bound for g(¢), indepen-
dent of f(), namely gy(f)= —y~1y’’, where the main restrictions on y are
y~le L? (see remark concerning xz,-! just above (46)) and y e L2 This
means that in ¥’ +gy =0, g(¢) may be chosen as ‘“‘near” as we wish to a
function yielding (non-oscillatory) solutions y(f) which are not all of
class L2 The following example will illustrate the last statements.

ExampLE. Taking a=0 as the singular point, and choosing in (9)
(54) f@) = B 1+ + W) 2+ ...+ (U, .. 0)%],
where we have put
I =1log(1ft), I, =loglog(lft), I, =logl,_,,

two solutions are
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(55) Xy = Tlyq,  wy= (.. L)Y

When the coefficient of the last member in the braces of (54) gets an
increase from 1 to 1+46, 6 >0, equation (9) will be oscillatory (see for
example [3, p. 121]). Thus, with (54) we are near the limit of applica-
bility of the last theorem. Further, choosing

(56) p = (tly. .. ly) ¥, 0>0
we get
67 p W' =231 —(Uy) — ... —(1+0)(l,...l5)" 1+ 0(12)].

Hence, from Theorem 5, the lower bound for g is given (neglecting ¢,
which is restricted by {p € L(0,b)) by

(58) gt) = t 22+ 1+ () + ...+ (1+0)U,. . . 1)1 .
On the other hand, y=(tl,...1y)"* ¢ L*0,b) yields
(59) -y’ =2+ U)T+ Uy Ly) T O]

The upper bound for g(¢) obtained here is far from being best possible;
neglecting the logarithmic refinements we find g(¢) < §%-2, thus obtaining
only one half of the range given in (6) above.
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