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SKOLEM ARITHMETICS
ON CERTAIN CONCRETE WORD SYSTEMS

H. A. POGORZELSKI

Given an abstract or concrete word system #” in a finite or denumer-
ably infinite alphabet, a Skolem arithmetic on ¥ is an arithmetic con-
structible by the Skolem method on #”, that is, constructible by means
of propositional calculus, definition by composition and recursion in #”,
and proof by induction in #; without the use of unbounded quantifiers.

There are five abstract word systems in general use, namely, the Dede-
kind word system A(a) in the one-sign alphabet {a}, the commutative
word systems V(a®) and V(A) in the finite alphabet a® = {a,q,,...,a,}
and in the denumerably infinite alphabet A={a,,a,,...}, respectively,
and finally the noncommutative word systems Q2(a™) and £(A) in the
finite alphabet a™ and denumerably infinite alphabet A respectively.
In our previous notes [8, 9, 10, 6, 11] we have given concrete inter-
pretations of A(a), V(A) and Q(A), namely, A(1) in the alphabet {1},
V(P) in the denumerably infinite alphabet P={p,,ps,p;,...} (class of
prime numbers) and Q(P®), Q(P®),. .. respectively in the denumerably
infinite alphabet P®={p,® p,® . .} (the class of nonpower numbers),
P® = {p,®, p,®,. ..} (the class of nontetrational numbers) and so on. More-
over, we have indicated the initial fragments of the Skolem arithmetics
on A(1), V(P), Q(P®), k=1,2,..., in general up through their corres-
ponding unique resolution theorems.

In this paper, we show that our Skolem arithmetics on A(1), V(P),
QP®) k=1,2,3,..., denoted respectively as X(1), II(P), E®(P®), are in
fact interconstructible. We do not give full formal statements of these
Skolem arithmetics, for such details follow the paper by Church [2]
keeping in mind the difference between Church arithmetics and the
Skolem arithmetics. (Actually, Church in his paper [2] deals only with
a recursive arithmetic in a one-sign alphabet, but his ideas can be ex-
tended to the denumerably infinite alphabetical cases as well, moreover
the Church arithmetics can be constructed either as Skolem arithmetics
[2, 3] or Goodstein arithmetics [12].) Lately, there has been some super-
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ficial criticism against the Skolem arithmetic 2(1) as a method of treating
the foundations of elementary number theory, specifically, that in 2'(1)
it takes entirely too long to reach the fundamental theorems usually
presented at the outset of elementary number theory. We point out
that these fundamental theorems of elementary number theory appear
in the desired sequence in the Skolem arithmetic 7I(P), and the higher
fundamental theorems such as those given in our notes [8, 9] in the Skolem
arithmetics E®(P®), k=1,2,3,..., are again for each k reshuffled in the
sequence desired by the critics. The results in chapter 4 of this paper
substantiate this point.

1. Abstract recursive word systems.

1.1. Dedekind word system /(a). Given the one-sign alphabet {a}, the
empty word #, the successor function ax satisfying the axiom ax+ay v
z=y and finally the equations hy={#}, h,.,={ax|x€h,}, the word
system A(a)=U_.h,, is called a Dedekind word system in {a}. An im-
mediate consequence of this construction is the mathematical induction
theorem.

1.2. Commutative word system V(A). Given the denumerably in-
finite alphabet A={a,,a,s,as,...}, the empty word # the denumerably
infinite class of successor functions @, X, u € N, where N={1,2,3,...},
satisfying the axioms

(1) a,Fa,vu=v,
(2) a(2X)*a,,Y)vX=Y,
u,v € N, and finally the equations
Hy={#, H,,=1{aX|XecH,rpeN},

the word system V(A)=US_ H,, is called a commutative word system

in A. A quick consequence of this construction is the stage induction
theorem of V(A):

e vXeS raX¢ES v S =VA).
For further details, see the papers by Vuckovi¢ [15] and the author [10].

1.3. Noncommutative word system (A). Given a denumerably in-
finite alphabet A={a,,a,as,...}, the empty word # the denumerably
infinite class of successor functions a,X, u € N, satisfying the axioms
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(1) aX+a X v u=v,
(2) aX+a,¥Y v X=Y,
u,7€N, and finally the equations
Hy={#, H,,={a,X|XeH, rApeN},

the word system 2(A)=Uj_,H,, is called a noncommutative word system
in A. Again, an immediate consequence of the above is the stage induc-
tion theorem of Q(A):

#eS vXeSL raXES v I=00A).
For details confer the papers by Péter [5] and the author [6].

2. Skolem arithmetics in one-sign alphabets.

2.1. Arithmetic X(1). With the interpretation A(1) of the abstract
Dedekind word system A(a), i.e., the word system in the alphabet {1},
empty word 0, the successor function x+ 1 and so on, we get the Skolem
arithmetic X(1) on 4(1), i.e., the arithmetic constructible by the Skolem
method on A(1). In X(1), we shall denote variables in the usual lower-case
italic letters. We point out that 2(1) is provided with the familiar
primitive recursive scheme and that bounded quantifiers are available
in X(1) as well in all of the following Skolem arithmetics because they
can be defined by recursion.

We note several definitions needed in this paper. Recalling our notes
[8, 9], the Hilbert—Ackermann class of primitive recursive functions
starting with

&(@,y) = [x,y], where [z,y] = a¥,

Eyw,y) = (wy), where (2,0) =1, (@&y+1) = [z, {xy)],
and in which every successive function is defined by the equations
Enn(®@,0) = 1, Ea(ry+1) = &2, &,u(@Y),
we define for k=1,2,3,. .., the relations
Ry(y,x) < Vz < a{o=§&(y,2) A 2>0 A y>1},
M) < 222 A Ay Ryy,2) v 2=y},

nonR, means the negation of R, and in turn the following classes of
natural numbers by the equations

PP =2 P9, = pz < [2,20+1]1{z > PP A M)}
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For example, for k=1 we have the class of nonpower numbers, for k=2
the class of nontetrational numbers, and so on. We denote these classes
by P®, k=1,2,3,....

Also, we shall have occasion to use the following primitive recursive
functions of 2(1). In the following, £=1,2,3,.... Firstly, we define

19(2,2) = pzsa{r=E§,(2,2) v =0}.
In turn, we define the primitive recursive functions y, ¥ by the equa-
tions:
1) 7(0) =1,  yplE+l) = 2-y@);
(2) Plx) = 0 if mnR(2,%),

= IM2,x) if R(2,z).
Finally, the primitive recursive functions y®, 7% by the equations:
(3) yP(0) = 1, y®(x+1) = £(2,90(x));
(4) 7P(x) = 0 it morRy,(2,2),
= (&2, 2) if R,.(2,2).

Clearly, 7 is the inverse of y and $® the inverses of y®,
For details, see the papers by Skolem [13, 4], and the author [8, 9].

2.2. Arithmetic II(p,). Given the interpretation A(p,) of 4(a), i.e., the
word system in the alphabet {p,}, p; =2, the empty word 1, the successor
function p,-a or briefly p® and so on, with hy={1}, b, ., ={px |z €h,}
and A(p;) = U%_h,,, the following arithmetic constructible by the Skolem
method on A(p,) is denoted by II(p,). (Note, II(p,) is the Skolem arith-
metic on numbers [2,u](x € N).) We shall denote the variables in lower-
case boldface letters. The primitive recursive scheme of 7I(p,) is of the

form:
f(wl" . "wml) = g(wl" . .,wn) )

f@y,. . 2, prY) = h(xy,. .., 2, Y. (@1, . ., 2,,9)) .
Next, in II(p,), we have word addition defined by
@l ==, xOpY = p(*DY) ,
word multiplication by
01l =1 *OpY =xD@OY),
word exponentiation by

A1l =p,, zAPDY =xO@EAY),
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word predecessor function by

pl =1 ppx) ==,

restricted word subtraction by

¥[=]l =  x[=]py = p(a[+]y),
and the relation x<y by

<y < x=y-lyl+k,
and for the case x +y we use x <y. In turn, we have the word-divisibility
relation
ylle < Vz Z{xfe=y0Oz A 2+1},

primitive-word relation
pw(x) <= &1 A x£p, A Az Zx{z™|ax v z=2 v 2=p,}
and finally the class of primitive words of II(p,) defined by
Pr=Ta  Pua = #2 2 (M4 (0 A 1, 4)){P, < 2 A PW(R)},

where 1, = py, n,,,=1,0p,. For example, p, =[2,p,], where p, is the
nth prime number of P. Further, we note that in II(p,) we also have a
primitive-word unique resolution theorem, proved in a parallel way as
in X(1). Moreover, we have the primitive recursive function

exp (P, ) = uz X ®{(p, & py2) " X}

(the word-exponent of the nth primitive word in the primitive-word
resolution of &) and

gpw(x) = up,Zz{p, | » Az=Zaxfp, "z v 2Lx}}

(the greatest primitive word which ® is word-divisible).

2.3. Arithmetics E®(p,®). For all cases of the use of k in this section,
k=1,2,3,.... Given the interpretation A(p,®) of A(a), i.e., the word
system in the alphabet {p,®} (see, 2.1), the empty word 1, the successor
function &,(p,%,x) or briefly p,®x, and so on, the following arithmetic
constructible by means of the Skolem method on 4(p,*) is denoted by
E®(p,®), (Note, E¥(p,V) is the Skolem arithmetic on numbers (2,u),
u e N, EO(p,®) is the Skolem arithmetic on numbers &3(2,u), u € N, and
80 on.) As in II(p,), we shall denote the variables of Z®(p,®) in the lower-
case boldface letters. The primitive recursive scheme of Z®(p,®) is of
the form:

Math. Scand. 14 — 7
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fl@y,...,2,,1) = g(®y,...,x,),
@y 2, 0 PY) = h(zy,. . .20y, f(25,. . ., 2,,Y)) .

In E®(p,®), we have word addition defined by

2L =@, 2@PpMy = pP@SPY),
word multiplication defined by

zO®P1 =1, xOPpMy = 2@®@O®y),
word exponentiation by

AW = p® @ A®p By = 2@ (@ AD y)

and a word-version in E®(p,®) of the Hilbert—-Ackermann class of

primitive recursive functions starting with §,®(x,y)=2x A® y and in
which each successive function is defined by the equations

ER@,1) = p®,  ER (x,pPy) = EP(x, £V, (x,y)) .

Moreover, we have the word predecessor function p,%, restricted word
subtraction ®( = )®y and the relations ® <"y, x <®y defined along the
lines given in 2.2.

In turn, we have the k-divisibility and k-irreducible-word relations
defined respectively by

y”(k)w <> Vzé(k)w{wzgk(k)(y,z) A B 1}
and
pwh(x) <= ®+1 A 2+p® A A2ZOx{z @ v z=x},

and finally the equations
p® = u®,  p® = gz KPP A @P A n® )P <z A pw®(2))

(p,® is the mth k-irreducible word), where n{”=p®, n® =n®PgpP.
For example, p,M={2,p,®, where p,® is the nth nonpower number
in P, We point out that in E®(p,®) we again have a k-irreducible-word
unique resolution theorem (see 3.1). Moreover, using the function x[k]y
defined by the equations

ke =,  pPkJe = §P(p,Y,2),
gk(k)( y(k)’ y)ﬂk]]w = §k(k)(‘p;4(k)7 y[[k]]w) 3

u € N, which is primitive recursive in Z®(p,®) (see 3.1), and the relation

y Pz < Vu <0z Vo <Prfe=ulk]ylkle) A 1 <P},
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we define the primitive recursive functions
") (1 (K k B (g8 o (E
exp® (Pl x) = pz O @{ERD, (072, p%) " s

(the k-word exponent of the nth k-irreducible word in the k-irreducible
word resolution of ), and finally

gpwO@) = b, ® <V afp, P [0 @ & Az < xfp,B om0 2 v 2 <0 z))
(the greatest k-irreducible word by which « is k-word-divisible).

3. Skolem arithmetics in denumerably infinite alphabets.

3.1. Arithmetics Z®(PB®). As pointed out in section 2.3, the class of
unique k-irreducible-word resolution theorems (k=1,2,3,...) and the
function «fkly, k=1,2,3,..., are in the Skolem arithmetics F®(p,®).
This is established in a parallel way as given in our notes [8, 9] with
respect to the interpreation Q2(R®) of 2(A). That is, the word system
in the denumerably infinite alphabet B®={p,® p,® . ..}, where p,®,
p,®,... are the consecutive k-irreducible words of Z®(p,®), with the
empty word p,®, the denumerably infinite class of successor functions
§x(0,®,x), pe N, or briefly p Px satisfying the axioms given in 1.3, the
equations

Hy = {p®}, Hpn={po%|xecHl, » peNj
and finally

Q(PP) = L_JOHm-

For example, the words of Q(B®) are of the form (2, [pP, ¢ ,..., sV,
i1, .0, €N, where [2]=2y, [Zp11:%p;- - >8] =[Zps1, (@, - .,%,]]. The
Skolem arithmetic on Q(R®), with word addition and multiplication
defined like in section 3.3, we denote by E®(B®). Here we can denote the
variables by lower-case boldface letters. The primitive recursive scheme

of EM(P®) is of the form:
Fx,,. .., 2, 0,%) = Gy, . . .,2,),
F(xy,....,x,0,Py) = H(x,,...,2,,9y,F(xs,....@,y), peN.

Lastly, in an exactly parallel way asin [9], we can show that definition
by primitive recursion in Z®(R®) implies definition by primitive recur-
sion in E®(p,®) and that the k-irreducible-word unique resolution

theorems are theorems of E®(p,®).

3.2. Arithmetic IT(P). As in our note [10], given the interpretation
V(P) of the commutative word system V(A), i.e., the word system in the
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prime-number alphabet P={p,,p,,...}, p;=2, with the empty word 1,
the denumerably infinite class of successor functions p,-X, ueN, or
briefly p,X and so on, the following arithmetic constructible by the Skolem
method on V(P) is the Skolem arithmetic II(P). In II(P), we shall
denote the variables in the upper-case italic letters. The primitive re-
cursive scheme in [/(P) is of the form:

F(X,,...,X,,1) = qX,,....X,),
F(X,,....X,pY) = H(X,,....X,,Y,F(X,,...,X,,¥), peN.
In particular, with x, v € N, we have word addition defined by
Xl =X, X@pY =7p(XDY),

the subscript function defined by

o) =1, o@X)=c(X)®p,.,>
word multiplication defined by

Xol1=1, Xop)Y =¢,(X)dX0OY),
word exponentiation defined by
XAl=p, XopY=0X)0X2Y),

word predecessor function

pl1=17pp X=X if v=u,
= p/PX) i v+pu,

restricted word subtraction
X[-1 =X, X[=]p,¥Y =D, X[-]T),
and finally the relation
XY < X=Y[-|(Y[+-]X).
Lastly, we have the length function of II(P) defined by
M) =0, ApX)=AMX)+1,
and the index function by
ind(X) =pu if X=p,,
=0 if X=%p,.

Now we can introduce numeral words in IZ(P) by N(1)=1, N(p,X)=
py(N(X)), and num(X) <> X=N(X). Clearly, since numeral words
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are recursively definable in JI(P) and the primitive recursive scheme of
II(p,) is a special case of the primitive recursive scheme of II(P), we can
consider the functions exp and gpw defined in 2.2 as primitive recursive
functions of II(P). In turn, we define the primitive recursive functions I,
I’ by the following equations:

(1) rqy = p, I'ip,X) = »,0I'X), peN;
(2) I'X)=1 if X % num(X),

Ua(X)(eXP Paxy X ))@ e @Uz(eXP (e, X ))@ 01(eXP (9, X ))
if X =num(X),

I

where §(X)=ind (A(gwp(X))). Clearly, [ is the inverse of I

We point out that in the Skolem arithmetic 77(P) we also have a
primitive-word theory up through the primitive-word unique resolution
theorem. For details, see the paper by the author [10]. Also, confer the
paper by Vuckovié [15].

3.3. Arithmetics E®(P®). For all cases of the use of k in this section,
k=1,2,3,.... As in our notes [8, 9], given the interpretation 2(P®) of
the noncommutative word system (2(A), i.e., the interpretation in the
denumerably infinite alphabet P® (see 2.1), with the empty word 1, the
denumerably infinite class of successor functions &, (p,®,X), ue N, or
briefly p,®X and so on, the following Skolem arithmetic on Q(P®) is
F®(P®), We denote the variables of E®(P®) in the upper-case italic
letters. The primitive recursive scheme of Z®(P®) ig of the form:

FX,,....X,,1) = GX,,....X,),
F(X,,...,X,,p®Y) = H(X,,... ,X,,Y,F(X,,...,X,,Y)), ueN.
In E®P®), with u,» € N, we have word addition defined by
X@e®l = X, XpWp®Y = p®(X@WY),
which is associative but not commutative, the subscript functions
1) oP(1) =1, oPEPX) = PX)D® PGy »
(2) 5,1) =1, opPX) = o, (X)@PH",.
and in turn word multiplication defined by
Xe®1 =1, XeWp®Y = ¢M(X)BR(XWY),

word exponentiation

X oW1 =ph, X A0p#Y =¢®X)OW(X a® Y),
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and a word-version in E®(P®) of the Hilbert-Ackermann class of primi-
tive recursive functions starting with §,®(X,Y)=X A® Y and in which
every succeeding function is defined by the equations

§§,’21(X, l) = p(lk)’ g(r{cll(X’pgc)Y) = ggc)(aflk)(X)’ §gc-f)-1(X’ Y)) *

As given in our note [11], we have a word restricted subtraction
X[+]®Y and the relation X <® Y. Finally, we have the length function
defined by

A1) =0, AW(p®X) = 1®(X)+1

and the index function defined by

nd®(X)=p if X =p®,
=0 if X+p®.

Finally, we introduce numeral words in E®(P®) by

NO() =1, NW(p®X) = pONO(X),
and
num®(X) <« X = N®O(X).

As pointed out in 3.2, with the numeral words recursively defined in
EW@(P®) and the primitive recursive scheme of Z®(p,®) being a special
case of the recursive shceme of Z®(P®), we can consider the functions
exp® and gpw® defined in 2.3 as primitive recursive functions of Z®(P®),
In turn, we define the primitive recursive function I'® and its inverse
I'™ by the following equations:

1) I®1) =p®,  I®pEX) = 5P(p,B, IOX))ue N);
(2) IMX)=1 if X + num®(X),
= O'a(k)(X)(eXP(k) (pf,R)(X-,,X ))@ .- .@o’l(exp(k) (p,®, X ))
if X = num®(X),
where 69(X)=ind® (A®(gwp®(X))).
For details see the papers by the author [7, 11], where the word
arithmetic which runs through certain primitive-word unique resolution

theorems carries over to the Skolem arithmetics ZE®(P®). Also, see the
papers of van Rootselaar [14] and Vuckovié [16].

4. Interconstructibility.

4.1. Constructibility of X(1) in II(P). Recalling the primitive recursive
functions y, 7 of X(1), it is not difficult to see that », 7 give an arithmeti-
zation between 4(1) and 4(p,). Next, following Asser [1], we state some
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preliminaries. Let f be a function of X(1). Denote by y[f] the function
of II(p,) such that

i@y, .. 2,) = Y(f(f(wl)’ s ,‘}7(33"))) .

On the other hand, if f is a function of II(p,), denote by 7[f] the function
of 2(1) such that

Py - -5 2,) = }7(f(}/(£€1), ‘e ’y(xn))) .

In turn, recalling the primitive recursive functions I, I" of II(P), we note
that I', I' also give an arithmetization between V(P) and A(p,). If fis a
function of II(p,), denote by I'[f] the function of II(P) such that

TfI(Xy,. .. X,) = T(f(DXY),. .., I'(X,))) .

Finally, the following theorems are evident. (1) If fis a primitive recur-
sive function of 2(1), then y[f] is also a primitive recursive function of
II(p,). (2) If fis a primitive recursive function of II(p,), then $[f] is
also a primitive recursive function of 2(1). (3) If f is a primitive recursive
function of II(p,), then I'[f] is also a primitive recursive function of
II(P).

To prove that X(1) is constructible in JI(P) it is enough to show that (I)
the primitive recursive functions of X(1) are primitive recursively
definable in II(P) and (II) induction in X(1) implies induction in IT(P).
The rest carries over easily.

(I) Let f(xq,-..,%,) be any primitive recursive function of X(1). On
the strength of theorem (1) of this section,

f(wly' . "wn) = y[f](wl’ . 'an)

is a primitive recursive function of [/(p,). Next, by theorem (3),
rfiXx,,...,X,) is a primitive recursive function of II(P). Now note
that y defined in 7I(P) is nothing more than the primitive recursive func-
tion I" of II(P). Consequently, we have

ririn&y,. ... X, = rifiXy. ... X,),
and furthermore, since I" is the inverse of I', we have
fXy,. ... X, = IMflXy. ... X,),

which means that f is primitive recursively definable in II(P).

(IT) The proof that induction in X(1) implies induction in I7(P) parallels
the proof given in our note [9]: Induction in X(1) is equivalent to the
principle of uniqueness of primitive recursion in X(1) and in turn induc-
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tion in II(P) is equivalent to the principle of uniqueness of primitive
recursion in I/(P). Using (I) above, we can conclude that induction in
2/(1) implies induction in II(P).

4.2. Constructibility of 2(1) in E®(P®), In all cases of the use of k
in this section, £=1,2,3,.... As in 4.1, we use y®@, 3® and I'®, [®
respectively, for the arithmetizations of A(1), 4(p,®) and Q(P®), A(p,®)
respectively. Again if f is a function of 2(1), denote by y®[ f] the function
of E®(p,®) such that

YO @y, . oy) = yB(f(F0@)),. . .. 70(,))) -

On the other hand, if fis a function of Z®(p,®), denote by $®[f] the func-
tion of 2(1) such that

@ . o) = F(FP@),- . .y P(=,))) -

Lastly, if f is a function of E®(p,®), we denote by '™[f] the function
of E®(P®) such that

FOfY(Xy,. . ., X,) = TO(f(TOXy),. .., [9(X,))) .

Finally, the following theorems are not difficult to see.

(1) If f is a primitive recursive function of 2(1), then y®[f] is also a
primitive redursive function of E®(p,®).

(2) If f is a primitive recursive function of E®(p,®), then 7®[f] is
also a primitive recursive function of 2(1).

(3) If f is a primitive recursive function of E®(p,®), then J®[f] is
also a primitive recursive function of E®(P®),

To verify that X(1) is constructible in E®(P®) we shall outline that
(I) the primitive recursive functions of X(1) are primitive recursively
definable in E®(P®) and (II) induction in X(1) implies induction in
F®(P),

(I) Let f(zy,...,x,) be any primitive recursive function of X(1). By
theorem (1) of this section, f(x;,. . .,x,)=y®[fl(®,,...,»,) is a primitive
recursive function of E®(p,®). By theorem (3) of this section,
I'[f1(X,,...,X,) is a primitive recursive function of E®(P®), Again,
p® defined in E®(P®) coincides with I'® of Z®(P®), Consequently, we
have _ -

F<k>[F(k)[f]](X1,. ‘ 1X’n) = F(k)[f](Xl" . 7Xn)
and furthermore, since I'® is the inverse of I'®, we have
fXyo ., X)) = TO[f)(Xy,..., X)),

which means that f is primitive recursively definable in E®(P®),
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(II) The proof that induction in X(1) implies induction in E®(P®)
runs parallel to the one indicated in 4.1.

4.3. Interconstructibility of X(1), I7(P), E®(P®). On the strength of
the results in our note [9], it follows that the Skolem arithmetics
E®P®) k=1,2,3,..., are constructible in X(1). In an exactly parallel
way as in [9], we have that II(P) is constructible in X(1).

Finally, from the preceding results and the results in sections 4.1
and 4.2, we have the following easy consequence. Given any m, n € N,
the Skolem arithmetic Z®™(P) is constructible in the Skolem arithmetic
E®(P®), Therefore, the Skolem arithmetics 2(1), II(P), ED(PD), F@(P®@),
E®(P®),. .. are all constructible within each other. In turn, it also follows
that the abstract Skolem arithmetics X(a), II(A), E®(A), k=1,2,3, ..
are interconstructible.

.
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