THE STRUCTURE SPACE OF A LEFT IDEAL

GERT KJÆRGAARD PEDERSEN

Jacobson [1, p. 206] showed that if A is a two-sided ideal in a ring B, then the structure space of A is homeomorphic to the open subset of the structure space of B consisting of those primitive ideals which do not contain A. For any such P in the structure space of B, its image under the homeomorphism τ is given by $\tau(P) = P \cap A$. We shall show that if we restrict attention to the right structure space, i.e. the space of right primitive ideals, this theorem is actually valid even when A is just a left ideal in B. The homeomorphism τ is, however, no longer of such simple nature; in fact, we cannot state more than $\tau(P) \supseteq P \cap A$.

We shall write AB for the set of elements ab, $a \in A$, $b \in B$, and $\{A, B\}$ for the set of finite sums of products ab, $a \in A$, $b \in B$.

Let A be a left ideal in the ring B.

A right primitive ideal P in A is the quotient of a maximal modular right ideal I:

 $P = I : A = \{a \mid Aa \subseteq I\}$

and P is the largest two-sided ideal contained in I. Even when I is not modular, the ideal I:A is primitive, but we cannot be sure that it is contained in I. We shall make extensive use of the fact that $J_1J_2 \subseteq P$ implies $J_1 \subseteq P$ or $J_2 \subseteq P$ for all right ideals J_1 and J_2 .

The sets of primitive ideals in A and B are denoted Π and Π_B , respectively.

For any sets $S \subseteq A$ and $X \subseteq \Pi$ define the hull of S in Π by

$$h(S) = \{ P \mid S \subseteq P \in \Pi \}$$

and the kernel of X in A by

$$k(X) = \bigcap \{ P \mid P \in X \} .$$

The operation hk defines a closure in Π , and the structure space of A is Π endowed with this hull-kernel topology. Similarly h_B and k_B are defined in Π_B and B.

Received September 19, 1963.

Theorem 1. To each maximal modular right ideal I in A corresponds a maximal modular right ideal I_B in B such that $I = I_B \cap A$.

PROOF. It is easily seen that $I_B = \{b \mid bA \subseteq I\}$ is a proper right ideal in B, and if e is a left identity for A modulo I, then e is also a left identity for B modulo I_B . For any $b \notin I_B$ the maximality of I implies $e \in bA + I$. Hence $e \in bB + I_B$ which means that I_B is maximal. Clearly $I = I_B \cap A$.

If P=I:A, we shall denote the primitive ideal $I_B:B$ by P_B . It may happen that P=I:A=I':A and accordingly $P_B=I_B:B$ and $P_B'=I_B':B$. But then $BP_BA\subseteq P\subseteq I'$ and thus $P_B\subseteq P_B'$. Conversely, $P_B'\subseteq P_B$ so that we can define a mapping

$$\tau \colon \Pi \to \Pi_R$$
 by $\tau(P) = P_R$.

If we denote by $\tilde{\Pi}$ the complete image of Π in Π_R , we have:

Theorem 2. The mapping τ is a homeomorphism of Π onto $\tilde{\Pi}$.

Proof. First note that

$$A(P_R \cap A) \subseteq P_R \cap A \subseteq I_R \cap A = I$$

and

$$B(AP)A \subseteq AP \subseteq I$$
,

so that $AP \subseteq P_B \cap A \subseteq P$. Then suppose $\tau(P) = \tau(P') = P_B$. Now,

$$PP \subseteq AP \subseteq P_R \cap A \subseteq P'$$
,

and as P' is primitive, $P \subseteq P'$. Conversely, $P' \subseteq P$, and τ is one-to-one. For any $X \subseteq \Pi$ and any $P' \in hk(X)$ the following inclusions are valid:

$$\begin{split} Bk_B & \big(\tau(X)\big) A \subseteq k_B \big(\tau(X)\big) \cap A \\ &= \bigcap \big\{ P_B \mid P_B \in \tau(X) \big\} \cap A \\ &= \bigcap \big\{ P_B \cap A \mid P_B \in \tau(X) \big\} \\ &\subseteq \bigcap \big\{ P \mid P \in X \big\} = k(X) \subseteq P' \;, \end{split}$$

so that $k_B(\tau(X)) \subseteq \tau(P')$ which is equivalent to $\tau(P') \in h_B k_B(\tau(X))$. Hence $\tau(hk(X)) \subseteq h_B k_B(\tau(X))$.

Conversely, take any $\tau(P') \in h_B k_B(\tau(X))$. Then

$$k(X) k(X) \subseteq Ak(X) \subseteq \bigcap \{AP \mid P \in X\}$$

$$\subseteq \bigcap \{P_B \cap A \mid P_B \in \tau(X)\}$$

$$= A \cap k_B(\tau(X))$$

$$\subseteq A \cap \tau(P') \subseteq P'$$

which yields $k(X) \subseteq P'$ or $P' \in hk(X)$. Thus we have proved

$$\tau(hk(X)) = h_B k_B(\tau(X)) \cap \tilde{H}.$$

Theorem 3. $\tilde{\Pi} = \Pi_B \setminus h_B(A)$.

PROOF. If $P_B = J : B \notin h_B(A)$, then $I = J \cap A$ is a proper right ideal in A. As J is maximal, it may be defined as

$$J = \{b \mid bA \subseteq I\},\,$$

but then any right ideal I' in A such that I is properly contained in I' satisfies $BA \subseteq I'$. If e is an identity for B modulo J, then

$$(1-e)A \subseteq J \cap A = I$$
, hence $A \subseteq eA + I \subseteq I'$

and I is maximal. Now, there exists a maximal modular right ideal I'' such that I:A=I'':A and, defining I_B'' as usual, we see that $b\in I_B'':B$ implies $BbA\subseteq I'':A=I:A$, which means that $ABbA\subseteq I$, hence $ABb\subseteq J$ and thus

 $\{A,B\}(I_B:B)\subseteq J:B=P_B.$

Now, $\{A,B\}$ is a right ideal in B and as $\{A,B\}\subseteq P_B$ would imply $AA\subseteq I$ hence $A\subseteq J$ since $J=\{b\mid bA\subseteq I\}$, we conclude that $I_B\colon B\subseteq P_B$. To see that the opposite inclusion holds, just note that

$$P_{\mathcal{R}}A \subseteq P_{\mathcal{R}} \cap A \subseteq I:A = I'':A$$
,

hence $P_B \subseteq I_B^{"}: B$. The proof is completed by observing that no primitive ideal in $h_B(A)$ is a member of $\tilde{\Pi}$.

If the left annihilator of A in B is zero, we may use the inclusion

to obtain

and

$$k_B(\tilde{\Pi}) \subseteq \{b \mid bA \subseteq k(\Pi)\}$$

Theorem 4. If A is semi-simple, then B is semi-simple too and $\tilde{\Pi}$ is dense in Π_B .

PROOF. We denote the radical of A and B by R(A) and R(B), respectively, and have

$$\begin{split} R(B) \, = \, k_B(\Pi_B) \, \subseteq \, k_B(\tilde{H}) \, \subseteq \, \{b \mid bA \, \subseteq \, R(A)\} \, = \, 0 \\ h_B \, k_B(\tilde{H}) \, = \, h_B(0) \, = \, \Pi_B \, . \end{split}$$

REFERENCE

 Nathan Jacobson, Structure of rings (American Mathematical Society, Colloquium Publication 37), Providence, R. I., 1956.