DISTRIBUTIONS INVARIANT UNDER THE GROUP OF COMPLEX ORTHOGONAL TRANSFORMATIONS

VIGGO EDÉN

Introduction.

Let G be a group of linear transformations on R^n and G' the space of all distributions on R^n that are invariant under G. When G is the Lorentz group, a description of G' was made by Gårding and Roos [5] in the following manner. Consider the invariant mean value

$$(Mf)(t) = \int \delta(x_0^2 - x_1^2 - x_2^2 - x_3^2 - t) f(x) dx,$$

where f belongs to the space $\mathcal{D}(R^4)$ of infinitely differentiable functions with compact support. (We use Schwartz's notations, see [6].) Mf belongs to C^{∞} for $t \neq 0$, and has an expansion around t = 0 involving powers of t and a singular function $\gamma(t) = \log|t|$ in the following way: For every positive integer m there exists a polynomial $P_m f$ of degree m such that

$$Mf(t) - \gamma(t)(P_m f)(t) \in C^m$$

at the origin. With a suitable topology on the space $H = M\mathcal{D}$ the dual H' of H will be linearly homeomorphic to G'. We may say that H' gives us a parametrization of the invariant distributions.

When G is an orthogonal group of arbitrary signature, G' can be described in a similar way. (See [7].)

In this paper we shall study K', K being the group of complex orthogonal transformations on $\mathbb{R}^n \times \mathbb{R}^n$ If

$$z = (x,y) = (x_1, \ldots, x_n; y_1, \ldots, y_n)$$

belongs to $R^n \times R^n$, we write

$$xy = x_1y_1 + \ldots + x_ny_n.$$

Thus xx - yy and xy are invariant under K. We exclude the trivial case n = 1.

We are going to consider the mean value

Received December 1, 1963.

76 VIGGO EDÉN

$$(Mf)(s,t) = \int \delta(xx - yy - s) \ \delta(2xy - t) f(x,y) \ dx dy$$

for $f \in \mathcal{D}(R^n \times R^n)$. It will be shown that the space $H = M\mathcal{D}(R^n \times R^n)$ is of the same nature as in the preceding case. In fact, if $\varphi \in H$ there exists for every m a polynomial $P_m \varphi$ such that

$$\varphi(s,t) - \gamma_n(s,t) P_m \varphi(s,t) \in C^m$$

at the origin. Here

$$\gamma_n(s,t) \, = \left\{ \begin{aligned} (s^2 + t^2)^{\frac{1}{2}} & \text{if } n \text{ is odd ,} \\ \log (s^2 + t^2)^{\frac{1}{2}} & \text{if } n \text{ is even .} \end{aligned} \right.$$

Outside the origin, $\varphi \in C^{\infty}$.

Our paper runs as follows. In section 1 we introduce the infinitesimal transformations and prove some lemmas which will be needed later on. In section 2 we state a result by Gårding on the distributions invariant under the real orthogonal group. In section 3 we investigate the mean value M, especially its singularity at the origin. Considering the results in section 3, we define, in section 4, the function space H. We topologize H so that the mapping M of $\mathcal D$ onto H be continuous. Finally, in section 5, we carry out the parametrization of the invariant distributions.

The subject of this paper was suggested to me by professor Lars Gårding. I wish to thank him for his advice and generous interest.

1. Infinitesimal transformations, some general lemmas.

Let K_+ be all elements of K with the determinant +1, and let $K_+' \supset K'$ be the corresponding distributions. K_+ is a connected analytic group with a Liealgebra k_+ of infinitesimal transformations. We are now going to use some facts to be found in [3], see p. 8 (prop. 5), p. 16 (prop. 3), Ch. IV, §§ II, III, VIII. Each $X \in k_+$ corresponds to a complex skew symmetric $n \times n$ matrix S, and conversely. If S = A + iB where A and B are real, we identify S with the real $2n \times 2n$ matrix

$$\begin{pmatrix} A & B \\ -B & A \end{pmatrix}$$
.

Then to each $X \in k_+$ there is associated a differential operator acting on functions or distributions in the following way:

$$XT(x,y) = S {x \choose y} \cdot \operatorname{grad} T(x,y)$$
,

where $\binom{x}{y}$ is a column matrix. These infinitesimal operators are spanned by

$$\begin{split} L_{lk} &= x_k \frac{\partial}{\partial x_l} - x_l \frac{\partial}{\partial x_k} + y_k \frac{\partial}{\partial y_l} - y_l \frac{\partial}{\partial y_k} , \\ K_{lk} &= y_k \frac{\partial}{\partial x_l} - y_l \frac{\partial}{\partial x_k} - x_k \frac{\partial}{\partial y_l} + x_l \frac{\partial}{\partial y_k} , \end{split} \quad k \neq l .$$

Lemma 1.1. $T \in K_+$ if and only if XT = 0 for every $X \in k_+$.

PROOF. Put $V = \{e^S; S \text{ skew symmetric}\}$. We know that V is a neighbourhood of the unit element in K_+ . If t is a real parameter we have

$$\frac{d}{dt}T(e^{St}z) = e^{St} S \begin{pmatrix} x \\ y \end{pmatrix} \cdot \operatorname{grad} T(x,y) .$$

Since $T \in K_+$ implies that the left side is zero, $XT = S(_y^x) \cdot \operatorname{grad} T$ must be zero. Conversely, if XT = 0 for all $X \in k_+$, then $T(\Lambda z) = T(z)$ for all $\Lambda \in V$, and for a given $\Lambda_0 \in K_+$ we also have

$$T(\Lambda \Lambda_0 z) = T(\Lambda_0 z)$$
 for every $\Lambda \in V$.

Hence the set of $\Lambda \in K_+$, for which $T(\Lambda z) = T(z)$, is open and closed in K_+ . Since K_+ is connected the proof is complete.

Under left multiplication by C^{∞} -functions and addition, the infinitesimal operators generate a left C^{∞} -module M_K of first order differential operators. Let us consider a module M of such operators

$$\sum_{1}^{p} a_{j}(x) \frac{\partial}{\partial x_{j}}$$

defined in an open set $\Omega \subset \mathbb{R}^p$. The module M is said to be free if:

- 1) The dimension of M is constant in Ω .
- 2) If A and B belongs to M, so does AB-BA.

The module M_K is free in $\Omega = R^n \times R^n - \{0\}$, and its dimension is 2n-2. In fact, 2) is a classical property of infinitesimal operators, and 1) can be proved as follows: If z = (x,y) belongs to Ω there exists an l such that $(x_l, y_l) \neq (0,0)$. Then it is easily seen that the 2n-2 operators L_{lk} , K_{lk} , $k \neq l$, are linearly independent in (x,y). Hence the dimension of M_K is larger than 2n-2. On the other hand M_K annihilates the invariants xx-yy and xy, whose gradients (2x,-2y) and (y,x) are linearly independent in Ω . Hence the dimension is 2n-2.

Lemma 1.2. Let M be a free module of dimension m < p in $\Omega \subseteq \mathbb{R}^p$ and let N be the set of all distributions which are annihilated by M. Then there

exist locally in Ω p-m independent C^{∞} -functions $g_{m+1}, \ldots, g_p \in N$. Any such set of functions generates N locally, that is, $T \in N$ if and only if

$$T(x) = F(g_{m+1}(x), \ldots, g_p(x))$$
 locally,

where F is a unique distribution in \mathbb{R}^{p-m} .

PROOF. By a theorem of Frobenius (see e.g. [2, Ch. X.1]) there exists locally in Ω a coordinate transformation $x = x(y) \in C^{\infty}$ such that M is spanned by

 $\frac{\partial}{\partial y_1}; \ldots; \frac{\partial}{\partial y_m}$.

Then $y_{m+1}(x), \ldots, y_p(x)$ are independent and belong to N. Any g in $N \cap C^{\infty}$ is of the form

$$g(x) = h(y_{m+1}(x), \ldots, y_n(x)), \qquad h \in C^{\infty}.$$

If

$$g_k = h_k(y_{m+1},\ldots,y_p), \qquad k = m+1,\ldots,p$$
,

are independent, we can choose coordinates z_k as follows:

$$z_l = y_l, \quad l \leq m; \quad z_k = g_k, \quad k > m.$$

Then $T \in N$ if and only if $\partial T/\partial z_l = 0$, $l \leq m$, so the lemma follows from a well-known result by Schwartz.

This lemma will be used in section 5. We also prove the following simple lemma:

LEMMA 1.3. Let $s_j(u,v) \in C^{\infty}(U \times V)$, $j = 1, \ldots, m$, where $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^m$ are open and m < n. Let the surfaces

$$S_j(v) = \{u; s_j(u, v) = 0\}$$

be in general position for $v \in V$; that is, let $\operatorname{grad}_u s_j(u,v)$ be linearly independent if $u \in S_j(v)$ for all $v \in V$. Then for $f \in \mathcal{D}(U)$, we have

$$(Sf)(v) \,=\, \int \delta \big(s_1(u,v)\big) \ldots \delta \big(s_m(u,v)\big) \, f(u) \; du \; \in \; C^\infty(V) \; .$$

PROOF. Suppose $u_0 \in S_j(v_0)$, j = 1, ..., m. There exist open neighbourhoods U_0 of u_0 and V_0 of v_0 so that the functions

$$\xi_1 = s_1(u, v), \dots, \xi_m = s_m(u, v), \quad \xi_{m+1} = u_{j_{m+1}}, \dots, \xi_n = u_{j_n},$$

for suitable j_k , and for each $v \in V_0$, form a coordinate system in U_0 . If $f \in \mathcal{D}(U_0)$ we have

$$(Sf)(v) = \int [f(u(\xi,v))|d(u(\xi,v))/d\xi|]_{\xi_1 = \ldots = \xi_m = 0} d\xi_{m+1} \ldots d\xi_n,$$

which is infinitely differentiable. By a partition of unity, we get the same result for an arbitrary f in $\mathcal{D}(U)$.

2. The real orthogonal group.

Let $O_n = O$ be the group of real orthogonal transformations, and let O' be the invariant distributions in $\mathbb{R}^n \times \mathbb{R}^n$, that is,

$$T \in O'$$
 if and only if $T(\Lambda x, \Lambda y) = T(x, y) \quad \forall \Lambda \in O$.

For $f \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n)$ we define the mean value

$$N f(r,s,t) = (rs-t^2)^{-\frac{1}{2}(n-3)} \int \delta(xx-r) \; \delta(yy-s) \; \delta(xy-t) \; f(x,y) \; dx \, dy \; .$$

The surfaces xx=r, yy=s, xy=t are in general position in the interior of the cone

$$C \, = \, \big\{ (r,s,t) \, ; \ r \, {\ge} \, 0, \, s \, {\ge} \, 0, \, rs \, {\ge} \, t^2 \big\} \; ,$$

where Nf hence belongs to C^{∞} , by lemma 1.3. We also define

$$(Pf)(\xi,\eta) = \int_{\Omega} f(\Lambda \xi, \Lambda \eta) d\Lambda$$
,

where $d\Lambda$ is an invariant measure over $O = O_n$ with $\int d\Lambda = 1$. In the sequel we always suppose

$$\xi\xi=r,\quad \eta\eta=s,\quad \xi\eta=t$$
.

Lemma 2.1. $Pf(\xi,\eta) = c_n Nf(r,s,t)$ where c_n only depends on the dimension n.

PROOF. Let Z = Z(r, s, t) be the manifold xx = r, yy = s, xy = t. Since O acts transitively on Z we have

$$\int_{\Omega} f(\Lambda \xi, \Lambda \eta) \ d\Lambda = \int_{\mathbb{Z}} f(x, y) \ \omega_1(x, y) \ ,$$

where ω_1 is an invariant form on Z. But

$$\int \delta(xx-r) \; \delta(yy-s) \; \delta(xy-t) \, f(x,y) \; dx \, dy \; = \int_{\mathbf{Z}} f(x,y) \; \omega_2(x,y) \; ,$$

where ω_2 is another invariant form on Z. Hence

$$\omega_2(x,y) = \varphi(r,s,t) \, \omega_2(x,y)$$

and

$$(Pf)(\xi,\eta) = \varphi(r,s,t)^{-1} \int \delta(xx-r) \ \delta(yy-s) \ \delta(xy-t) f(x,y) \ dx dy$$
.

We determine φ by putting f=1

$$\varphi(r,s,t) \,=\, \int \delta(xx-r)\; \delta(yy-s)\; \delta(xy-t)\; dx\, dy \;.$$

In the integral

$$I(x) = \int \delta(yy - s) \ \delta(xy - t) \ dy$$

we may suppose

$$x = ((xx)^{\frac{1}{2}}, 0, \dots, 0) = (|x|, 0, \dots, 0).$$

After introducing polar coordinates,

$$y_2^2 + \ldots + y_n^2 = \sigma,$$

we get

$$\begin{split} I(x) &= \, c_n{}' \int \delta\! \left(\sigma - (s - y_1{}^2) \right) \, \delta(|x| y_1 - t) \, \, \sigma^{\frac{1}{2}(n-3)} \, d\sigma \, dy_1 \\ &= \, c_n{}' \int \delta(|x| y_1 - t) \, \, (s - y_1{}^2)^{\frac{1}{2}(n-3)} \, dy_1 \, = \, (c_n{}'/|x|) (s - t^2/|x|^2)^{\frac{1}{2}(n-3)} \, \, . \end{split}$$

Hence

$$\begin{split} \varphi(r,s,t) &= \int \delta(xx-r) \; I(x) \; dx \\ &= \; c_n{}^{\prime\prime} \int \delta(\varrho-r) \; (s-t^2\!/\varrho^2)^{\frac{1}{2}(n-3)} \; \varrho^{\frac{1}{2}(n-3)} \; d\varrho \; = \; c_n{}^{\prime\prime} (rs-t^2)^{\frac{1}{2}(n-3)} \; , \end{split}$$

and the lemma is proved.

Let $\mathscr{D}(C)$ consist of the restrictions to C of all functions in $\mathscr{D}(R^3)$. If $g \in \mathscr{D}(C)$, it is defined and belongs to C^{∞} in the interior of C and every derivative of g has a continuous extension to the boundary of C. Conversely, since C is closed and convex, and hence regular in the sense defined by H. Whitney (see [9, p. 482]), every g with the above property, vanishing outside a compact set, belongs to $\mathscr{D}(C)$. If K_n is an increasing sequence of compact sets with $\bigcup_{1}^{\infty} K_n \supset C$, we define the topology on $\mathscr{D}(C)$ as the inductive limit of the spaces $\mathscr{D}(C \cap K_n)$ of all functions in $\mathscr{D}(C)$ with supports in K_n . It is easy to verify that $\mathscr{D}(C \cap K_n)$ are Fréchet spaces. The dual $\mathscr{D}'(C)$ of $\mathscr{D}(C)$ is isomorphic to the space of all distributions in R^3 with supports contained in C. (See [6, p. 99]).

The following theorem is due to Gårding [4].

Theorem 2.1. The mapping N:

$$\mathscr{D}(R^n \times R^n) \ni f \to Nf \in \mathscr{D}(C)$$
,

is linear, continuous and surjective. The adjoint mapping

$$N': \mathscr{D}'(C) \to O'$$

is a linear homeomorphism.

PROOF. We only prove the first part of the theorem. As before, we suppose $\xi \xi = r$ etc. By lemma 2.1

$$c_n N f(r, s, t) = P f(\xi, \eta)$$
.

Suppose r > 0. Then we can choose

$$\xi = (\lambda, 0, \ldots, 0), \quad \eta = (\mu, \nu, 0, \ldots, 0),$$

where

$$\lambda = r^{\frac{1}{2}}, \ \mu = t/r^{\frac{1}{2}}, \ \nu = (rs - t^2)^{\frac{1}{2}}/r^{\frac{1}{2}}$$
.

This leads us to define

$$Qf(\lambda,\mu,\nu) = Pf(\xi,\eta)$$
,

where $\xi = (\lambda, 0, \ldots, 0)$, $\eta = (\mu, \nu, 0, \ldots, 0)$. It is clear that Q is even in ν and $\in C^{\infty}$. Since

$$(2.1) c_n N f(r,s,t) = Q f(r^{\frac{1}{2}}, t/r^{\frac{1}{2}}, (rs-t^2)^{\frac{1}{2}}/r^{\frac{1}{2}}) ,$$

 $Nf \in C^{\infty}$ for r > 0, $rs \ge t^2$ and also, by symmetry, for s > 0, $rs \ge t^2$. We develop f around the origin:

$$f(\xi,\eta) = \sum_{|lpha|+|eta|<2m} f_{lpha,eta} \, \xi^lpha \, \eta^eta \, + \, O(\xi\xi+\eta\eta)^m \; ,$$

where

$$\alpha = (\alpha_1, \dots, \alpha_n), \qquad |\alpha| = \alpha_1 + \dots + \alpha_n ,$$

$$f_{\alpha, \beta} = \frac{(\partial_{\alpha, \beta} f)(0, 0)}{\alpha! \beta!}, \qquad \partial_{\alpha, \beta} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \dots \left(\frac{\partial}{\partial y_n}\right)^{\beta_n} ,$$

$$\alpha! = \alpha_1! \dots \alpha_n! .$$

By integration we obtain

$$(2.2) \quad (Pf)(\xi,\eta) = \sum_{|\alpha|+|\beta|<2m} f_{\alpha,\beta} \int (\Lambda \xi)^{\alpha} (\Lambda \eta)^{\beta} d\Lambda + O(r^2 + s^2 + t^2)^{\frac{1}{2}m},$$

where the integral under the summation sign vanishes if $|\alpha| + |\beta|$ is odd, and is a homogenous polynomial of degree $\frac{1}{2}(|\alpha| + |\beta|)$ in r,s,t if $|\alpha| + |\beta|$ is even. (See [8, p. 31].) Hence $Nf \in C^{\infty}$ at the origin. Its derivatives have the form

82 VIGGO EDÉN

(2.3)
$$(\partial_k Nf)(0) = \sum_{|\alpha|+|\beta|=|2k|} c_{\alpha,\beta,k} \, \partial_{\alpha,\beta} f(0,0) ,$$

where $c_{\alpha,\beta,k}$ are certain constants not depending on f.

Evidently Nf has compact support, so Nf belongs to $\mathcal{D}(C)$. N is surjective, for if $g \in \mathcal{D}(C)$ then

$$g_1(x,y) = g(xx,yy,xy) \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n)$$

and $N(cg_1) = g$ for some c. It is clear that N is linear, and the continuity follows easily from the closed graph theorem. Suppose $f_r \to 0$ in $\mathcal{D}(R^n \times R^n)$ and $Nf_r \to g$ in $\mathcal{D}(C)$. Then $f_r \to 0$ uniformly, and lemma 2.1 shows that $Nf_r \to 0$ at least pointwise so that g = 0. The use of the closed graph theorem, and sequences (instead of filters) is legitimate, because both $\mathcal{D}(R^n \times R^n)$ and $\mathcal{D}(C)$ are inductive limits of Fréchet spaces. (See [1, p. 35–38, 61–65].)

The following lemma will be needed in the final section.

LEMMA 2.2. For each bounded set B in $\mathcal{D}(C)$ there exists a bounded set B_1 in $\mathcal{D}(R^n \times R^n)$ such that $NB_1 \supset B$.

PROOF. For each g in B we choose $g_1(x,y) = cg(xx,yy,xy)$ so that $Ng_1 = g$. Clearly g_1 belongs to a bounded set $B_1 \subseteq \mathcal{D}(R^n \times R^n)$ not depending on g.

3. The mean value M.

Let us consider the mean value

$$(Mf)(s,t) = \int \delta(xx - yy - s) \ \delta(2xy - t) f(x,y) \ dx dy$$

invariant under K. If $f \in \mathcal{D}(R^n \times R^n)$, Mf has compact support and, by lemma 1.3, $Mf \in C^{\infty}$ for $s^2 + t^2 > 0$. We want to examine Mf near the origin. First we observe that

$$(Mf)(s,t) \; = \int\limits_{r>(s^2+t^2)^{\frac{1}{2}}} (r^2-s^2-t^2)^{\frac{1}{2}(n-3)} \; N\!f(r,s,t) \; dr \; ,$$

where

$$(Nf)(r,s,t) = (r^2 - s^2 - t^2)^{-\frac{1}{2}(n-3)} \int \delta(xx + yy - r) \, \delta(xx - yy - s) \, \delta(2xy - t) f(x,y) \, dx \, dy \; ,$$

is an invariant mean value for the group O, essentially the same as in the preceding section. Putting

$$(\pmb{M}_1 g)(s,t) \, = \int\limits_{r>(s^2+t^2)^{\frac{1}{2}}} (r^2-s^2-t^2)^{\frac{1}{2}(n-3)} \, g(r,s,t) \; dr$$

we have $M = M_1 \circ N$. By theorem 2.1. the mapping

$$N: \mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n) \to \mathcal{D}(\mathbb{C})$$
,

where C now means the cone $r \ge (s^2 + t^2)^{\frac{1}{2}}$, is continuous and surjective.

Lemma 3.1. The mapping $M_1\colon \mathcal{D}(C-\{0\})\to \mathcal{D}(R^2)$ is linear, continuous and surjective.

PROOF. Clearly M_1 is linear. Suppose that the sequence $g_{\nu} \to 0$ in $\mathcal{D}(C-\{0\})$. Then all the g_{ν} have supports contained in a compact set K not containing the origin, and $g_{\nu} \to 0$ uniformly in K. This implies $M_1g_{\nu} \to 0$, at least pointwise, so the continuity follows from the closed graph theorem.

For the proof of the surjectivity, let $\varphi\in \mathscr{D}(R^2)$ with $\operatorname{supp}\varphi=Q$ and let I be an interval such that

$$I \times Q \subset (C - \{0\})$$
.

There exists $\psi \in \mathcal{D}(I)$ such that $\int_{I} \psi(r) dr = 1$. Then

$$g(r,s,t) \, = \, \frac{\psi(r) \, \, \varphi(s,t)}{(r^2 - s^2 - t^2)^{\frac{1}{2}(n-3)}} \, \in \, \mathscr{D}(C - \{0\})$$

and $M_1g = \varphi$. Hence M_1 is surjective.

We now examine M_1g in a neighbourhood of the origin, e.g. $(s^2+t^2)^{\frac{1}{2}}<\frac{1}{2}$. In that neighbourhood

$$M_1 g\left(s,t\right) \; = \int\limits_{(s^2+t^2)^{\frac{1}{2}}}^1 (r^2-s^2-t^2)^{\frac{1}{2}(n-3)} g(r,s,t) \, dr \; + \; \omega_{\infty} \; ,$$

where ω_{∞} denotes a C^{∞} -function. Developing g we get

$$\begin{split} M_1 g(s,t) &= \sum_{|\alpha| < m} \frac{(\partial_\alpha g)(0)}{\alpha\,!} s^{\alpha_2} t^{\alpha_3} \int\limits_{(s^2 + t^2)^{\frac{1}{2}}}^1 r^{\alpha_1} (r^2 - s^2 - t^2)^{\frac{1}{2}(n-3)} \, dr \, + \\ &+ \int\limits_{(s^2 + t^2)^{\frac{1}{2}}}^1 g_m(r,s,t) (r^2 - s^2 - t^2)^{\frac{1}{2}(n-3)} \, dr \, + \, \omega_\infty \; , \end{split}$$

where $g_m(r,s,t)$ is $O(r^2+s^2+t^2)^{\frac{1}{2}m}$ and $\in C^{\infty}$ outside the origin, so that the last integral $\in C^{m+n-3}$ at the origin. The integrals under the summation sign can be computed by means of \overline{n} partial integrations, where

$$\overline{n} = \begin{cases} \frac{1}{2}(n-3), & n \text{ odd }, \\ \frac{1}{2}(n-2), & n \text{ even }. \end{cases}$$

The result is

$$(3.1) \frac{1}{\alpha!} \int_{(s^2+t^2)^{\frac{1}{2}}}^1 r^{\alpha_1} (r^2 - s^2 - t^2)^{\frac{1}{2}(n-3)} dr = v_{\alpha}(s,t) + C_{\alpha,n} \gamma_n(s,t) (s^2 + t^2)^{\overline{n} + \frac{1}{2}\alpha_1},$$

where $v_{\alpha} \in C^{\infty}$ and does not depend on g and

$$\begin{split} C_{\alpha,\,n} &= \begin{cases} 0, & \alpha_1 \, \text{odd} \,\,, \\ & (-1)^{\overline{n}+1} \frac{(n-3)!! \,\, (\alpha_1-1)!! \,\, \alpha!}{(n+\alpha_1-2)!!} \,, & \alpha_1 \, \text{even}, & (-1)!! = 1 \,, \end{cases} \\ \gamma_n(s,t) &= \begin{cases} (s^2+t^2)^{\frac{1}{2}}, & n \, \text{odd} \,\,, \\ \log(s^2+t^2)^{\frac{1}{2}}, & n \, \text{even} \,\,. \end{cases} \end{split}$$

Hence we get the following expansion of M_1g :

 $M_1 g(s,t) = \omega_{m+n-3} + \gamma_n(s,t) (s^2 + t^2)^{\overline{n}} \sum_{|\alpha| < m} C_{\alpha,n} (s^2 + t^2)^{\frac{1}{2}\alpha_1} s^{\alpha_2} t^{\alpha_3} (\partial_{\alpha} g)(0).$

4. The space H.

Guided by the result in the preceding section, we introduce some function spaces. Let $H=H^n$ consist of all functions φ , defined in $R^2-\{0\}$, with the following properties:

- 1) $\varphi \in C^{\infty}$ outside the origin.
- 2) φ has compact support.
- 3) For every positive integer m there exists a polynomial $P_m \varphi$ of the form

(4.1)
$$P_{m}\varphi(s,t) = (s^{2} + t^{2})^{\overline{n}} \sum_{|j| < m} A_{j}(\varphi) s^{j_{1}} t^{j_{2}}$$

such that

$$\varphi(s,t) - \gamma_n(s,t)(P_m\varphi)(s,t) \ \in \ C^{m+n-3}$$

at the origin.

It is clear that $P_m \varphi$ is unique and that the A_j are linear functionals on H not depending on m. In particular, if $A_j(\varphi) = 0$ for every j, then $\varphi \in \mathcal{D}(\mathbb{R}^2)$.

We shall now introduce a topology on H. For $\psi \in \mathcal{D}^m(\mathbb{R}^2)$ put

$$|\psi|_m = \max_{|k| \le m} \max_{(s,t)} |\partial_k \psi(s,t)|.$$

Let H_R be all functions in H with supports contained in

$$B_R = \{(s,t); s^2 + t^2 \le R^2\}$$

and take a fixed, positive χ in $\mathcal{D}(R^2)$, equal to 1 in a neighbourhood of the origin. With the seminorms

$$q_m(\varphi) = |\varphi - \chi \gamma_n(P_m \varphi)|_{m+n-3} + \sum_{|j| < m} A_j(\varphi)$$

 H_R becomes a Fréchet space. The topology of $H = \bigcup_{1}^{\infty} H_N$ shall be the strict inductive limit of the topologies of H_N . (See [1].) It is defined by the following seminorms:

$$(4.2) q_{h,\mu}(\varphi) = p_h(\varphi - \gamma_n \chi(P_m \varphi)) + \sum_{|j| < \mu} |A(\varphi)|,$$

where p_h are the seminorms on $\mathcal{D}(R^2)$

$$p_h(f) = \sum_{\beta} \max_{(s,t)} |h_{\beta}(s,t)(\partial_{\beta}f)(s,t)|.$$

Here h_{β} are continuous functions such that for each compact set K there exists a number $\lambda(K,h)$ with the following property:

$$|\beta|>\lambda(K,h)\qquad \text{implies}\qquad h_{\beta}(s,t)=0\quad \text{for } (s,t)\in K\ .$$
 (See [5] p. 13).

In (4.2) we suppose $m+n-3>\lambda(\operatorname{supp}\chi,h)$.

Theorem 4.1. The mapping $M_1: \mathcal{D}(C) \to H$ is linear, continuous and surjective.

COROLLARY. The mapping $M: \mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n) \to H$ is linear, continuous and surjective.

Since $M = M_1 \circ N$, the corollary follows immediately from theorem 2.1.

PROOF. $M_1 \mathcal{D} \subset H$ by formula (3.2). The linearity is trivial. In order to prove the surjectivity, we take an arbitrary φ in H. We want to find $g \in \mathcal{D}(C)$ with

$$A_{\beta}(\varphi) = A_{\beta}(M_1g)$$

for every β . By formulas (3.2) and (4.1)

(4.3)
$$A_{\beta}(M_{1}g) = C_{0, \beta_{1}, \beta_{2}}(\partial_{0, \beta_{1}, \beta_{2}}g)(0) + \sum_{|\alpha| = |\beta| = 2} k_{\alpha} \left(\frac{\partial^{2}}{\partial r^{2}}\partial_{\alpha}g\right)(0)$$

for certain constants k_{α} . It is possible to find a $g \in \mathcal{D}(C)$ not depending on r in a neighbourhood of the origin, such that

$$(\partial_{0,\,\beta_{1},\,\beta_{2}}g)(0) = A_{\beta}(\varphi)/C_{0,\,\beta_{1},\,\beta_{2}}.$$

Then $A_{\beta}(\varphi) = A_{\beta}(M_1g)$ as we wished, and hence $\varphi - M_1g \in \mathcal{D}(R^2)$. According to lemma 3.1 there is a g_0 in $\mathcal{D}(C - \{0\})$ such that

$$M_1g_0 = \varphi - M_1g .$$

Hence $M_1(g+g_0) = \varphi$ so that M_1 is surjective.

For the continuity we can use the closed graph theorem. Suppose $g_{r} \to 0$ in $\mathcal{D}(C)$ and $M_{1}g_{r} \to \varphi$ in H. We want to show that $\varphi = 0$. Now for $(s,t) \neq (0,0)$

$$(M_1g_{\nu})(s,t) = \int_{(s^2+t^2)^{\frac{1}{2}}}^{\infty} g_{\nu}(r,s,t) (r^2 - s^2 - t^2)^{\frac{1}{2}(n-3)} dr .$$

Since the g_{ν} vanish outside a fix compact set and $g_{\nu} \to 0$ uniformly the right side tends to zero. Hence $\varphi(s,t)=0$ outside the origin. In view of formula (4.3) and the continuity of A_{β} , it is clear that $A_{\beta}\varphi=0$ for every β , so everything is proved.

We also need the following lemma

Lemma 4.1. For each bounded set $B \subseteq H$ there exists a bounded set $B_1 \subseteq \mathcal{D}(C)$ such that $M_1B_1 \supseteq B$.

PROOF. Take an arbitrary φ in B, and choose g in $\mathcal{D}(C)$ as in the proof of theorem 4.1. so that $A_{\beta}(M_1g) = A_{\beta}\varphi$. Since B is bounded in H there exist constants a_{β}, b_{α} depending on B but not on φ , such that (see formula (4.4))

 $|A_{\beta}(\varphi)| \leq a_{\beta}, \qquad |\partial_{\alpha}g(0)| \leq b_{\alpha}.$

Hence g can be chosen from a bounded set in $\mathscr{D}(C)$. Since M_1 is continuous, and

 $\varphi - M_1 g \in \mathscr{D}(R^2)$,

 $\varphi-M_1g$ obviously belongs to a certain bounded set in $\mathscr{D}(R^2)$. Chosing g_0 as in Lemma 3.1 so that

$$M_1g_0 = \varphi - M_1g ,$$

 g_0 belongs to a bounded set in $\mathcal{D}(C-\{0\})$, and finally $g+g_0$ belongs to a bounded set B_1 in $\mathcal{D}(C)$ with the required property.

5. Parametrization of the invariant distributions.

With the aid of the lemmas in section 1 we can prove

Lemma 5.1. For each $T \in K'$ there is a unique $F \in \mathcal{D}'(R^2)$ such that

$$\langle T, f \rangle = \langle F, Mf \rangle$$

for every $f \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n - \{0\})$.

PROOF. The module M_K of the infinitesimal operators is free and of dimension 2n-2 in $\Omega=R^n\times R^n-\{0\}$, where xx-yy and 2xy are independent and belong to the nullspace of M_K . Let V be a sufficiently small neighbourhood of an arbitrary point in Ω and put

$$I(V) = \{(xx - yy, 2xy); (x,y) \in V\}.$$

Then, by lemma 1.1 and 1.2, there exists a unique $F_V\in \mathscr{D}'(I(V))$ such that for all $f\in \mathscr{D}(V)$

$$\langle T, f \rangle = \int T(x,y) f(x,y) dx dy = \int F_V(xx - yy, 2xy) f(x,y) dx dy = \langle F, Mf \rangle$$
.

Now let V and V' be two such neighbourhoods and let $f \in \mathcal{D}(\Lambda V \cap V')$, $\Lambda \in K$. Since $T \in K'$ we have:

$$\langle F_{V'}, Mf \rangle = \langle T, f \rangle = \langle T(z), f(\Lambda^{-1}z) \rangle = \langle F_V, M(\Lambda f) \rangle = \langle F, Mf \rangle.$$

Observing that K acts transitively on Ω we can thus prove that $F_V = F_{V'}$ on $I(V) \cap I(V')$, and we get a unique distribution $F \in \mathcal{D}'(R^2)$, (see [6, Th. 4, p. 27]).

Lemma 5.2. $T \in K'$ and supp $T \subseteq \{0\}$ if and only if

$$T = P(\Box, \Diamond)\delta$$
,

where P is a polynomial and

$$\Box = \sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}} - \frac{\partial^{2}}{\partial y_{k}^{2}}, \qquad \diamondsuit = 2 \sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k} \partial y_{k}}.$$

PROOF. Every distribution T with support in the origin is of the form $Q(\partial/\partial x_1,\ldots,\partial/\partial y_n)\delta$, where Q is a polynomial. T is invariant if and only if Q is an invariant polynomial, and we need only prove that such a polynomial is of the form P(xx-yy,2xy). But if Q is invariant under K it is also invariant under O (the real orthogonal group) and hence a polynomial in xx+yy, xx-yy and xy (see [8]). It is simple to prove that it can not contain any terms with powers of xx+yy.

Let H' be the (strong) dual of H and M' the adjoint of M defined by

$$\langle M'F, f \rangle = \langle F, Mf \rangle$$
.

We want to show that $M': H' \to K'$ is a linear homeomorphism and state some lemmas.

Lemma 5.3. $T \in K'$ and supp $T \subseteq \{0\}$ if and only if

$$T = \sum c_j M' A_j ,$$

where the sum if finite.

88 VIGGO EDÉN

PROOF. It is clear that $\sum c_j M'A_j \in K'$ and has support in the origin. Conversely, let G_r be the space of all such distributions of order $\leq 2\nu$. The dimension of G_r is $\frac{1}{2}(\nu+1)(\nu+2)$ according to lemma 5.2. On the other hand the formulas (2.3) and (4.3) show that the $M'A_j$ belong to G_r for $|j| \leq \nu$, and are linearly independent. Hence they span G_r , and the lemma is proved.

Lemma 5.4. $F \in H'$ if and only if there exists $F_0 \in \mathcal{D}'(\mathbb{R}^2)$ such that

(5.1)
$$\langle F, \varphi \rangle = \langle F_0, \varphi - \chi \gamma_n P_m \varphi \rangle + \sum_i c_i A_i(\varphi)$$

for all $\varphi \in H$, where m+n-3 is not less than the order of F_0 in $\mathrm{supp}\,\chi.$

PROOF. It is evident that every F of the form (5.1) belongs to H'. Conversely, if F_0 is the restriction of F to $\mathcal{D}(R^2)$, $F_0 \in \mathcal{D}'(R^2)$. For a sufficiently large m we get:

$$0 = \langle F - F_0, \varphi - \gamma \chi(P_m \varphi) \rangle = \langle F, \varphi \rangle - \langle F_0, \varphi - \gamma \chi(P_m \varphi) \rangle - \langle F, \chi \gamma(P_m \varphi) \rangle.$$

But

$$\langle F, \chi \gamma(P_m \varphi) \rangle = \sum_{|j| < m} c_j A_j(\varphi)$$

for certain c_j , and hence F is of the form (5.1).

Now we can prove our main result.

Theorem The mapping $M': H' \to K'$ is a linear homeomorphism.

PROOF. It is clear that $M'H' \subset K'$, and that M' is linear. Furthermore M' is injective because M is surjective. To prove that M' is surjective we take an arbitrary T in K'. There exists, by lemma 5.1, $F_0 \in \mathcal{D}'(R^2)$ such that for every $f \in \mathcal{D}(R^n \times R^n - \{0\}) = \mathcal{D}(\Omega)$

$$\langle T, f \rangle = \langle F_0, Mf \rangle$$
.

We define $F_1 \in H'$ by

$$\langle F_1, \varphi \rangle = \langle F_0, \varphi - \chi \gamma(P_m \varphi) \rangle$$
,

m being large enough. Consequently $\langle T, f \rangle = \langle M'F_1, f \rangle$ for every $f \in \mathcal{D}(\Omega)$, so by lemma 5.2

$$T - M'F_1 = \sum c_j M'A_j.$$

Hence

$$M'(F_1 + \sum c_j A_j) = T,$$

and M' is surjective.

By known topological theorems [1, ch. IV p. 102–103 prop. 5–6], M' is continuous. That the inverse M'^{-1} is continuous follows from the Lemmas 2.2 and 4.1. Hence everything is proved.

According to our theorem, lemma 5.4 gives us a concrete description, "parametrization", of K'.

BIBLIOGRAPHY

- 1. N. Bourbaki, Espaces vectoriels topologiques, ch. I-IV (Act. Sci. Ind. 1189), Paris, 1955.
- 2. E. Cartan, Léçons sur les invariants intégraux, Paris, 1958.
- 3. C. Chevalley, Theory of Lie groups I, Princeton, 1946.
- 4. L. Gårding, Invariant distributions, Sém. Leray, Paris, déc. 1961.
- L. Gårding and J. Lions, Functional analysis, Nuovo Cimento 1959, Supplemento a(10), 14, 9-66.
- 6. L. Schwartz, Théorie des distributions I (Act. Sci. Ind. 1245), Paris, 1957.
- A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.
- 8. H. Weyl, The classical groups, Princeton, 1939.
- 9. H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. (2) 35 (1934), 482-485.

UNIVERSITY OF LUND, SWEDEN