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DISTRIBUTIONS INVARIANT UNDER THE GROUP
OF COMPLEX ORTHOGONAL TRANSFORMATIONS

VIGGO EDEN

Introduction.

Let G be a group of linear transformations on R™ and G’ the space
of all distributions on R” that are invariant under ¢. When @ is the
Lorentz group, a description of @' was made by Garding and Roos [5]
in the following manner. Consider the invariant mean value

UF)O) =[Sl =222~ 2 ~1) fi&) da

where f belongs to the space 2(R*) of infinitely differentiable functions
with compact support. (We use Schwartz’s notations, see [6].) Mf
belongs to C* for ¢£+0, and has an expansion around ¢=0 involving
powers of ¢ and a singular function y(t)=Ilog|¢| in the following way:
For every positive integer m there exists a polynomial P,,f of degree m

such that
Mf@)—y@)Puf)E) € C™

at the origin. With a suitable topology on the space H= M2 the dual
H' of H will be linearly homeomorphic to G'. We may say that H' gives
us a parametrization of the invariant distributions.

When @ is an orthogonal group of arbitrary signature, G’ can be
described in a similar way. (See [7].)

In this paper we shall study K’, K being the group of complex orthog-
onal transformations on R*x R* If

2= (,Y) = (@15 . Tp3 Y1 - - Yp)
belongs to R™x R". we write
Y = XY+ .. XY,

Thus zz —yy and zy are invariant under K. We exclude the trivial case
n=1.
We are going to consider the mean value
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(Mf)(s.1) = [ dzz—yy—s) o(2ay—1) f(@.y) dudy

for fe D(R*x R"*). It will be shown that the space H=MPD(R" x R") is
of the same nature as in the preceding case. In fact, if ¢ € H there
exists for every m a polynomial P, such that

@(8,8) — v (8, 0) P, p(s,8) € C™
at the origin. Here
(s2+1¢2)t if » is odd,

b)) = .
Ynl8:0) log(s2+¢2)t if n is even.

Outside the origin, ¢ € C*.

Our paper runs as follows. In section 1 we introduce the infinitesimal
transformations and prove some lemmas which will be needed later on.
In section 2 we state a result by Garding on the distributions invariant
under the real orthogonal group. In section 3 we investigate the mean
value M, especially its singularity at the origin. Considering the results
in section 3, we define, in section 4, the function space H. We topologize
H so that the mapping M of & onto H be continuous. Finally, in section
5, we carry out the parametrization of the invariant distributions.

The subject of this paper was suggested to me by professor Lars
Garding. I wish to thank him for his advice and generous interest.

1. Infinitesimal transformations, some general lemmas.

Let K, be all elements of K with the determinant + 1, and let K,'> K’
be the corresponding distributions. K, is a connected analytic group
with a Liealgebra k, of infinitesimal transformations. We are now
going to use some facts to be found in [3], see p. 8 (prop. 5), p. 16 (prop.
3), Ch. IV, §§ I1, ITI, VIII. Each X € k, corresponds to a complex skew
symmetric n x n matrix S, and conversely. If S=4 +¢B where 4 and
B are real, we identify S with the real 2n x 2n matrix

(-3)

-B 4)"

Then to each X € k, there is associated a differential operator acting on
functions or distributions in the following way:

XT(x,y) = S (Z) -grad T'(x,y) ,

where () is a column matrix. These infinitesimal operators are spanned
by
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I 0 N 0 i
=X, — — Xy — —_———
Ik 3 o, 1 oz, Yi o, U P )

0 0 0 0

Ky =Yp——Y——%,—+x,— ,
= Yk o, K] oz, P 2, 1 P

k=l .

Lemma 1.1. T e K, if and only if XT =0 for every X € k..

Proor. Put V={eS; S skew symmetric}. We know that V is a neigh-
bourhood of the unit element in K,. If ¢ is a real parameter we have

d
—T(eStz) = 5t S (x)-grad T(x,y) .
dt Y

Since T' € K, implies that the left side is zero, X7'=8(7)-grad T must
be zero. Conversely, if X7 =0 for all X € k,, then T'(Az)=T(z) for all
AeV, and for a given A,€ K, we also have

T(AAR) = T(Ay) for every Ae V.

Hence the set of A4 € K, for which 7'(Az)=7(z), is open and closed in
K .. Since K, is connected the proof is complete.

Under left multiplication by C*-functions and addition, the infinite-
simal operators generate a left C*-module M . of first order differential
operators. Let us consider a module M of such operators

4 2
2 ayx) —
1

ox;
defined in an open set 2 < R?. The module M is said to be free if:

1) The dimension of M is constant in £.
2) If A and B belongs to M, so does AB—BA .

The module M is free in 2= R" x R*— {0}, and its dimension is 2n— 2.
In fact, 2) is a classical property of infinitesimal operators, and 1) can
be proved as follows: If z=(x,y) belongs to 2 there exists an ! such that
(#,4)+(0,0). Then it is easily seen that the 2n—2 operators L, Ky,
k=1, are linearly independent in (x,y). Hence the dimension of My is
larger than 2n—2. On the other hand My annihilates the invariants
xx —yy and zy, whose gradients (2x, —2y) and (y,z) are linearly inde-
pendent in 2. Hence the dimension is 2n— 2.

Lemma 1.2, Let M be a free module of dimension m<p in Q< RP and
let N be the set of all distributions which are annihilated by M. Then there
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exist locally in Q p—m independent C™-functions gn.1...,9, € N. Any
such set of functions generates N locally, that is, T € N if and only if

T(x) = F(gpns1(2),. . .,g,®)) locally ,
where F is a unique distribution in RP—™,
Proor. By a theorem of Frobenius (see e.g. [2, Ch. X.1]) there exists

locally in £ a coordinate transformation x=z(y) € C* such that M is

spanned by ) 5

ayl,...,aym.

Then y,,.,(2),...,y,(x) are independent and belong to N. Any g in
NnC> is of the form

9@) = W(Yp(@),. ... y,(@), helC>.
If

gk = hk(ym+13"'3yp), k = m+l,...,p,
are independent, we can choose coordinates z, as follows:
n=1y, lSm;, z,=¢, k>m.

Then T € N if and only if 07/0%=0, [<m, so the lemma follows from
a well-known result by Schwartz.

This lemma will be used in section 5. We also prove the following
simple lemma:

Lemma 1.3. Let sj(u,v) e C°(U x V), j=1,...,m, where U< R*, V < R™
are open and m<mn. Let the surfaces

S(0) = {u; 5,(u,0)=0}

be in general position for ve V; that is, let grad, s;(w,v) be linearly inde-
pendent if u € Sy(v) for all ve V. Then for fe D(U), we have

(SF)(v) = f 8(53(1,2)). . . 8(sm(w,)) f() du € C=(V) .

Proor. Suppose u, € S;(vy), j=1,...,m. There exist open neighbour-
hoods U, of u, and V, of v, so that the functions

£ =8(u,0),. .., &y =8,(u,v), §m+1=u,-m+l,. s Ep=y

for suitable j,, and for each ve V,, form a coordinate system in U,,.
If fe 2(U,) we have



DISTRIBUTIONS INVARIANT UNDER ... ORTHOGONAL TRANSFORMATIONS 179

(Sf)(ﬂ) = f[f(u(f’,v))‘d(u(g’v))/dfl]ﬁ:...=§m=0 d§m+1' . dEn 3

which is infinitely differentiable. By a partition of unity, we get the
same result for an arbitrary f in 2(U).

2. The real orthogonal group.

Let O, =0 be the group of real orthogonal transformations, and let O’
be the invariant distributions in R™ x R", that is,

TeO  if and only if T(Ax,Ay) = T(x,y) YAe€O.
For fe 9(R™x R") we define the mean value

Nf(r,s,t) = (rs—tz)”*(""3)16(xx—r) O(yy —s) 6(xy —1t) f(x,y) dedy .

The surfaces xx=r, yy=s, xy=1¢ are in general position in the interior

of the cone
C = {(r,st); r20,s20,rs21?},

where Nf hence belongs to C*°, by lemma 1.3. We also define

(A& = [ (A6 An) dA,
o

where dA is an invariant measure over O=0, with [dAd=1. In the
sequel we always suppose

tE=r, m=s, é&n=t.

Lemma 2.1. Pf(&,n)=c, Nf(r,s,t) where c, only depends on the dimen-
sion n.

Proor. Let Z=2Z(r,s,t) be the manifold zx=r, yy=s, xy=¢. Since O
acts transitively on Z we have

[#ae.an aa = [fay) o).
0 Z
where w, is an invariant form on Z. But

[ st =n) sty — ) dtay 0 f(a,) dwdy = [ fa) watary)
z

where w, is another invariant form on Z. Hence
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0o(Z,y) = @(7,8,1) wy(x,y)
and

(BNEM = gir.a.07 [ oaw—1) d(yy =) dlay—0) f(@.y) dedy

We determine ¢ by putting f=1

(r,8,t) = f O(xx —7r) o(yy —s) O(xy —t) dedy .

In the integral
I(z) = [ s(yy—s) d(ay ~1) dy

we may suppose
z = ((zx)},0,...,0) = (|z[,0,...,0).

After introducing polar coordinates,

Y2t ... +y,2 =0,
we get

I(w) = oy’ [8(o—(s=1,%) d(laly, — &) oA~ dady,

o [l —1) (s= a2 dy = (o, lal)(s = | )n- .

Hence
o(r,s,t) = fé(xx—r) I(z) dx
= ¢ [lg—1) (s— g9 ghn- dp = o,"(rs ~)ir-9),
and the lemma is proved.

Let 2(C) consist of the restrictions to C of all functions in Z(R3).
If g € 2(0C), it is defined and belongs to C* in the interior of C and every
derivative of g has a continuous extension to the boundary of C. Con-
versely, since C' is closed and convex, and hence regular in the sense
defined by H. Whitney (see [9, p. 482]), every g with the above property,
vanishing outside a compact set, belongs to Z(C). If K, is an increasing
sequence of compact sets with UP K,>C, we define the topology on
2(C) as the inductive limit of the spaces P(CnK,,) of all functions in
2(0C) with supports in K,,. It is easy to verify that 2(CnK,) are Fréchet
spaces. The dual 2'(C) of 2(C) is isomorphic to the space of all distribu-
tions in R® with supports contained in C. (See [6, p. 99]).

The following theorem is due to Garding [4].



DISTRIBUTIONS INVARIANT UNDER ... ORTHOGONAL TRANSFORMATIONS

TarOREM 2.1. The mapping N :
DR*x R s f > Nfe2(C),
is linear, continuous and surjective. The adjoint mapping

N': 9'(C) >0

is a linear homeomorphism.

81

Proor. We only prove the first part of the theorem. As before, we

suppose &&=r etc. By lemma 2.1
¢, Nf(r,8,t) = Pf(&,7).

Suppose r > 0. Then we can choose
& =(4,0,...,0), %= (40,...,0),
where
A=t op=tlrt, v = (rs—t2)}rt.

This leads us to define
Qf (A, u,v) = Pf(&,m),

where &=(4,0...0), n=(,7,0,...,0). It is clear that @ is even in »

and € C*. Since

(2.1) e Nf(r,5,t) = Qf(rh,¢[rh, (rs —2)i[r})

NfeC™ for r>0, rs=t*> and also, by symmetry, for s>0, rs =2

develop f around the origin:

JEn) = X fo87 + OEE+m)m,

la|+lpf<2m
where
o = (Bg, ey 0p), || =oq+ .o oy,
(%4,5/)(0,0) 9 \™ 2\
e G2
! B! ox; oY,
al = ol a, !

By integration we obtain

22) BAED) = 3 Lo, [ (A5 () dd + O+ s+,

ol +{B]<2m

where the integral under the summation sign vanishes if ||+ |8| is odd,
and is a homogenous polynomial of degree }(|«|+|f|) in 7,s,t if |x|+|B]
is even. (See [8, p. 31].) Hence Nfe C*™ at the origin. Its derivatives

have the form

Math, Scand. 14 — 6
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(2.3) (@Nf)0) = % €y p10u,f(0,0),
la+151 2]

where c, , ; are certain constants not depending on f.
Evidently Nf has compact support, so Nf belongs to 9(C). N is
surjective, for if g € 2(C) then

g1(x,y) = glxx,yy,xy) € D(R*x R")

and N(cg;) =g for some c. It is clear that N is linear, and the continuity
follows easily from the closed graph theorem. Suppose f, — 0 in
2(R"x B™) and Nf, - g in Z(C). Then f, - 0 uniformly, and lemma 2.1
shows that Nf, - 0 at least pointwise so that g=0. The use of the closed
graph theorem, and sequences (instead of filters) is legitimate, because
both Z(£"x R*) and Z(C) are inductive limits of Fréchet spaces. (See
[1, p. 35-38, 61-65].)

The following lemma will be needed in the final section.

LemMa 2.2. For each bounded set B in D(C) there exists a bounded set
B, in Q(R"x R™) such that NB;> B.

Proor. For each g in B we choose ¢,(x,y)=cg(zz,yy,xy) so that
Ng,=g. Clearly g, belongs to a bounded set B, < Z(R" x B") not depend-
ing on g.

3. The mean value M.
Let us consider the mean value

(Uf)(s.t) = [ Saw—yy—s) 82wy —1) f(w.y) dudy

invariant under K. If fe Z(R™ x R"), Mf has compact support and, by
lemma 1.3, Mfe C® for s*+¢>>0. We want to examine MJf near the
origin. First we observe that

(Mf)(s,8) = f (r2— 82— 2)0-3) Nf(r,s,1) dr ,

>+t
where

(Nf)(r,s,t)=(r2—s%— tz)”*(”*"*)fé(xx +yy —r)d(xx—yy —s) 6(2xy —t)f (x,y) dxdy ,

is an invariant mean value for the group O, essentially the same as in
the preceding section. Putting
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(Myg)(s,t) = J (r2—s2 — 123} g(r,s,1) dr

r>(82-+2) 3

we have M =M,oN. By theorem 2.1. the mapping
N: 9B "xR*) -~ 2(C),
where C now means the cone 7.2 (s2+¢2)}, is continuous and surjective.

LemMA 3.1. The mapping M,: D(C—{0}) — D(R?) is linear, continuous
and surjective.

Proor. Clearly M, is linear. Suppose that the sequence g, —~ 0 in
2(C —{0}). Then all the g, have supports contained in a compact set K
not containing the origin, and g, - 0 uniformly in K. This implies
M,g, —~ 0, at least pointwise, so the continuity follows from the closed
graph theorem.

For the proof of the surjectivity, let ¢ € P(R?) with suppep=¢ and
let I be an interval such that
IxQ < (C—{0).
There exists p € Z(I) such that [;y(r)dr=1. Then

glr,s,t) = ) @ls,1)

(7.2 82— t2)}(nj3) € 9(0 - {0})

and M,g=¢. Hence M, is surjective.

We now examine Mg in a neighbourhood of the origin, e.g. (s +#2)} < 1.
In that neighbourhood
1

Mg (s,t) = f (r2—-s2—2)¥n=g(r s, t)dr + w,, ,
(s2 2y}
where w,, denotes a C*-function. Developing g we get
1
(9.9)(0) 52 4% f (1% — 2 — (210D g

(241t

Mlg(85t) = z

la|<m &1

1
+ f Im(7,8,1) (r2— 82— 23 dr + w,, ,
@2t
where g,,(r,8,t) is O(r2+s2+2)im and € C*° outside the origin, so that
the last integral € C™+7-3 at the origin. The integrals under the summa-
tion sign can be computed by means of % partial integrations, where
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— $n—3), =n odd,
" l3(n—2), = even.
The result is
l 1
(3.1) — f P (2 — 82— B¥D dp = g (5,8) + O, yn(s,1) (2 + B

(s21e2)}

where v, € C* and does not depend on g and

0, ®,0dd ,
C,n= g (=3)1 (g — 1)1 !
x,n (__1)n+1( (n)+0(‘061 2)‘)' o4 , x, even, (-1)” -1,
1'— ..
2 12), dd ,
yn(s:t) = (s ) "o

log(s®+¢%)}, n even.
Hence we get the following expansion of M,g:

(3.2)
Mig(s,8) = Wpin-g + ¥a(s,8) (P +E) 3 O, o (P + 19415267 (2,9)(0) .

lal<m

4. The space H.

Guided by the result in the preceding section, we introduce some
function spaces. Let H = H™ consist of all functions ¢, defined in R%— {0},
with the following properties:

1) ¢ € C* outside the origin.
2) @ has compact support.
3) For every positive integer m there exists a polynomial P,p of the

form
(4.1) P,p(s,t) = (S2+E7 3 Aj(p) st

l7l<m
such that
P(8,8) = ¥u(S,O)(Prgp)(s;t) € Cmin-?
at the origin.
It is clear that P,¢ is unique and that the 4; are linear functionals

on H not depending on m. In particular, if 4,(¢)=0 for every j, then
@ € D(R?).
We shall now introduce a topology on H. For p € 2™(R?) put

h/’lm = maXx max lalc"/"(s’t)l .
[kjsm (5,0

Let Hy be all functions in A with supports contained in
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By = {(s,t); s®+1?< R?%}

and take a fixed, positive y in Z(R?), equal to 1 in a neighbourhood of
the origin. With the seminorms

Qm((p) = |<P—X7’n(Pm‘P)|m+n—3 + z A;(‘P)

lil<m

Hj, becomes a Fréchet space. The topology of H=UJHy shall be the
strict inductive limit of the topologies of H,. (See [1].) It is defined by
the following seminorms:

(4.2) Gu(®) = D@ —Vax(Pro)) + 3 1A(p)

Iil<n

where p, are the seminorms on Z(k?)

Zmaxih (8,8) (95f) (8,1)]
.0

Here A, are continuous functions such that for each compact set K there
exists a number A(K,%) with the following property:

18] > MK, k) implies hy(s,t)=0 for (s,t)e K .
(See [5] p. 13).
In (4.2) we suppose m+n— 3> A(suppy,h).

THEOREM 4.1. The mapping M,: 2(C) — H is linear, continuous and
surjective.

CoROLLARY. The mapping M: D(R*x R*) - H is linear, continuous
and surjective.

Since M =M, o N, the corollary follows immediately from theorem 2.1.

Proor. M2 < H by formula (3.2). The linearity is trivial. In order
to prove the surjectivity, we take an arbitrary ¢ in H. We want to find

g € D(C) with
Aﬁ(‘P) = Aﬁ(Mlg)
for every . By formulas (3.2) and (4.1)
(@8)  A0g) = Co o)) + 3 ko (5500) O
lol=161-2

for certain constants k,. It is possible to find a g € 2(C) not depending
on r in a neighbourhood of the origin, such that

(4.4) (9o, 51, 8,9)(0) = Aﬂ(¢)/00, B1. B2
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Then Ag(p)=AyM,9) as we wished, and hence ¢p— M9 € Z(R?). Ac-
cording to lemma 3.1 there is a g, in 2(C —{0}) such that

Mgy =p—Myg .

Hence M,(g+9,)=¢ so that M, is surjective.

For the continuity we can use the closed graph theorem. Suppose
g, ~ 0 in 9(C) and M,g, — ¢ in H. We want to show that ¢=0. Now
for (s,t)=(0,0) -

Mg)ot) = [ a0 —s—e)ieDar.
2+t
Since the g, vanish outside a fix compact set and g, — 0 uniformly the
right side tends to zero. Hence ¢(s,t) =0 outside the origin. In view of

formula (4.3) and the continuity of A, it is clear that 4,p=0 for every
f, so everything is proved.

We also need the following lemma

LevMa 4.1. For each bounded set B< H there exists a bounded set
B, < 2(C) such that M,B;> B.

Proor. Take an arbitrary ¢ in B, and choose g in Z(C) as in the proof
of theorem 4.1. so that A,(M,9)=Azp. Since B is bounded in H there
exist constants a,; b, depending on B but not on ¢, such that (see for-

la (4.4
muia (4 )) |A,3((P)| < a’ﬂ’ |3ag(0)] = ba'

Hence ¢ can be chosen from a bounded set in Z(C). Since M, is con-

tinuous, and
(p_‘Mlg € 9(-Rz) ’

@ —M,g obviously belongs to a certain bounded set in Z(R?). Chosing
go @8 in Lemma 3.1 so that

Mgy = ¢p— Mg,

go belongs to a bounded set in Z(C' —{0}), and finally g+g, belongs to
a bounded set B, in 2(C) with the required property.

5. Parametrization of the invariant distributions.
With the aid of the lemmas in section 1 we can prove

Levma 5.1. For each T € K' there is a unique F € 2'(R?) such thal
(T, f) = {F,Uf>
for every fe D(R™ x R*—{0}).
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Proor. The module M, of the infinitesimal operators is free and of
dimension 2rn—2 in 2=R"x R"—{0}, where zx—yy and 2xy are inde-
pendent and belong to the nullspace of M. Let V be a sufficiently
small neighbourhood of an arbitrary point in 2 and put

I(V) = {(zx—yy,22y); (x,y)eV}.
Then, by lemma 1.1 and 1.2, there exists a unique F,, € 2'(I(V)) such
that for all fe P(V)

T, 1y = [ Tiw,y) fay) dedy = [ Fylwe-yy,229) fa,) dedy = CF,1F) .
Now let V and V' be two such neighbourhoods and let fe 2(AVnV’),
Ae K. Since T € K’ we have:

(Fy Mfy = (T, f = (T@), f(A12)) = (Fy, MAf)y = (F,MF).
Observing that K acts transitively on {2 we can thus prove that I, =F.
on I(V)nI(V’'), and we get a unique distribution F € Z'(R?), (see [6,
Th. 4, p. 27]).

Lemma 5.2. T € K’ and suppT <{0} if and only if

T = P(O, O)
where P is a polynomial and
noog2 o2 n o2
n=3 -2 o=23 .
lgl o, Oy, k=1 0% 0Yy,

Proor. Every distribution 7' with support in the origin is of the form
Q(0/0xy, . . .,0/dy,)d, where @ is a polynomial. 7' is invariant if and only
if @ is an invariant polynomial, and we need only prove that such a
polynomial is of the form P(xx —yy,2xy). But if @ is invariant under K
it is also invariant under O (the real orthogonal group) and hence a
polynomial in zz + yy, xx —yy and xy (see [8]). It is simple to prove that
it can not contain any terms with powers of zx+ yy.

Let H’' be the (strong) dual of H and M’ the adjoint of M defined by
(M'F, fy = <F, Mf} .

We want to show that M': H' — K’ is a linear homeomorphism and state
some lemmas.

Lemma 5.3. T € K’ and supp7 < {0} if and only if
T=73c¢;MA;,

where the sum if finite.
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Proor. It is clear that 3c; M'A; € K’ and has support in the origin.
Conversely, let G, be the space of all such distributions of order =2».
The dimension of @, is }(v+ 1)(» +2) according to lemma 5.2. On the
other hand the formulas (2.3) and (4.3) show that the M’4; belong to @G,
for |j| =, and are linearly independent. Hence they span G,, and the
lemma is proved.

Lemma 5.4. F € H' if and only if there exists Fye D'(R?) such that

(5.1) CF.p) = (Fo, = xyuPr) + 3 ¢;45(9)
Jor all p € H, where m+n—3 is not less than the order of F in suppy.

Proor. It is evident that every F of the form (5.1) belongs to H'.
Conversely, if F, is the restriction of F to 2(R?), Fye 2'(R?. For a
sufficiently large m we get:

0 =(F—Fop—yx(Pnp)) = F,p) — (Fo,0—y2(Ppp)) — {F,x7(Pr9)).

But
Foxy(Ppg)y = 3 ¢;A9)

lil<m

for certain c;, and hence F' is of the form (5.1).
Now we can prove our main result.
TaEOREM The mapping M': H' — K' is a linear homeomorphism.

Proor. Itis clear that M'H’' < K’, and that M’ is linear. Furthermore
M’ is injective because M is surjective. To prove that M’ is surjective
we take an arbitrary 7' in K'. There exists, by lemma 5.1, F, € 2'(R?)
such that for every fe 2(R"x R*—{0})=2(2)

(T.f) = Fo, Mf) .
We define ¥, € H' by

Frp) = Fo o—2v(Pr®))

m being large enough. Consequently (T',f)=(M'F,, f) for every
f€2(2), so by lemma 5.2

T-MF,=3cMA;.
Hence
M (F+Yc;4;) =T,
and M’ is surjective.
By known topological theorems [1, c¢h. IV p.102-103 prop. 5-6],
M’ is continuous. That the inverse M’'-! is continuous follows from the
Lemmas 2.2 and 4.1. Hence everything is proved.
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According to our theorem, lemma 5.4 gives us a concrete description,

“parametrization”, of K'.

Gt WD =

=1
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