MATH. SCAND. 14 (1964), 65—74

ON THE CONSISTENCY OF THE AXIOM
OF COMPREHENSION
IN THE LUKASIEWICZ INFINITE VALUED LOGIC

JENS ERIK FENSTAD

In “naive”, i.e. ordinary mathematics the ‘“natural” principle of set
existence is the axiom (or rather axiom scheme) of comprehension:
Every ‘“well-defined property” determines a set.

In axiomatic set theory one would like to identify ‘“‘well-defined
property”” with what can be expressed by a formula build up from the
identity and the membership relation by use of the customary logical
connectives. However, on the basis of the classical two-valued logic the
axiom of comprehension cannot consistently be maintained, —the Russel
paradox, involving the set of all sets « such that x ¢ z, being the well
known counterexample.

At least two ways out of the dilemma present itself, either restrict
the axiom scheme, or keep the axiom but change the logic. Mathemati-
cians take the first course. The logician is free to take the second, seing
if a logic incorporating the axiom of comprehension consistently can be
constructed.

Some work has from time to time been done on this topic. Recently
Th. Skolem [2] and C. C. Chang [1] have investigated the situation within
the infinite valued logic of Y.ukasiewicz. To give these results and to
state the theorems proved in this paper we briefly describe the logic of
Fukasiewicz.

The logic £ has the following primitive symbols. Propositional connec-
tives are v, 1 and —. The quantifier is 3. The only predicate is the mem-
bership relation €. The class of formulas is inductively defined as usual.
We are also going to use a logic £; obtained from £ by adding the identity
relation =.

The intended interpretation will be described through the notion of
model. A model is a pair M ={S,e) where S is some set and e: 8% - I,
where I is the closed interval [0,1] of the real line. We here treat the
logic Z,, leaving the obvious modification concerning the logic £ to the
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reader. An interpretation of £; into a model M is a map w: V — S, where
V is the set {v;,v,,...,v,,...} of all variables of £, The truth-value of
each formula U under the interpretation w will be defined inductively.
If a,be S we set d,,=1 and d_,;,=0, if a+b. The definition of truth-
value is then as follows:

i. w(z € y)=e(w(x),w(y));
. wE=y)=dyw, wy;
iii. w(1U)=1-w(U);
iv. w(U,vU,) =max {w(U,),w(U,)};
v. w(U; - Up) =min{1,1—w(U,) +w(Uy)};
vi. w(@2U)=max,{w'(U)};

where w' : V — § satisfies w'(y) =w(y) for all y+x. In this way w asso-
ciates with each formula U of £; a definite numerical value in the range
1, called the truth-value of U under the interpretation w of £, in the
model M ={8,e).

A set 4 of formulas of £; (or £) is called satisfiable if there exists a
model M and an interpretation w into M such that w(U)=1 for all
UeAd. Ais called consistent if it is satisfiable.

THEOREM A. Let A, be the set of all quantifier free (open) formulas
Ut,y,%,...,x,) of L; having at most the wvariables t,y,x,,...,x, free.
Then the set of all formulas

Ya,... Vo, gVt (tey o Ut,y,z,,. . .,2,)),
where U € 4,, is consistent within L.

This result, restricted to the logic £, was proved in Skolem [2] by a
combinatorial argument. In this paper we are going to present a short
proof of theorem A using an extension of the Brouwer fixed point theo-
rem.

Our methods are inspired by the paper Chang [1] in which the main
theorem is the following result:

THEOREM B. Let A, be the set of all formulas U(t,y,x,,...,x,) of £,
with at most the variables t,y,x,,. . .,x, free and such that in every atomic
formula w e v of U, if u is a bound variable of U then w=v. Then the set
of all formulas

V...V, yVi(tey & Ulty,xy,. . .,3,)),

where U € 4,, is consistent within L.
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It is easily seen that neither the axiom of infinite union, nor the
axiom of powerset are covered by this theorem. On the other hand
theorem B includes theorem A. We are going to prove a theorem C
which covers the axiom of infinite union, but which does not include
theorem A. It does include instances which are contradictory within
classical logic. For technical reasons we state our theorem for the logic
£. An analogous result could be proved for the logic £;, However, both

versions are of a rather special nature, so we feel justified in keeping to
the simpler situation.

TueoREM C. Let A, be the set of all formulas U(t,y,x,,...,2,) of £
with at most the vartables t,y,%,,. . ., x, free and such that the variable t of U

can only occur as a variable u of an atomic formula w € v of U. Then the
set of all formulas

Va,... Vo, dyVi(tey « Uty,z,,. . .,2,)),
where U € A, is consistent within L.

The restriction on the variable ¢ is easy to state, but quite serious
as regard applications of the theorem. The axiom of infinite union is
included as the U in this case is the formula 3z (t€z A zex). The axiom
of powerset is not covered as the U this time should be the formula
Vz (2€t — z€xz), and z € ¢ violates the restriction of the theorem. A non-
classical case is included simply by choosing 1( € ) for the formula U.

The model we construct for the consistency proof is not in any sense
“natural”’, as indeed the truth-value of an atomic formula « € v will be
independent of the interpretation of the variable u.

Proor or THEOREM A. As preparation for the proof proper we present
a simple extension of the Brouwer fixed point theorem. This extension
is almost identical to a lemma given in Dunford and Schwartz: Linear
Operators, vol. I, p. 453, but for convenience we repeat the short argu-
ment.

Let E be a countable product of intervals I=[0,1] given the product
topology. Then E is a compact metric space in the metric defined by

o0

d(x5y) = z Em-z%y—ﬂ

m=1

It will be shown that each continuous map f: £ — E has the fixed point
property.

To do this define the ‘“‘projections” =, (z)=x" where x;/=x; if i<n

and z;/ =0 if ¢ >n. The subset £, =n,(H) of E has (in the induced topo-
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logy) the fixed point property by Brouwer’s theorem. Let f, =, foinj,
this map is obviously continuous form E, into E,, hence has a fixed
point y, € B, c K. As E is compact the sequence y, contains a conver-
gent subsequence y,.. Let y,=limy, , we propose to show that f(y,) =
9o- To this end consider the inequality

d(f(?/o), i’/o) é d(f(%)))f(yn,)) + d(f(yni)’fm(yn,-)) +d(ymv ?/o) .

Here the first and last term of the right hand sum can be made arbitrary
small as f is continuous and y,; ~ y,. Further

prj of(yni) = Prj °fn,-(yni), _7 éni ,

thus
Y 1 1
d(f (yn,)hf n,(yn.)) = z —2—1; = E—m’
m=ng+1

hence the middle term of the sum can also be made arbitrary small by
choosing 7 large enough. Therefore, f(y,) =2y,

The set 4, of theorem A can be enumerated in a sequence U,, U,,. ..,
U,,.... With each U,, we may associate a number »,, such that U,,
can be written U,(t,y,2;,...,2,, ). It is no restriction to assume that
n,, 2 1. Further for any nx1, let 4, denote a bijection of N* onto N,
where N is the set of natural numbers.

With every e € £ we may associate a model M =(IV,e) of £, by defin-
ing e(7,j) =pry,u »(e). By use of this model a map f:H - E will be
introduced by the following coordinate equations:

Prii, » °f(€) = w(Um(t> Y5 Zys- - - 7xnm)) ’

where w is any interpretation of £; into M such that w(t)=1¢, w(y)=j,
and w(x,)=ky,. .., w(x, )=k, , where m,k,,...,k, are the unique num-
bers such that

J=Aym, A, (ky,. .. K,,)) .

To show that the map f defined above is continuous it is sufficient to
prove that each coordinate map pr,of: E — I is continuous. But the
value of pr,of(e) is equal to w(U,(t,y,2y,. . .,%,,)) for some m and w,
and this truth-value is determined by a finite number of coordinates of
e, a fact which taken in conjunction with the definition of an interpre-
tation, immediately yields the continuity of the map pr,of(e). This
argument also shows why we cannot allow bound quantifiers in a kernel
formula U,,, because then w(U,,) would in general depend on an infinite
number of coordinates of e, hence the map need not be continuous.
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By the above fixed point lemma the map f has a fixed point, say e,.
Define a model M,={(,e,), where N is the set of natural numbers and
eo(t,7) is given by

eo(t,)) = PLi,i, p€o) -

Let w be any interpretation of £, into M, it will be shown that
w(Vxl. .V, AyVi(tey o U,(t,y,2,,. . "xnm))) =1,

for all m. This will complete the proof of theorem A. But the truth of
this equality is almost immediate by the definition of an interpretation.
Assume that w(z))=k,,... w(x,, )=k, . Define w' equal to w for all
variables different from y and set

w(y) = Ayf(m, A, (ky,. ..k, ).

Then let w'’ be any interpretation agreeing with w’ except possibly for
the variable . Let w'’(¢) =1, for some 2 € N. We must show that

wu(t ey o U,ty,xy,. . .,xnm)) =1.

But this is the case if and only if w”(t € y) and w" (U, (t,y, %, . .,%,,))
are equal. But

w(t€y) = eyt,J) = Pra,u, peo) 5
and

w”(Um(t7yx Lyse o ’z'n,,,)) = prlz(i,j)(f(eo)) .

This concludes the proof, because ¢, is a fixed point of the map f.

Proor oF THEOREM C. 1° A first reduction consists in translating the
consistency problem within £ into a similar problem within a logic £*
obtained from £ by replacing the membership relation € v by a monadic
predicate ¢(v). It should be clear how to translate each formula V of £
into a formula V* of £*: replace each occurrence of an atomic formula
wewv in V by the atomic formula ¢(v) to obtain V*. The semantic no-
tions as regard the logic £* are defined in the obvious way. In the trans-
lation one also omits superfluous quantifiers according to the semantic
rules: YzV, 32V and V all have the same truth-value in every model
under every interpretation if the variable z does not occur free in the
formula V.

Under the translation V to V* of £ into £* it is seen that the formula
U* where U € 4, (defined in theorem C) does not contain the variable ¢
free. Further one observes that with every model M*=(N,e*) of £*
and interpretation w* of £* into M* such that
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w*(vxl' . 'Vx'nay (8(?/) hd U*(y:xlw . rxn))) =1 )

one may associate a model M =(N,e) of £ and an interpretation w of £
into M such that

w(Vay... Ve, yVi(tey o Ulty,z,. . HT,)) =1,

where it is assumed that U € 4,. In fact one defines ¢(¢,j) =e*(j) and
w=w* for all variables z.

2° The next step is to eliminate the bound quantifiers of the formulas
U* so as to be able to define a continuous map f: £ —~ E as was done in
the proof of theorem A. The idea behind the elimination procedure is
simple: a continuous function on the unit interval obtains its maximum
and this maximum will be shown to depend continuously on certain
parameters. The technical details, however, are slightly involved, so
for the rest of the proof we stick to a typical example.

Let the formula U* € 4,* have the form

32y(Valzr,2,9) v 325V (21,22, %,9) -

Here n,,=1, the formulas ¥V, and V, does not contain any bound vari-
ables and only the displayed variables free.

Let M*=(N,e*) be a model of £* defined from a point e* € £ by
setting e*(j)=pr;(e*). Further assume that w* is any interpretation of
£* into M* such that if w*(x)=F% and U* is the translation of a formula
U,, € 45, then w*(y)=j where j=2y(m,A,(k)). We would like to define
J:E - E by the coordinate equations

pr; o f(e*) = w*(U¥),

but for the moment this is not possible, because w*(U*) may depend
on an infinite number of coordinates of e*, hence f need not be continu-
ous. We are going to define f in a slightly different way which imme-
diately gives the continuity, then conclude the proof by demonstrating
the validity of the above coordinate equations.

3° At this point we make a digression to prove a technical lemma
needed in the subsequent development. Let V(z,,...,z,,2,...,7,) be
an open formula of £* and w* an interpretation into M*. Define the
map g, of w*(V)"<I™ into I by setting

go(e*(@*(21)),- . ., e*(WX(2,,)); b1, - -,0,) = W (V(2ps. o 12 @ - %))

where g, is a map dependent upon the parameters b;=w*(x;), 1=1,...,n.
It is easy to see that the map g, can be extended to a map g:I™ — 1
by replacing e*(w*(z,)) by a numerical variable a; in the range /.
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Let I" be some subset of I™, it will be shown that the family

{g(al" M "am’bls' .. 7bn)}(a1,...,am)e1“ ’

is uniformly equicontinuous. The proof is an easy induction on the
structure of the formula V(z,,...,2,,2,,...,z,). Either V has the form
&(z;) or &(x;), or it has one of the forms V,vV, 1V;, or V; > V, For
illustration assume that V is V; — V, and that the assertion is proved
for the families {g'} and {g?} associated with the formulas ¥V, and V,.
Then for every ¢> 0 there exists a 6 >0 such that

199@s- -+ Wy by, - - -50,) —gH @y, - - 0,501 5. .,0,))] < €

for all {ay,...,a,yel" if |b,—b/|<d for i=1,...,n. Now g=
min(1,1—g'+¢3), and it is easily seen that

g(ays. - -, @by, .., 0,) —glag,. . . a,,0",. . .,b,))]

2
s ‘21 17 C: 2 A M T s L P A . AN T T IS
f=

hence the uniform equicontinuity of the family {g} follows from the as-
sumed equicontinuity of the families {g’}, i=1,2.

4° For the proof introduce a map g, associated with the formula
Vy(21,25,2,y). Let the parameters be a,=e*(w*(z)), by=e*(w*(x)) and
by=e*(w*(y)). As gy(ay,0,,by,b,) is continuous on I to I, there exists an
dy € I such that

ga(@q,da,b,,0,) = ma'xazelgz(al’a’z’bl?b2) .
And this maximum value is a continuous function of the parameters, a

fact which follows from the uniform equicontinuity of {gu(a;,as,b;,b2)}g,cr
and the inequality

|ma'xa2e192(“1> @g,b,,b,) maxazelgz(%’» @9, b,',05")]|
é maxagellg2(a’1’ Qy, bl’ bz) - g2(a1,»a2’ bl" bzl)l .

Next introduce the map g; associated with V,(z,,x,y) and the map
g : I — I defined by

9(@1,01,b5) = max {g,(a,,by,b,), 95(a1,d2,b1,02)}

where b, =e*(w*(x)), by=e*(w*(y)) and d, is a number maximizing the
function g, for the parameter values a,,b,,b,. ¢ is continuous, hence
there exists an d, € [ such that

g(dy,b,0,) = ma’xalelg(a11b1’b2) .
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It remains to show that g(d,,b,,b,) is a continuous function of the para-
meters b;,b,. This will follow from the uniform equicontinuity of the
family {g(a;,b,,8;)},,c; and the same type of inequality used above.
Now
[9(ay,b1,b5) —g(ay, by, b5")|

< max {|gy(a;,by,05) — 91(a1,0,",65")], |95(a1,ds, b1, b5) — galay,ds", 64", 65)}
but here

|92(@y, s, by,05) — galay,ds’,b,",057)]
S Max,, 1]g5(a1, @9,01,b5) — g5(a1,25,b1",05))]
80 by use of the above lemma on uniform equicontinuity we may infer
the uniform equicontinuity of the family {g(a;,b,,b,)},,cs, and this shows
that g(d,,b;,b,) is a continuous function of b, and b,.
5° The definition of the map f: ¥ — E now reads
pr; o f(e*) = g(dy,b4,b,) ,
where by =e*(w*(z)), by=e*(w*(y)) and j=2,(m,4(w*(x))). From what
has been shown in 4° it follows that f is continuous in the product
topology on E=1IN.
Let ey* be a fixed point of the map f, it remains to prove the equality
pr; o f(eg*) = w*(U*).
6° A last lemma is needed. For each n the formula U,,, equal

(xey»(xey—» ...(xey»]xey),“)) ,

where there are n occurrences of the atomic formula x €y, is included

in the set 4,. The transform U, is here

(e(y) - (e(y) - ... > (e(y) - 'Ig(y)), . )) i

In the model M *=(N,e,*) where e,* is a fixed point of the map f
defined in 5°, we obtain for a certain j and an interpretation w* of £*
into M * such that w*(y)=j, the validity of the following equation

eo*() = w¥((e(®) > (e@) > - - . ~ () > Te(@))...))) -
An easy calculation yields that the only value for ey *(j) satisfying this
equality is .
eo*(j) = nf(n+1)
Also for each ¢, with 0 <t<n+ 1, the formula

(yex»(yex—» ...»(yex»]yex)...)),
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where there are ¢ occurrences of the atomic formula y €z, is included
as a certain formula U, in 4, The transform U, is here

(e(x) - (s(w) > .o (e(@) > Te(@). )) .

In the model My* it is then seen that for j'=2,(m’(¢),4,(j)) the following
equality obtains

e*(j’) = wl*((e(x) > (e@) > .. .(e(@) > Te(@)). . ))) ,

’

where w,*(x)=j, w,*(y)=j5'. This equality gives

eo*(J’) = t/(n+1), 0<t<n+1.

Hence it is seen that for every rational q € (0,1] there exists an je N
such that ey*(j)=g.

7° The proof of the equality now follows easily. Calculating w*(U*),
with the U* of section 2°, we obtain

w*(U*) = max max {w,*(Vy(2;,2,)), w,*(32:V (21, 20,%,9))}
wi*

= max max {wl*( Vi(z1,2,9)), maxwy*(V (2,2, , y))} ,
wy* wo*

where w,* equals w* except possibly for z; and w,* equals w,* except

possibly for z,. Now

max wy*(Vy(21,25,%,9)) = ma;,( ga(eo*(n), eg*(m), eo*(k), e*(j))
wa* me.

where ¢, is the map introduced in section 4°. Further there exists an
d, € I such that

ma,}I( gz(eo*(n)’az’eo*(k),eo*(j)) = 92(60*(n)’d2aeo*(k)aeo*(j)) )

and from the lemma of 6° we have a sequence m,; such that

Combining these results we obtain, remembering that g, is continuous,

ma,;(gz(. cesOgyn ) = Gol v ylg,. ) = go(. .., limeg*(my),. . )
age 1—>00
= lim g,(. . .,ep*(m;), . . .)
1—>00
< max gy. . .,e*(m),...).

meN
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Hence

max wy*(Vy) = ma'lx gz(eo*('n'):“z,eo*(k): 80*(j)) .
wa* age

Repeating the argument we get in the end

prj o fle*) = ma'IX g(aveo*(k)aeo*(j)) = w¥U*).

This is the desired equality giving the “right” value for the function f,
and the proof may be concluded as in the last part of the proof of theo-
rem A.
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