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STABILITY OF LINEAR DIFFERENTIAL EQUATIONS
IN BANACH ALGEBRAS

GERT ALMKVIST

Introduction.

We consider a Banach algebra 4 over the real or complex numbers
with identity element (denoted e). All norms, N(-), are assumed to be
natural, that is N(xy) S N(x)N(y) and N(e)=1. We study differential
equations of the type

(1) w'(t) = a(t)u(t) where w(0)=e.

Here » and a are functions from the positive reals R+ into 4. %'(t) is
defined by the relation

N (u(t +h) —u(t)

5 ——u’(t)) >0 as h—->0.

We always assume that a(t) is Bochner integrable (see [2, p. 79]) over
any finite interval of R+. This implies that there exists a unique solu-
tion of (1) (see [6, p. 521]). The differential equation (1) is said to be
stable if there exists a constant M such that

N(u(t)) = M forall 20.

It is clear that stability is a topological property, i.e. it is preserved if
we introduce an equivalent norm of 4. It is therefore natural to try to
find topological conditions on a(t) making (1) stable.

The first part considers the case when a(t) is constant. Here we can
solve (1): u(t)=exp(ta). The spectrum o(a) of a, is independent of the
norm and we find some sufficient conditions for stability, generalizing
well known theorems for matrix algebras.

We introduce the Gdteaux differential belonging to a norm N

N(e+aa)—1

[0

Dy(a) = lim

a—>+0

A technical condition for stability is obtained:
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THEOREM 3. The function exp (ta) ts bounded for t = 0 if and only if there
exists a norm N such that @y(a)=<0.

In the second part, a(t) is not necessarily constant. We prove
THEOREM 4. N(u(t))<exp Sf) Dy(a(s)) ds.

From this theorem we get some corollaries concerning stability of (1).

1. a(l) constant.

We study relations between the situation of the spectrum o(a) in the
complex plane and stability of (}). If o(a) contains a point A, with
Rel,>0 then

N(exp(ta)) 2 »(exp(ta)) 2 exp(t Rel,) ,

where »(x)=sup{|A| | 4 € o(x)} is the spectral radius of . Hence
o) = {A| Red = 0}

is necessary for stability. We also have the following sufficient condi-
tion.

TrEOREM 1. If o(a)={A| ReA<0} then exp(ta) —~ 0 when & — oo.
Proor. Put b=exp(a). There exists a é >0 such that

a(d) = {4 | 1A = exp(—9)}.
We get
»(b) = lim (N(b"))V/» = sup (4| < e? < 1.

—>00 Aea(b)

It follows that N (b") - 0 as n — oo and this implies exp (ta) > 0 as t — oo.

If o(a) contains points on the imaginary axis the problem of finding
a sufficient condition of stability is more difficult. Theorem 2 is a
generalization of a well known theorem for matrix algebras.

TaEOREM 2. Let A = B(X) be the algebra of bounded linear operators from
a Banach space X into tself.

Let further a=b+c be a spectral operator in A with resolution E(A) of
the identity, b the scalar and c the quasinilpotent part of a. If

o(@) = {A| Red £ 0},
and
4, = a(4)n {4 | Red = 0}

is both open and closed as a subset of o(A) and cE(4,)=0, then exp(ta) is
bounded for t=0.
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Proor. The set 4,=0(A4)—4, is a closed subset of {A | ReA<0}. We
have a decomposition a=a,+a, where a,=a | E(4,)X, k=1,2. Since
a, is scalar we get from the definition of spectral operator (cf. [2])

o(a;) < A, = 4, < {A | Red = 0},

o(ay) < Ay = A, < {4 | Red < 0},
and

N(exp(ta,)) < const-sup;,q,exp(ti)| = const .
Theorem 1 implies that exp(fa,) is bounded and this finishes the proof.

We now consider the Gateau differential

2) By (a) = lim 2T =L

a—>+0 &

We write down the following simple consequences of the definition (see
[4, p. 25]):

(3) Py(@)] < N(a),

(4) Dy(a+b) < Dy(a)+ Dy(b) ,

(5) By(a) = inf LTI Ly logN(expaa)
a>0 o2 K->40 (0.9

The next theorem is a precise characterization of those constants a for
which (1) is stable.

THEOREM 3. The funciton exp(ia) ts bounded for t=0 if and only if
there exists a norm N for which @ y(a)=0.

Proor. Assume that N (exp(ta))gK for all t=0. By a construction
due to L. Ingelstam (see [4, p. 26]) it is possible to find an equivalent
norm N, such that Ny(exp(ia))<1 for all {20. Put

N,(z) = sup N(exp(ta) z) .
Then =0
N(z) £ Ny(z) £ K-N(zx) forallzx,

that is, N and N, are equivalent, but N,(e)+1 in general. We therefore
introduce

It is easily seen that N, is natural, equivalent to N and

Nylexp(ta)) <1  forall £20.
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From (5) we then get

log N,(expta) <

Dy,(a) = lim £0,

t->+40
which proves the necessity.
If @,y(a)<0 then Corollary 1 of Theorem 4 (see below) implies that
N (exp (ta)) =<1 for all £=0, so the condition is sufficient.

2. a(l) not necessarily constant.

We first observe that a(f) Bochner integrable over any finite interval
implies that d)(a(t)) is integrable over the same type of intervals. This
follows from the fact that ®y(a(f)) < N(a(f)) where N(a(?)) is integrable
and that @y(a)t)) is an infimum of a sequence of measurable functions (5).

THEOREM 4. N(u(f)) Sexp S; D, (a(s)) ds.

Proor. For a fixed t>0 we construct the solution by successive
approximations. Consider a partition
O=ty <ty < ... <t, =1t.
We define the following step functions:
ba(s) = al&r),  guls) = P(al&y)) »
(6)  va(s) = exp((s —t)a(&) - exp((t— t—)a(Ex-1)).. . - exp(t1a(&y))
for s satisfying ¢, <s<ti,,,- Here ¢, <&, <t;,;. Integrating v(s) we get

t
v,(t) = e + fbn(s)vn(s) ds .
0

We have a similar equation for u(f) and using a well known lemma (see
[1, p. 35]) we find

12 11
N(u(t) = o) S sup N(u(s))- [ N(a(s) ~by(s)ds-exp [ ¥ ds
0 0

0ss8=t

By choosing a convenient partition we can make

¢ i
f (®(a(s))—ga(9)) ds and f N(a(s)—b,(s)) ds ,
0 0

and hence N (u(t)—-vn(t)), as small as we please. From (6) we get

log Nry(t) < 5 28N (X (=t e(é))

b0 bpr1— e

(tk+1 - tk) .
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If necessary dividing the intervals [f,f;,;) further (leaving a(£,) un-
changed in the whole interval [f,,t;,,)) and using (5) we can also obtain

¢
log N(v,(t))— fgn(s) ds < ¢ for an arbitrary ¢>0.
0

From these facts it follows that

¢
N(u(t)) < exp f D(a(s)) ds ,
0
which ends the proof.

CoROLLARY 1. If there exists a norm N such that

t—>00

t
Hmsupf@N(a(s)) ds < oo,
0
then u' =a(t)u is stable.

From (3) we get

CorOLLARY 2. If S;o N(a(t)) dt < oo for some norm N then uw’ =a(t)u is
stable.

CorOLLARY 3. Let A be a C*-algebra. If a(t) is normal (aa* =a*a) for

every t and
t

ofa(t)) = {A | Red < f(t)}  where  limsup | f(s)ds < o,

t
o0 o

then v’ =a(t)u is stable.
Proor. If ¢ is normal then exp(xa) is also normal and we get
N(exp(xa(t))) = »(exp(xa(t))) < exp(af(?))
for the C*-norm N when «>0. Applying (5) we have
log N ¢
o(att) = tim BV O2A)
*

a—>+0

and
t t
fdiN(a(s)) ds < ff(s) ds .
0 0

Finally we use Corollary 1 and the proof is finished.

REMARK. If a(t) is not normal the spectrum does not tell us much
about the stability. It may for instance happen that c(a(t))c
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{A | ReA= —1} for all t and «'=a(t)u has unbounded solutions (see [5,

p. 310]).

THEOREM 5. Assume that ' =a(t)u is stable. If there exists a norm N
such that

t—>o0

limsup [ @y(—a(e)ds < oo and [ Np@)dt < o,
0 0

then u’ = (a(t)+b(t))u is stable.

Proor. Let uy(t) be the bounded solution of u, =a(t)u, with u,(0)=e
as usual. We have the formula

2
™ wt) = uglt) + [uot)u(s)b(s)u(s) ds ,
0

which one easily verifies by calculating the derivatives of both sides
(for the existence of u,~1(s) see [6, p. 521]). Differentiating u,~* we get

(™) = ug~*(~a(t) .

The same proof as of Theorem 4 can be used to show that
12
N(ug™(9)) < expf@(—a(s))ds <0,
0
a constant independent of . From (7) we get (using the lemma again)

t
N(u@) < N(uo(t))-exp{ (o8 0ssup N(uy(s))- fN(b(s)) ds } ,
=s=t 0

and from the conditions we deduce that u(t) is bounded.
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