APPROXIMATION
THEOREMS OF BOREL AND FUJIWARA

ASMUS L. SCHMIDT

1. Introduction.

The purpose of this note is to give a unified proof of one theorem of Borel [1] and two theorems of Fujiwara [2] [3], stated as theorem I, II, III, respectively, below. However, I believe that the part of theorem III dealing with the approximation of a rational number ξ is new. The method of proof is based on an idea of Khintchine [4].

For any real number ξ let $[a_0, a_1, \ldots]$ be the regular continued fraction expansion (if ξ is rational, we consider any of the two continued fraction expansions), and let $p_0/q_0, p_1/q_1, \ldots$ be the corresponding convergents. The properties of continued fractions to be used are

1. a_0 is an integer; a_n is a positive integer, $n \geq 1$.
2. $q_{n+1} = a_{n+1}q_n + q_{n-1}, n \geq 1$, with $q_0 = 1, q_1 = a_1$.
3. $p_nq_{n-1} - p_{n-1}q_n = \pm 1, n \geq 1$.
4. ξ lies between two consecutive convergents.

With this notation theorems I, II, III may be formulated as follows.

Theorem I. At least one of $p_{n-1}/q_{n-1}, p_n/q_n, p_{n+1}/q_{n+1}, n \geq 1$, satisfies the inequality

\[
|\xi - \frac{p}{q}| < \frac{1}{5^4 q^2}.
\]

Theorem II. If $a_{n+1} \geq 2, n \geq 1$, then at least one of $p_{n-1}/q_{n-1}, p_n/q_n, p_{n+1}/q_{n+1}$ satisfies the inequality

\[
|\xi - \frac{p}{q}| < \frac{1}{8^4 q^2}.
\]

Theorem III. If $a_{n+1} \geq 2, n \geq 1$, then either p_n/q_n or both of $p_{n-1}/q_{n-1}, p_{n+1}/q_{n+1}$ satisfy the inequality

\[
|\xi - \frac{p}{q}| \leq \frac{1}{5^2 q^2}.
\]

Received February 24, 1964.
where the equality sign can only occur if \(\xi = a_0 + \frac{2}{n}, n = 1 \), or \(\xi = a_0 + \frac{3}{n}, n = 2 \), and for such \(\xi \) only if the shorter form of the two continued fraction expansions is considered.

2. Two lemmas.

Lemma 1. Let \(q, q' \) be positive integers. Then

\[
\frac{1}{qq'} < \frac{1}{K} \left(\frac{1}{q^2} + \frac{1}{q'^2} \right)
\]

whenever \(q'/q > f(K) \) or \(q'/q > f(K) \), where \(f(K) = \frac{1}{2}(K + (K^2 - 4)^{\frac{1}{2}}) \). In particular \(f(5^4) = \frac{1}{2}(5^4 + 1), f(8^4) = 2^i + 1, f(\frac{7}{2}) = 2 \).

Proof. (8) is equivalent to \((q'/q)^2 - Kq'q + 1 > 0\), which immediately yields the lemma.

Lemma 2. Let \(p/q \leq \xi \leq p'/q' \), where \(p, p', q, q' \) are integers with \(q, q' > 0 \) and \(p'q - pq' = 1 \). If either \(q'/q > f(K) \) or \(q'/q' > f(K) \), then either

\[
\left| \frac{\xi - p}{q} \right| < \frac{1}{Kq^2} \quad \text{or} \quad \left| \frac{\xi - p'}{q'} \right| < \frac{1}{Kq'^2}.
\]

Proof. By lemma 1, \(q, q' \) satisfy (8), i.e.

\[
\frac{p'}{q'} - \frac{p}{q} = \frac{1}{qq'} < \frac{1}{K} \left(\frac{1}{q^2} + \frac{1}{q'^2} \right),
\]

whence

\[
\frac{p}{q} + \frac{1}{Kq^2} > \frac{p'}{q'} - \frac{1}{Kq'^2}.
\]

This proves lemma 2.

3. Proof of theorems I, II, III.

1) If \(q_n/q_{n-1} > \frac{1}{2}(5^i + 1) \), either \(p_{n-1}/q_{n-1} \) or \(p_n/q_n \) satisfies (5) by (3), (4) and lemma 2 \((K = 5^i)\). If on the contrary \(q_n/q_{n-1} < \frac{1}{2}(5^i + 1) \), then \(q_{n-1}/q_n > \frac{1}{2}(5^i - 1) \). Hence \(q_{n+1}/q_n = a_{n+1} + q_{n-1}/q_n > 1 + \frac{1}{2}(5^i - 1) = \frac{1}{2}(5^i + 1) \) by (1), (2), consequently in this case either \(p_n/q_n \) or \(p_{n+1}/q_{n+1} \) satisfies (5). This proves theorem I.

2) If \(q_n/q_{n-1} > 2^i + 1 \), either \(p_{n-1}/q_{n-1} \) or \(p_n/q_n \) satisfies (6) by (3), (4) and lemma 2 \((K = 8^i)\). If on the contrary \(q_n/q_{n-1} < 2^i + 1 \), then \(q_{n-1}/q_n > 2^i - 1 \). Hence

\[
q_{n+1}/q_n = a_{n+1} + q_{n-1}/q_n > 2 + 2^i - 1 = 2^i + 1
\]
by (2) and the assumption \(a_{n+1} \geq 2 \) of theorem II, consequently in this case either \(p_n/q_n \) or \(p_{n+1}/q_{n+1} \) satisfies (6). This proves theorem II.

3) If \(p_n/q_n \) satisfies (7) with strict inequality, we are finished. On the contrary assume that

\[
\left| \frac{\xi - p_n}{q_n} \right| \geq \frac{1}{\frac{5}{2} q_n^2},
\]

then by (3), (4)

\[
\frac{1}{q_n q_{n+1}} = \left| \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} \right| = \left| \frac{\xi - p_n}{q_n} + \frac{\xi - p_{n+1}}{q_{n+1}} \right| \geq \frac{1}{\frac{5}{2} q_n^2}
\]

or \(q_{n+1}/q_n \leq \frac{5}{2} \), with strict inequality unless \(\xi = p_{n+1}/q_{n+1} \) and

\[
\left| \frac{\xi - p_n}{q_n} \right| = \frac{1}{\frac{5}{2} q_n^2}.
\]

Now \(q_{n+1}/q_n = a_{n+1} + q_{n-1}/q_n \), hence \(a_{n+1} = 2 \) and \(q_{n-1}/q_n \leq \frac{1}{2} \) with strict inequality unless \(\xi = p_{n+1}/q_{n+1} \) and \(q_{n+1}/q_n = \frac{5}{2} \).

In any case \(q_{n+1}/q_n > 2 \), so by lemma 2 (\(K = \frac{5}{2} \)) either \(p_n/q_n \) or \(p_{n+1}/q_{n+1} \) satisfies (7) with strict inequality, i.e. \(p_{n+1}/q_{n+1} \) does so, since \(p_n/q_n \) does not by assumption. If further \(q_{n-1}/q_n < \frac{1}{2} \), \(q_n/q_{n-1} > 2 \), so by lemma 2 (\(K = \frac{5}{2} \)) either \(p_{n-1}/q_{n-1} \) or \(p_n/q_n \) satisfies (7) with strict inequality, i.e. \(p_{n-1}/q_{n-1} \) does so, since \(p_n/q_n \) does not by assumption. This proves the main case of theorem III.

There remains only to show that \(\xi = p_{n+1}/q_{n+1}, q_{n+1}/q_n = \frac{5}{2}, a_{n+1} = 2, q_{n-1}/q_n = \frac{1}{2} \) leads to the exceptional case of theorem III.

By (3) \(q_{n-1}, q_n \) are relatively prime and by (1), (2) \(1 = q_0 \leq a_1 = q_1 < q_2 < q_3 < \ldots \). This requires \(q_{n-1} = 1, q_n = 2, q_{n+1} = 5 \) and either \(n = 1 \) or \(n = 2 \) in which case \(a_1 = 1 \). Hence by (2) either \(\xi = [a_0, 2, 2] = a_0 + \frac{5}{6} \) or \(\xi = [a_0, 1, 1, 2] = a_0 + \frac{5}{6} \), where \(a_0 \) is an integer. In the first case

\[
\frac{p_0}{q_0} = a_0 + \frac{1}{1}, \quad \frac{p_1}{q_1} = \frac{2a_0 + 1}{2}
\]

both satisfy (7) with equality. Similarly with

\[
\frac{p_1}{q_1} = a_0 + \frac{1}{1}, \quad \frac{p_1}{q_2} = \frac{2a_0 + 1}{2}
\]

in the second case. This completes the proof of theorem III.

REFERENCES

1. É. Borel, Sur l’approximation des nombres irrationnels par des nombres rationnels,

UNIVERSITY OF COPENHAGEN, DENMARK