INARIANT UNIFORMITIES FOR COSET SPACES

R. W. BAGLEY

S. N. Hudson [2] and T. S. Wu [4] have shown that, if \(H \) is a compact subgroup of a topological group \(G \), then \(G/H \) has a right invariant uniformity (invariant under action of \(G \) on \(G/H \)) and that the uniformity is pseudometrizable if \(G/H \) satisfies the first axiom of countability. It is known that, if \(G \) is Hausdorff and satisfies the first axiom of countability and \(H \) is closed then \(G/H \) is metrizable (Montgomery and Zippin [3, p. 36]). In this paper we obtain a result which includes those of Hudson and Wu and covers some other cases not included in the theorem of Montgomery and Zippin.

For each symmetric neighborhood \(U \) of the identity \(e \) of \(G \) let

\[
U^* = \{(Hx,Hy) \mid Hx \subset UHx \text{ and } Hy \subset UHy\},
\]

\[
U^- = \{(Hx,Hy) \mid hx \in Uky \text{ for some } h,k \in H\}.
\]

The sets \(U^* \) form a base for the partition uniformity \(\mathcal{U}^* \) on the set \(G/H \) and, if condition \(A \) below is satisfied, then the sets \(U^- \) form a base for a uniformity \(\mathcal{U}^- \).

(A). For each neighborhood \(U \) of \(e \) there is a neighborhood \(V \) such that \(HV \subset UH \).

It is easy to see that \(\mathcal{U}^* \) and \(\mathcal{U}^- \) are right invariant in the sense that they have bases, each element of which is right invariant under action of \(G \). It is known that, if \(H \) is compact, then the topology \(t^* \) induced by \(\mathcal{U}^* \) is equal to the quotient topology [1]. We denote by \(t^- \) the topology induced by the sets \(U^- \). A subset of \(G/H \) is a neighborhood of \(Hx \) in \(t^- \) if it contains a set \(U^-(Hx) = \{Hy \mid (Hx,Hy) \in U^-\} \). If condition \(A \) is satisfied, then \(t^- \) is the topology induced by the uniformity \(\mathcal{U}^- \).

Denote the quotient topology on \(G/H \) by \(q \).

Lemma. Each of the following three statements implies the other two:

1. condition \(A \) is satisfied.
2. \(t^- = q \).
3. \(t^* = q \).

Proof. We note that \(t^- \subset q \subset t^* \). Suppose condition \(A \) is satisfied and \(U^* \) is any element of the base for \(\mathcal{U}^* \). Let \(V \) be a symmetric neighbor-

Received March 20, 1964.
hood of \(e \) such that \(HV \subset UH \). If \((Hx, Hy)\) is in \(V^* \), then \((Hx, Hy) \in U^* \). Hence, \(U^* \supseteq U^* \). Obviously \(U^* \subset U^* \); so (1) implies both (2) and (3).

Now, suppose \(\epsilon = q \) and let \(U \) be any neighborhood of \(e \). There is a neighborhood \(V \) such that \(V^*(H) \subset UH \). But \(V^*(H) = HVH \). Thus, \(HV \subset UH \). It follows that (2) implies (1) and (3). The proof that (3) implies (1) and (2) is as routine as the above.

Theorem. If \(G \) is a topological group and \(H \) is a subgroup for which condition \(A \) is satisfied, then \(U^* \supseteq U^* \) is a right invariant uniformity for the quotient space \(G/H \). If \(G/H \) satisfies the first axiom of countability, this uniformity is pseudo-metrizable (metrizable if \(G \) is Hausdorff and \(H \) is closed). Since the uniformity is right invariant, the pseudo-metric (metric) can be chosen so that it is right invariant. This metric is unique in the sense that each right invariant metric on \(G/H \) has \(U^* \) as its uniformity.

Proof. By virtue of the above lemma and remarks it is sufficient to point out that a right invariant uniformity for \(G/H \) has a countable base if the topology it induces satisfies the first axiom of countability.

It is obvious that condition \(A \) is satisfied when \(H \) is compact. Thus, the theorem above includes Wu’s and Hudson’s theorems. Actually, compactness implies a stronger condition.

Remark. If \(C \) is a compact subset of a topological group \(G \), then, for each neighborhood \(U \) of \(e \), there is a neighborhood \(V \) of \(e \) such that \(xV \subset Ux \) for all \(x \in C \).

This follows from a straightforward argument using nets.

To see other situations in which the theorem holds we note that, if the left uniformity of \(G \) is equal to the right uniformity or the cosets \(Hx, x \in G \), form a star-closed partition of \(G \), then condition \(A \) is satisfied. If the partition is star-closed and \(U \) is an open neighborhood of \(e \), then there is a neighborhood \(V \) of \(e \) such that \(HV \), the saturation of \(V \), is contained in \(UH \); so condition \(A \) is satisfied.

REFERENCES