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UNIFORM APPROXIMATION IN VARIOUS
FUNCTION CLASSES

OLAV NJASTAD

J. E. Fenstad (in [5], [6], [7]) has investigated the structure of the
system of all uniformly continuous real-valued functions on a uniform
space. These systems are I-groups, a fact which makes available a well
developed general representation theory. As is pointed out in [7], the
system of all real-valued p-continuous functions on a proximity space
need not be a group or a lattice. The task of giving an algebraic charac-
terization of these systems thus appears considerably more difficult.
The same remarks apply to the systems of all real-valued uniformly
continuous mappings of generalized uniform spaces, which were intro-
duced in [2] in order to simplify the connection between uniform strue-
tures and proximity structures and to obtain a unified theory of comple-
tion. This paper is primarily concerned with establishing uniform ap-
proximation theorems in these systems (Propositions 2 and 3, Theorem 1).
These may be specialized to (proper) uniform spaces (Theorem 2, cf. also
Theorem 4,1 of [5]), to proximity spaces (Theorem 3), and to completely
regular topological spaces (Theorems 4-5, cf. also Theorems 3,5 of [3]).

The development is in terms of uniform coverings. The setting thus
differs from that of J. E. Fenstad both in primary object of investiga-
tion and in means of exposition, but many of the ideas have their origin
in his papers.

1.

We start by recording some fundamental concepts from the theory of
coverings of a set X (cf. [9], [10], [11]). The covering » is a refinement
of the covering v — written » <v — if each element of u is contained in
some element of v. If u is a covering, and 4 a subset of X, then the star
St (A4,u) of A with respect to u is defined by the formula

St(4,u) = U{Ueu: Und+0}.
The covering {St(U,u): Ucu} is denoted u*. If u* is a refinement of v,
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6 OLAV NJASTAD

then w is called a star-refinement of v— written u < *v. A covering — or
more generally: a family of sets — u is called star-finite if every U in u
meets only a finite number of sets in u.

The product of two coverings % and v is defined as

urv = {UnV: Ueu, Vev}.

A generalized uniformity on X may be defined as a collection % of
coverings which satisfies the following conditions:

Gl Ifue, u<v, then ve %.
G 2. If ue U, there exists a v e U such that v < *u.
G 3. If w and v are finite coverings in U, then wuav e %. (Cf.[2, p. 251].)

The coverings in % are said to be uniform (with respect to %). A col-
lection ¥ satisfying G 2 and G 3 forms a base for the generalized uni-
formity obtained by adding all coverings which possess refinements
in ¥,

A generalized uniform space (X,%) is a set X equipped with a gener-
alized uniformity %. (The fundamental properties of generalized uni-
form spaces are developed in [2], there formulated in terms of entourages).

We recall that a (proper) uniformity is a collection % of coverings
satisfying G 1, G 2 and

G 3. If w and v are arbitrary coverings in %, then uave %.

A sequence {u,: n=1,2,...} of coverings is called normal if u, ., < *u,
for all n. Evidently a normal sequence is a base for a uniformity. If «
is a covering and {u,: n=1,2,...} is a normal sequence such that
u; < *u, then this sequence — as well as the uniformity for which it is
a base — will be said to be associated with the covering u. By G 2, every
covering u of a generalized uniformity % admits an associated normal
sequence contained in % (otherwise stated, it admits an associated
uniformity coarser than %).

If f is a mapping of a set X into a set Y, then the inverse image f~1(v)
of a covering v of Y is defined to be the covering

flw) = {fYV): Vev}.

A mapping f of a generalized uniform space (X,%#) into a generalized
uniform space (Y,%") is uniformly continuous if % contains the inverse
image of every covering in ¥". A family {f;: jel} is uniformly equs-
continuous — or briefly uniform — if for every v in ¥~ there exists a u
in % which refines all f;~(v), j € I. A finite family of uniformly continu-
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ous mappings is not uniform in general (see section 5), although this is
the case if % is a proper uniformity.

2.

Every pseudo-metric d on X determines a uniformity %, having as a
base all coverings d,, ¢ >0, where d, consists of all e-neighbourhoods of
points in X. In particular, the ordinary metric uniformity on the set R
of real numbers has a base consisting of all coverings of the form

v, = {{x—¢,x+e): zeR}.

We shall use the letter R to denote the set of real numbers as well as
this set equipped with the uniformity described.

The set of all uniformly continuous functions of a generalized uni-
form space (X,%) into R will be denoted by U(X,#%). All the sets of
real-valued functions considered, are thought of as subsystems of RX,
with respect to the (point-wise) lattice- and vector space operations, as
far as they are defined. The constant mapping with value ¢ will simply
be denoted .

The system U(X,%) needs not be a group or a lattice. (For an
example, see section 5). Such anomalies are, of course, only possible
when % is not a proper uniformity. In any case, U(X,%) contains all
constant functions and is closed under formation of absolute values and
under multiplication with real numbers. Subsets of RX with these
three properties will be called m-systems. In order to state some addi-
tional properties of U(X,%), we give the following definitions.

A real-valued function f is said to separate the sets A and B if

0=f=1  f4)={1}, fB)=1{0},
or vice versa. The family {f,: Uecu} is said to separate the covering u if

0=sfys1l, [folU)=A{1}, fu(X-St(U,u)= {0}

for every U in u.

Let u be a covering in the generalized uniformity %, and let {f;: jel}
be a family of real-valued functions on X. We shall say that the family
is u-uniform if it is uniform with respect to some uniformity %, contained
in % and associated with u.

Let w, denote the covering consisting of all intersections of sets in the
coverings f;71(v,). Clearly w, is refined by all coverings refining all
fi7t(v,), and w, itself refines all f;~Y(v,). Thus if the family {f;: jel} is
uniform (with respect to %), then w, € %. One verifies that w,, < *w,.
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Thus {wyn: n=1,2,...} is a normal sequence associated with w,. It
follows that {f;: jel}is uniform if and only if it is u-uniform with respect
to some u in %. For a proper uniformity %, this implies that {f;: jel}
is u-uniform for any w in %. In the case of generalized uniformities, it
will be of interest to study families which are u-uniform for some, but
not necessarily all of the coverings « in % (cf. prop. 2).

We now state a lemma on suprema of families of real numbers.

Lemma 1. Let {a;: jel} and {b;: jel} be bounded families of real
numbers. Then

lsup{a;: jel}—sup{b;: jel}| = sup{la;—b;: jel}.
The proof is elementary and will be omitted (see e.g. [5, p. 437]).

ProrosITION 1. The m-system U(X, %) possesses the following proper-
ties:

(1) The sum of any finite uniform family in U(X,%) belongs to U(X,%).
In particular f+o € UX,%) for pe R, fe UX,%).

(2) The supremum of any uniform family in U(X,%) which is pointwise
bounded above, belongs to U(X,%). In particular, sup(f,e) € U(X, %)
Jor oe R, fe UX,%).

(3) For every uniform covering w, U(X,%) contains a w-uniform family
which separates u.

Proor. Statement (1) is obvious, while (2) immediately follows from
the lemma cited. For the demonstration of (3) we make use of the
following fact: Every normal sequence of coverings is determined by a
pseudo-metric d, in the sense described at the beginning of this section
(cf. [4, p. 15]). Now let u be a uniform covering, {«,: n=1,2,...} a
normal sequence associated with it and contained in %, and d a pseudo-
metric determining the uniformity defined by the sequence. There is a
¢ >0 such that d;<u. For every U in u we define

fo@) = inf{1,6-d(x, X — St (U,u))} .
Clearly the family {f,: Ueu} separates u. Since
ld(x,4)~d(y,4)| = d(z,y) ,

it easily follows that the family {f,: Ueu} is uniform with respect to
%2, hence w-uniform.

REMARK. An easy argument shows that if the family {f,g} is w-uni-
form, so is the family {f,g,sup(f,9),f+9.f—g}. Since sup(f,g)=
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1(f+9)+1lf—g|, we may conclude that if an m-system is closed under
addition of finite w-uniform families, then it is also closed under the
formation of suprema of such families.

3.

We now embark on our primary task: the uniform approximations
theorems. To this end we need some more concepts.
The cozero-set C(f) of a real-valued function f on X is defined as

C(f) = {xeX: f(x)+0}.

Further, we introduce a rather special kind of uniform coverings on a

generalized uniform space (X,%). We remark that the coverings u, of R,
where

w, = {{(n—1)e,(n+1)e): n=0,+1,+2,...}, e>0,
is a base for the ordinary uniformity on R. For every fe U(X,%) and
every u, we define
u(f,e) = f(w,) .

A covering of this type will be called functionally determined. It is not
easy to give an intrinsic description of such coverings, and we shall use
them only provisionally. The main theorems will be formulated in terms
of an important and easily described class of uniform coverings: those
which are star-finite and countable. (We remark that the word countable
shall always mean “finite or countably infinite”.)

ProposiTiON 2. If S is an m-system in U(X,%) such that for every

Sfunctionally determined covering u

(1) 8 s closed under addition of finite, u-uniform families,

(2) S s closed under formation of suprema of countable, u-uniform families
with the property that the corresponding families of cozero-sets form
star-finite coverings of X refined by u,

(3) S contains a u-uniform family which separates u,

then S is uniformly dense in U(X,%).

Proor. Let fe U(X,%), ¢>0, and set u=u(f,¢). By condition (3), S
contains a w-uniform family {g,: Ueu} which separates u. We now

define
4, = [H{(n=1D)e, (n+1)e) .

For n>0, 120, we define

and for every n>0
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A, = {4, i=0,1,...,n}.
Now fix an >0, and let 4 € o7,. We define

fa™ = sup{gy: UcA}.

According to (1) and the remark following the proof of Prop. 1, f," € S.
We observe that f ,"(x)=1forz e 4, f ,(x)=0for xz ¢ St (4,u), 0<f "< 1.
Let %, be a uniformity in % with respect to which the family {g,;: Ueu}
is uniformly equicontinuous. It follows from Lemma 1 that the family
{fq": Aesl,,n=1,2,...} is uniformly equicontinuous with respect to
U,
Now for n£0 we write

fn = 28944"

fn = z 2ef
Aesofn
In this latter case, f,(x)=2(n+1)e for xe A,°=A4,,, f.(x)=0 for
r¢ A, Y, and 05f, £2(n+ 1)e.
We observe that if a set in  contains both « and y, then f, *(x)+f,"(y)
for at most two 4 € o/,. Now for every >0 there is a we %,, w<u,

such that
Ifa™®)=fa™Y)] < }e

for  and y in one and the same Wew; A e /,, n=1,2,.... But then
z and y are contained in the same set of u, so it follows from what was

said above, that
Ifa@) —fa)l <& n=12....

This means that the family {f,: n=0,+1, £2,...} is uniformly equi-
continuous with respect to %,,.

Since 4,*+t*n 4,1 = for n— 2> 3m + 2, whilst C(f,) <4, forn >0,
and C(f,) <St(4,,,4) for n <0, the family {C(f,): »=0,+1,+£2,...}is
star-finite. Further f,(x)+0 for 2 € 4,, n£0, and f,(x)+0 for x € 4,1,
n>0. As

and for n>0:

{4,: n=0,-1,-2,.. . Ju{4,': n=12,...}

is a covering of X, sois {C(f,): »n=0, +1, +2,...}. Clearly this covering
is refined by u, so condition (2) implies that

g =sup{f,: n=0,+1,+2,...}e8.

Now let z€ 4,1, m>0, and n=m. One sees that x ¢ 4,* for 1 <2n—
2m —2, and so f,*(x)=0 for 4=4,% ©=0,1,...,2n—2m—4. Thus

fol@) £ 2[n+1—-(2n—2m—4)]e £ 2(m+b)e.
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For n<m we have f,(z) <2(n+ 1)e £ 2me. As f,(x) = 2me, it follows that
g(x) € [2me, (2m + 10)e], and since f(x) € {(2m —2)¢, (2m + 2)e), we con-
clude that |f(z) —g(x)| £ 12e.

If on the other hand x € 4,,, m £0, then we have g(x) < 2¢. Thus with
fr=sup{f,0} we get |g—f*|<12e.

An exactly similar construction gives an element he.S such that
|h—f~-| £12¢, where f-=sup{—f,0}. Thus

If=(g—R)| = 24¢.

Repeated application of Lemma 1 shows that both g and b are uniformly
continuous with respect to the uniformity %,. So {g, —h} is a u-uniform
family, and g—4 is in S.

Tt follows that fe S, and the proof is completed.

For convenience, we shall adopt the term I-space for a lattice-ordered
vector space in RX containing all constant function.

ProrositTioN 3. If S is an l-space in U(X,%) such that for every func-
tionally determined covering u
(1) S is closed under the formation of suprema of couniable families with
the property that the corresponding families of cozero-sets form star-
finite coverings of X refined by u,
(2) S contains a family which separates u,
then S s uniformly dense in U(X,%).

Proovr. Inspection of the proof of Prop. 2 reveals that the operations
performed on the initial separating family either are finite or of the type
admitted in condition (1). Thus one may start out with an arbitrary
family which separates «, and construct functions ¢,h in S such that
|f—(g—n)| <24¢, just as before.

ReMARK. The closedness conditions imposed on § in prop. 3 are very
strong, and the proposition is not very useful in general. It will be used,
however, in the special situation of section 6.

4.

We now state the main theorems. We will call a family {f;: jel}
star-finite if the family {C(f;): jel} is star-finite, and we will say that
it covers X if {C(f;): jel}is a covering of X. Since a functionally deter-
mined covering is star-finite, immediate specialization of Prop. 2 yields:

TrEOREM 1. Let (X, %) be a generalized uniform space. If S is an m-
system in U(X,%) such that for every star-finite, uniform covering w
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(1) S s closed under addition of finite, u-uniform families,

(2) 8 s closed under formation of suprema of countable, star-finite, u-uni-
Jorm families which cover X,

(3) S contains a u-uniform family which separates u,

then S is uniformly dense in U(X,%).

For proper uniform spaces we have:

THEOREM 2. Let (X, %) be a (proper) uniform space. If S is an 1-space
n U(X,%) satisfying:
(1) 8 is closed under formation of suprema of countable, star-finite uniform
Jamilies which cover X,
(2) For every-countable, star-finite uniform covering w, S contains a uni-
Jorm family which separates wu,
then S is uniformly dense in U(X,%).

Proor. From Prop. 2 and the reasoning following the definition of
u-uniform families, the theorem is immediately derived.

REMARK. In [5] J. E. Fenstad has introduced conditions A(1) and
A(2) which together secure uniform density of an I-space S in U(X,%),
in the case of a proper uniformity %. (Actually, the slightly more general
situation where § is a lattice-ordered group containing all rational con-
gtants, is considered.) In order to formulate these conditions, we record
some definitions from [5]. A strong u-cover is an ordered pair (V,u),
where u is a covering of X, V an enfourage of the uniformity and there
exists a number n such that for every 4 € u, V(4)nB =+ for at most n
sets B e u. The cardinal number m(X,%) is defined as the least infinite
cardinal (strictly) greater than the cardinal of any strong u-cover. Now
the conditions 4(1) and A4(2) are as follows:

A(1) For each entourage V of the uniformity, and each family % of
subsets, where card# <m(X,%), there is a uniform family
{f4: AeF}in 8 such that f, separates 4 and X — V(4).

A(2) S is closed under formation of suprema of star-finite (locally finite
in the terminology of [5]) uniform families of cardinality strictly
less than m(X,%).

By the argument following Theorem 2, these two conditions for
m(X,%) >R, imply conditions (2) and (3) of Prop. 2. If on the other
hand m(X,%)=R,, that is, all strong u-covers are finite, we see that all
functionally determined coverings are finite. Every star-finite covering
with a finite refinement is easily seen to be finite. Thus A(1) and 4(2)
entail (2) and (3) of Prop. 2 also in this case. So we may conclude:
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If (X,%) is a (proper) uniform space and S an I-space in U(X, %) which
satisfies A(1) and A(2), then S is uniformly dense in U(X,%). (Cf. [5,
p. 438].)

5.

We consider a proximity space (X,2). A covering % of X shall be
called a proximity covering if

ACSt(A,u) foralld<X.

(It may be verified that the finite proximity coverings coincide with
the p-coverings of [1, p. 353], or the d-coverings of [10, p. 559].) A prox-
imity covering is normal if it possesses an associated normal sequence
of proximity coverings.

If the proximity & is deduced from the generalized uniformity % by
the formula

ACB(?P) <= Jue: St(4d,u) < B,

then % is said to be compaiible with &. The collection of all normal
proximity coverings (with respect to a proximity &) constitutes a
generalized uniformity %,, and %, is the finest generalized uniformity
compatible with the proximity (cf. [2, p. 241]).

A mapping f of a proximity space (X, ) into a proximity space (Y,2)
is p-continuous if

ACB(2) = f-Y4)EfYB) (D),

(cf. e.g. [1, p. 357]). This is the case if and only if f is uniformly continu-
ous with respect to the corresponding finest generalized uniformities
(cf. [2, p. 2486]).

The set of all p-continuous functions of (X,%) into the ordinary
metric proximity space on the set of real numbers will be denoted
P(X,#). Now every metric uniformity is the finest generalized uni-
formity compatible with its proximity ([2, p.243], [10, p. 570]), so
PX,2)=UX,%,).

A family {f;: jel} of elements in P(X,#) will be called u-uniform if
it is uniform with respect to some uniformity which is associated with u
and contained in the collection of normal proximity coverings. Because
of what was said above, this means exactly that the family is u-uniform
with respect to the generalized uniformity %,.

From the above remarks and Theorem 1 we obtain:

THEOREM 3. Let (X,2P) be a proximity space. If S is an m-system in
P(X,P) such that for every countable, star-finite, normal proximity cover-
mg u
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(1) 8 s closed under addition of finite, u-uniform families,

(2) 8 s closed under formation of suprema of countable, star-finite, u-uni-
form families which cover X,

(3) 8 contains a u-uniform family which separates u,

then S is uniformly dense in P(X,2P).

As J. E. Fenstad has pointed out, the system P(X,%) — and a fortiore
U(X,%) — need not be a group or a lattice. For the sake of completeness
we sketch a counter-example (cf. [7, p. 135]).

Exampre. Let X be the set Z x Z, where Z denotes the set of integers.
We write P, ={m}xZ, Q,=Zx {n}. Let u be a covering consisting of a
finite number of unions of sets of the form P,,, and let v be constructed
analoguously from the sets ¢,. An easy argument shows that the collec-
tion of coverings uAv, where » and v are of types described, is a base
for a generalized uniformity #". Let & be its associated proximity. We
observe that

Uy = {Pp: m=0,+1,+2,...} and vy ={Q,: n=0,+1,+2,...}
are normal proximity coverings. Now define
fl(m:n) = m, fz(man) =n

and write g=f, +f,, h=sup{|fil,|f.|}. Clearly both f; and f,, hence |f,]
and [f,|, are p-continuous. We write

D = g-'({0}), E =hr{0,+2, +4,...}).
It turns out that D € D (#) and E € E (#). But
gHED) =D, BN UKp—dp+1): p=0,£2,24,...}) = F,

which shows that neither g nor 4 are p-continuous.

6.

We now consider a completely regular topological space (X,77). An
open covering is called normal if it has an associated normal sequence
of open coverings. It is well known that the collection of all normal
open coverings is a base of a uniformity %;, which is the finest uniformity
compatible with the topology. Moreover U(X,%)=C(X,7), where
C(X,7) denotes the set of real-valued continuous functions on (X,7).

A family {f;: jel} in C(X,7") will be called uniform if it is uniform
with respect to some uniformity generated by a normal sequence of open
coverings. Because of what was said above, this means exactly that the
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family is uniform with respect to %;. (The concept of u-uniformity is
not relevant in this connection, since %; is a proper uniformity).
Application of these remarks to Theorem 2 immediately yields

TuEOREM 4. Let (X,7) be a completely regular topological space. If S
is an l-space in C(X,T) such that for every countable, star-finite normal
open covering u
(1) 8 s closed under formation of suprema of countable, star-finite, uniform

Sfamilies which cover X,
(2) S contains a family which separates u,
then 8 is uniformly dense in C(X,T).

Two sets A and B are said to be normally separated if there exists a
normal open covering « such that St(4,u)nB=¢ (or equivalently:
St(B,u)nA4 =0). This means exactly that 4 and B are remote in the finest
proximity compatible with 7, a condition which is equivalent to the
following: There exists an f in C(X,.7") which separates 4 and B. (The
term completely separated is also used for this concept, see e.g. [3, p. 252],
[8, p. 16].)

THEOREM 5. Let (X,7) be a completely regular topological space. If the
l-space 8 in C(X,T) satisfies:

(1) S is closed under formation of suprema of countable star-finite families
which cover X,

(2) Any two normally separated sets are separated by an element in S,
then S is uniformly dense in C(X,T).

Proor. Let  be a countable, star-finite, normal, open covering. For
every U in u, there is an element in § which separates U and X — St (U, u).
That is, S contains a family which separates «, and the theorem follows
from Prop. 3.

A zero-set is a set of the form Z=f-1({0}) for some fe C(X,7). In
terms of zero-sets Theorem 5 admits the following:

CororrarY. If the l-space S tn C(X,T") satisfies:
(1) 8 4s closed under formation of suprema of countable star-finite families
which cover X,
(2) Any two disjoint zero-sets are separated by an element in S,
then 8 is uniformly dense in C(X,T).

ProOF. Any two normally separated sets are contained in disjoint
zero-sets (cf. [8, p.17]). Thus condition (2) of the corollary implies
condition (2) of Theorem 5. Condition (1) of the Theorem is explicitly
required.
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REMARK. Anderson, in [3], has called a set § which satisfies condition
(1) of the corollary o-complete, condition (2) normal. Thus the corollary
may be formulated: Every normal o-complete l-space in C(X,T) is uni-
formly dense in C(X,7).

Anderson further showed that the normality condition may be weak-
ened to pseudo-normality: For every two disjoint zero-sets Z, and Z,,
there exists an f in § such that f-1({0})>Z,;, f~*({0,0))>Z,. (In fact
he assumed S to be only a divisible I-group.)

We close the section by deducing the vector-lattice version of the
ordinary Stone—-Weierstrass theorem.

THEOREM 6. Let (X,.7) be a compact space, and S an l-space in C(X,T").
If every two distinct points are separated by an element in S, then S is
uniformly dense in C(X 7). (Cf. [5, p. 242].)

Proor. In this case every open covering has a finite refinement, hence
any star-finite open covering is finite. Thus condition (1) of Theorem 5
is certainly satisfied. If 4 and B are normally separated, 4 and B are
disjoint. A standard argument shows that if every two points are sep-
arated by an element in an l-space § in C(X,.), then also every two
disjoint compact sets are separated by an element in S (see e.g. [5,
p. 242]). Hence the desired conclusion follows.

7.

Let (X, %) be a generalized uniform space. We proceed to give condi-
tions for a subset S of U(X,%) to contain the whole of U(X,%) (cf. [6]).
First we state a lemma on uniformly convergent sequences.

Lemma 2. If {f,: n=1,2,...} is a sequence of bounded elements in
U(X,%), which converges uniformly to a bounded element f € U(X, %), then
the family {f,: n=1,2,...} is uniform.

Proor. For every ¢>0 we determine an n, such that |f,—f|<e for
n>n, Clearly, we may assume that n, =n,, for ¢ <e,. Now write

= Tey

w, = u(f,e) Au(f,e) A ... Au(fy €.

Since f.fy,. . . [, are bounded, we may apply G 3, by which w,e Z. If
and y are contained ine one set W € w, then

[fi@)=fiy)] < 2¢

for 1 <n, and

Ifi@) =fi @)l 2 1fd@)=f @)+ @)~ FO+1f @) [yl < 4e
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for ¢>mn,. Since ny2mn, we have wy, <*w,. Thus we conclude that
the family {f,: »=1,2,...} is w;-uniform, and the proof is completed.

A family {f;: jel} is said to be dominated in 8, if there exists an
fe 8 such that |f;] <f for all jel.

TaEOREM 7. Let (X, %) be a generalized uniform space, and S an m-

system in U(X,%). Then S=U(X,%) if and only if:

(1) S s closed under addition of finite uniform families,

(2) Every star-finite, uniform family in S which covers X is dominated
mn S,

(3) S s closed under formation of suprema of uniform families which are
dominated in S,

(4) For every countable, star-finite, uniform covering u, there is a u-uniform
family {f,: xeX} in S such that f(x)=1 and f, separates {x} and
X -8t ({z},u).

ProoF. The necessity of conditions (1), (2) and (3) immediately follows
from Prop. 1, since all the suprema which occur, are finite. Further let
u be a countable, star-finite, uniform covering. There exists a star-
refinement v of u which is uniform, countable, and star-finite (see [9,
p- 1563]). Let {f,: Vev} be a v-uniform family in U(X,%) which sepa-
rates v (such families exist according to Prop. 1). For every x € X, we
write f,=f, for some V containing x. One easily sees that f (z)=1,
that f, separates {x} and X —St({z},u), and that the family {f : zeX}
is u-uniform. So Prop. 1 also assures the necessity of condition (4).

To prove the sufficiency, let » be a countable, star-finite uniform
covering, and let {f,: x€X} be the uniform family postulated in (4).

We define
y = sup{f,: weU)

for every U ewu. All |f,|=1, so according to (3), fpy €S. Clearly f,
separates U and X —St(U,u) and from Lemma 1 follows that the family
{fv: Ueu} is u-uniform. Thus condition (3) of Theorem 1 is satisfied,
while condition (1) is explicitly required, and conditions (3) and (4) of
the present theorem imply condition (2). So we conclude that
S>UX,%).

Next let f be a bounded element in U(X,%), f= 0. There is a sequence
{k,: n=1,2,...}in 8 such that |f—k,| <1/(2n). It follows that

1 1
g’n=kn_“ éf’ lf—gnl éﬁ:

2n

and obviously g, € 8. We define f, recursively by
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fi = 91, Jni1 = sup{fp,gpsa} for m>1.

Assume that f, € S. The coverings

v = ;l(ue)? w = g;—}-l(ue)

are both uniform and finite, hence vawe U. Since all |g,. .| <k, +2,
condition (3) entails that f,,, € S. By induction, we conclude that all
fn€8. Now f=sup{f,: n=1,2,...}, hence another application of con-
dition (3) together with Lemma 2 give fe S.

Next let ge UX,%), g=20. It follows from Proposition 1 that
h,=int{g,n} e U(X,%) for all n. As h, is bounded and non-nega-
tive, it belongs to S. Further there is a k € S such that |g—k| £ 1, since
ge 8. Thus |h,|Sk+1 for all n, and as the family {h,: n=1,2,...}
clearly is u(g, 1)-uniform, g=sup{h,: n=1,2,...}€§.

Finally let h € U(X,%). Then A+ and A~ both belong to S. The family
{h+, —h~}is u(h,1)-uniform, and so A+ —h~ € S. This completes the proof.

Naturally, analoguous theorems may be formulated for the other cases
treated.
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