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COMMUTATIVE
PARTIALLY ORDERED RECURSIVE ARITHMETICS

M. T. PARTIS

In [3] V. Vuckovic considers a partially ordered recursive arithmetic with
the following properties.

(1.1) Every number ® has n successors, denoted by Sgx,S,...,
S,

(1.2) Numeral variables are denoted by @,y,.. ., and definite numerals
by a,b,.... The numerals are 0,S,0,S,0,...,8,_,0,5,5,0,8,5.0,. ..,
and so on.

(1.3) The initial functions are the zero function, Z(x); the identity
function, I(x); and n successor functions, S,® with v=0,...,n—1.

(1.4) Functions are defined recursively using a schema which has n+1
equations as follows.

F(x,0) = a(x),
F(x,S,y) = b,(x,y,F(x,y)), v=0,...,n—1,

where a(x) and b,(x,y,2) are functions previously defined. Functions
can also be defined explicitly by substitution.

(1.5) The arithmetic is made commutative by introducing the axiom
S,S,x =S, S,

and by stipulating that the functions used in a defining schema of the
type given above satisfy the condition

bv(w, S..y, bu(w9 Y, F(w’ y))) = bu(a"’ Svy’ bv(w' Y F(:lf, y))) *

2.

* In recursive number theory with only a single successor function, Sz,
the numerals are 0,80,S880,.... Such numerals will be referred to as
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members of M;. We now introduce an ordered set of members of M,,
which will be written

(21,9, %5, . . ., 2,) «

An ordered set of » members of this type will be called a member of
M,, and z,,...,7, will be referred to as components. We construct a
recursive arithmetic which has as its numerals the members of M.

Functions in this arithmetic are defined by means of their components.
The recursive arithmetic produced is isomorphic to that described by
Vuckovic in [3] and several of his results will be examined in the light
of this component treatment.

(2.1) A function in M, (fy(2y,. .., %,),. . ., fol@y,. . .,2,)), will be said to
be primitive recursive when fi,...,f, are primitive recursive functions
defined in M,. In the general case it will be necessary to consider a
defining schema for simultaneous recursion, as given by Roézsa Péter in
[2]. This schema is as follows

(2.2)  fi(0,x,,...,2,) = a)x,,...,2,),
[i(Szy, %o, . . .,x,) = b(Xqy. - %0, f1o--fn)y T =1,...,1m.

However the functions required in most cases can usually be defined much
more simply, for example by using the schema

(2.3) £40) = a;
fi(sx) = bi(x,fi(x))’ i = la' Y
The functions f;,...,f, will be called component functions. Since the

component functions are functions in M;, many of them are already
familiar in single successor recursive number theory. When this is the
case their defining schemas will often be omitted.

We shall also allow primitive recursive function to be defined in M,
by substitution.

(2.4) The notion of equality in M,, is introduced in the following way:
(Z- « o5%,) = (Y1,...,Y,) if, and only if, z;=y, fori=1,...,n.

3.

We shall establish a correspondence between the numerals of Vucko-
vié’s system and members of M,. Such a correspondence will be written

(3.1) T o (T9,Z9,...,%,) .

This relationship will hold if, and only if, @ is such that it contains x,
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successors of type S,, x, of type S,,. .., and z,, of type S,,. (Itis assumed

for simplicity that the successors of Vuckovié’s system have suffixes

ranging from 1 to n instead of 0 to n—1 as in the original paper.)
Hence, for example, working with two successors,

S,5,5,5,8,0 « (850,8880) .

The above interpretation enables the following correspondences to be
stated
(3.11) 0 - (0,0,...,0),

(3.12) S o (2g,...,8%,...,2,) .

b v

In order to establish correspondences between functions of Vutkovié’s
system (V-functions) and functions of the component system (C-func-
tions), a rule of inference is required.

Suppose the V-function, F(x), is defined as follows:

FO)=a,
F(S,x) = by(x,F(x)), v=1,..,n,
with the commutativity condition satisfied.

Suppose the C-function consists of an ordered set of » primitive re-
cursive functions in M, namely

(X C2 2 T N (- 9 ) IR

and that from the defining schema of these functions the following equa-
tions can be derived:

fi(O,...,O) = a,;,
fi@y, oo, 82y,. ., x,) = by(@yse o o Ty froe e fn)y Ho=100,m.

Then the rule of inference can be stated as follows:

Fx) o (fy(@y,. . %), s ful@1 - 5 2,))
(3.2) if, and only if ,

and a o (ag,...,a,),

bv(w!y) g (blv(xl’- e sy Y1y - "yn)" . "bm:(xl" s T Yo e 7yn))

forv=1,...,n.

As an example of the use of this rule consider the V-function, Cge,
defined by
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Co0=0,

_ | Csx if v,
CiSoe = {siciw if v=1,
and the C-function

0,...,0,2,,0,...,0).

IR

Then,
fj(O,. ..,00=0,
N Ji@y, . xy) i g or v,
T e s B e, 2a) = Sfixy,. . .,x,) if j=v=1.
From (3.11) 0 < (0,...,0).
From (3.1) Y o (Yo Yn), if v,

From (3.12) SY < WYrre s SYpse o3 Yy), i v=1.

Hence the rule of inference given in (3.2) can be applied to give

(3.3) Cx o (0,...,0,z,0,...,0).

LemMA. The V-function for addition, x4y, is defined as follows:
x40 =a,
z4+S,y =S, (c+y), v=1,...,n.
The corresponding C-function is
(X + Y150 o X+ Ys) -

By an analysis similar to that given above rule (3.2) can be applied to give
(3.4) x4y o (t4+y,..., T, +Y,) .

Various other correspondences between V-functions and C-functions
can be established using (3.2). Some of these relationships are important

in establishing a complete isomorphism between the two systems. These
are listed briefly below and will be examined in more detail later.

(3.51) Px — (x,...,Px,...,2,),
where P x is defined by
PO=0
_[SuPx if v¥u
PS.@ = if v=u
(3.52) =y o (B1=Y1 1T~ Yn)

where =y is defined by
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=0 =
=S y=P,(r=y), v=1,...,n.
(3°53) Gv;lf « (xn+l—v’xn+2—-v’° e ) ’
where 9, x is defined by
90=0,
9,52 =8,4,9x v=1...,n.

(If a suffix exceeds n, its value is taken within the range 1 to ». This is
done by taking the excess over n. For example, S,,4; would be read as S;.)

(3.54) XY o (B Y- %0 Yn)
where x+y is defined by
z:0=20

xSy=xy4+Cx, v=1,...,n.
(3.6) Lemma. If
Fx) o (fi@y,....%,),. .o, fol@y,. .., 2,))

G®) o (§2(@1- - 1 %p),e o o, Gn(@s. o, T))

then there exists a V-function, H(x), such that

and

H@) o (fig1@y. 00, Tase o @), e oy fal@re o1 T)) -

Proor. From (3.3),

C\Fx) & (fixy,...,2,),0,...,0),
C,G(x) & (gy(xy,...,2,),0,...,0).

From (3.3) and (3.4),
C,G@)+Cox+...4+Cx — (91(21,. .., 2,), %y, . -, T,) -
Hence, if K(x) is defined by
Kx) = C,G(x)+ Cx+...4+C,x,
C,F(E®) o (fid:1@s- - »0) @50 - -,2,),0,. .. ,0) .
Next the function H(x) is defined by
H(x) = CIF(K(w))+CzF(w)+ ve.4C, F(x) .
From (3.3) and (3.4), it follows that
H@) o (fig1@n . 80) @5 - 520)s- o ful@y, - ) -

then
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This establishes the lemma. This lemma, of course, deals with a partic-
ular instance of the use of substitution. However, the above method can
be generalised to deal with all possible substitutions in the C-functions.

(3.7) THEOREM. Any primitive recursive C-function has a corresponding
primitive recursive V-function.

Proor. (I am indebted to R. L. Goodstein for this method of proof.)
Let the primitive recursive C-function be

(fr@p v sp)se ooy ful@as o sy))

Any primitive recursive function in M, can be produced in a finite num-
ber of steps using just the initial functions 0, Sz, z+y, x vy, a2, iteration
and substitution. Hence, for example, starting from (0,0,...,0) we can
produce in a finite number of steps the C-function

(0,...,0, fi(@y,. . .,2,),0,...,0).

If it can be shown that to each of the initial functions and operations
listed above there is a corresponding V-function or operation, then for
each step taken in generating (0,...,0, f(x,,. ..,%,),0,...,0) there will
be a corresponding step in the V-system.

(3.71) 0 - (0,...,0) by (3.11).
(3.72) CSgx « (0,...,8%,...,00 by (3.3).
From (3.3) and (3.4) it follows that

(3.73) Cix4y) < (0,...,2,+y;...,0).
Similarly it follows from (3.3) and (3.52) that

(3.74) Cix=y) « (0,...,2,~y;...,0).
From (3.3) and (3.54),

(8.75) CxCx ~ (0,...,22...,0).

Results (3.71-5) show that there exist primitive recursive V-functions
corresponding to each of the functions used to generate f;(x,,. . .,z,).

In considering iteration it suffices to examine the following schema in
M, for defining a function f,(x;):

fi(O) =0 ’
fi(ij) = b(fi(xj)) .
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Since b(y) is a previously known function, we shall suppose that a cor-
respondence has been set up of the following kind:

Cb(y) < (0,...,b(y,),...,0).
Next a V-function, F(x), is defined by the following schema:
F(0)=0,
Cb(F(x)) if v=j,
F(S:®) =\ p(x) if o).
Hence rule (3.2) can be applied to give

o (0,..., fix;),...,0).

The generalisation of lemma (3.6) shows that for any C-function
defined explicitly by substitution, there exists a corresponding V-func-
tion. Hence it has been shown that for every step taken in producing
the function (0,. .., f(®,,...,2,),. . .,0), there is a corresponding step in
the V-system which preserves the fundamental correspondence relation-
ship.

‘. There exists a V-function, Fyax), such that

o (0., fil@y,. ., 2y),. . ., 0) .

Clearly the same techmque can be applied to each component function,
so that there exist V-functions, F,(x), F5(x),...,F,(x), such that

(fl Tye e es®p) O)
o (0, fo(@y,. -, 2,),. .., 0),

.............................

Hence, by (3.4), F(x)=F,(x)+4F,(x)4...+F,(x), will be a primitive
recursive V-function such that

o (fl@y, . omy),e s fal@r e %)) -

(3.8) THEOREM. Any primitive recursive V-function has a correspond-
tng primitive recursive C-function.

Proor. Let the V-function be defined by

FO)=a,
F(S,x) = bv(:c,F(w)), v=1,...,n.

Suppose that, since @ and b,(x,y) are previously known functions,
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a o (a...,a,),
bv(wvy) « (blv(xl" c T Ypse ’yn)’ . m;(xl’ sl Y1se e ’yn)) .
Hence, by (3.2), component functions can be formulated according to

the schema
(3‘81) fi(o""’o) = a;,

fi@y, oo s 8%y, .. 2,) = by(®q, - - 3Ty f1o- -5 fu)y Y =1,...,m.

It remains to be shown that functions defined in this way are primitive
recursive.

Consider first the functions f;(0,...,0,2,). From (3.81) the following
equations can be obtained:

fi(O”"’O’O) = a/i
fi(0,...,0,8z,) = b, (0,...,0,2,, f1(0,...,0,2,), ..., fu(0,...,0,2,)),
fori=1,...,n.

Since these equations constitute a definition by simultaneous recursion,
it follows that f;(0,...,0,2,) are primitive recursive functions.

Next consider the functions f,(0,...,0,z,_;,2,).

In the preceding paragraph it has been shown that the functions
f:0,...,0,2,) are primitive recursive, whilst form (3.81) the following
equations can be obtained:

f:0,...,0,8z,_,,x,)
= bina(0,. . ., 0,8, 1,2, f1(0,. ., 0,2, _1,%,),. . o, [u(0,. .., 0,2, _4,,)) .
Hence the functions f;(0,...,0,z,_,,z,) are also defined by simultaneous
recursion and are, therefore, primitive recursive functions.
This inductive process can be continued until it is shown that the

functions fy(«,,. . .,x,) are primitive recursive. Hence it has been shown
that

(i) F@) o (fl@y, .. ox0),. o o fulds,. . 2,)),
(ii) The component functions which satisfy (i) are primitive recursive
functions in M,.

In order to complete the proof it is necessary to shown that a sub-
stitution in the V-system can be copied in the C-system. This is trivial,
for suppose that

hnd (fl(xl" . ',xn)" . "fn(xl" M "xn)) ’
G@) © (91(21. - )0 o G @se w5 2y))

H(x) = F(G(x)) .

and that
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Then the C-function corresponding to H(x) is given by
(fl(gl" M :gn)" * "fn(gl" * "gn)) M

Hence the theorem is established.

Theorems (3.7) and (3.8) demonstrate the functional isomorphism
between the V-system and the C-system. That is to say, to any primi-
tive recursive V-function there is a corresponding primitive recursive
C-function, and conversely.

4.

In this section a deductive isomorphism will be established between
the V-system and the C-system. That is to say we shall show that for
any proof in one system there is a corresponding proof in the other
system. We shall assume the following rules of inference for single suc-
cessor recursive number theory (see R. L. Goodstein, [1, p. 104]).

f(.’l:) = g(w) a=>
8by Sb =
' f@) = gl) * f@) = )
a=25o f(0) = ¢(0)
T a = C U f(Sx) = h(x, f(x))

g(Sx) = h(z,g(x))
f(@) = g(x)

For the V-system the following analogous rules of inference will be used:

o~
I

¢

Sb F(x) = G(x) Sb a=">b B
' F(a) = G(a) ?  F(a) = F(b)
_ F(0) = G(0)

a=Db F(S,x) = H,(x, F(x))

T a=c U Gs,x) = Hyx,Ga))

b=c

F(x) = G(x)
Suppose there exists a proof in the C-system showing that

(e,€p,- . - €5) = (forfoo o fn)
then this proof must show that

e =f1,
ez=f2’

.......
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It is necessary to show that to each step in each proof there will be a
corresponding step in the V-system. This is done by examining each rule
of inference in M, and showing that a corresponding inference can be
drawn in the V-system.

(4.1) Suppose that
{x) o (0,...,fi@,...,2,),...,0),
{®) o (0,...,9:{,...,2,),...,0),
and that Fyx)=G,(x). Then we shall write
Fyx) = Gyx) « (0=0,..., fi(x;,...,2,) = g5(@,...,2,),...,0=0).

Suppose now that rule Sb, is applied in the C-system by substituting
a; for x;. This gives

(0= S fil@e g2 = g@y, .0, Ey),. ., 0=0) .
In constructing the corresponding step in the V-system we note first that
(w-‘-Cjw)+Cja S ( Xy Wy Ty)
Now apply rule Sb, to the equation F;(x)=G,(x) in the following way
F(x=Cjx)+Cja) = G((x=Cjx)+C;a) .
This is the required equation in the V-system.
(4.2) Suppose that
Cia=C;b « (0=0,...,a;=b;,...,0=0),
) o (0, fil@y,...,2,),...,0).

Let rule 8b, be applied to effect a substitution in the j-th component
place to give in the C-system

(0=0,..., fil@s, . ., 851,054, . ., T,)
=fi(x1,... —l’b x_l,...,xn),...,0=0).

From (3.3), (3.52) and (3.53),
(=Cie)+0;_Cia — (Ty,...,8; 1,055 q,...,Tp),
(w-."ij)+gj_iCib «> (xl, . .,xj_l, bi,xj_l,. . ,xn) .
From C;a=Cb, we deduce by Sb, that
(x=Csr)+9;_,Cia = (x=Cx)4+9;_,C;b .
Then, again by Sb,,
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Fy(x= Cr)+9;_Ca)=F i(("""Cjw)'l‘gj-iCib) ,
which is the required equation in the V-system.
(4.3) Suppose that
Cia — C‘b > (O=O,. . .,ai=bi,. . .,0=0)
Cia=C;c & (0=0,...,a4;,=c¢;...,0=0).
Then by rule 7' it can be infered that
(0=0,. . .,bi=ci,. . .,0=0) .
The equation corresponding to this in the V-system can be derived
immediately by rule T. This gives
C;b =C;c.
(4.4) Suppose that
A (0,. . .,f,':(xl,. . .,xn),. . .,O) N
o (0, gy, .., 2y),. .., 0),

o (0,00 h(@y, . T, Y),. . ,0), T =1.,m.
Suppose, without loss of generality, that rule U is applied in the following
way:

(0=0,..., fi(0,2y...,2,) = g:(0,%,,...,2,),...,0=0)
(0=0,...,f(Sx),2s,...,0,) = hyy(@y,...,T5 f),...,0=0)
(0=0,...,9{8%;,x,,...,2,) = hﬂ(xl,. i) .., 0=0)

(0=0,..., fil@), s .., %,) = (@, %5, .. .,2,),...,0=0).

In this final expression, put #;=2,=...=z,=0, and apply S8b,:

(0=0,...,£(0,0,...,0) = g(0,0,...,0),...,0=0).

The V-equation corresponding to this is

(4.41) F(0) = G(0) .
Put
hir®ys oo %0, Ys) = fi@gse o, 8% o)1=y fil}, 7= 2,0..m.

Since every function on the right side of this equation is primitive
recursive it follows that the functions %;, are primitive recursive. By
putting y,=f,(x,...,,), we obtain

fi@s o 8%, 2,) = by, o @, fi @y ), T =1,0.0m
The corresponding V-equation is
(4.42) F(S,x) = H(x,F(x)), r=1,...,n.

Math. Scand. 13 — 14
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Similarly the following V-equation can be obtained
(4.43) G(S,x) = H,(x,G(®)), r=1,...,n.
From (4.41-3), rule U can be applied to infer the V-equation
F(x) = G(x) .
Sections (4.1-4) show that any inference in the C-system can be matched
by a corresponding inference in the V-system for the derivation of a

result of the form
0=0,...,.64=f;...,0=0).

Hence there exists a V-equation, E;=F,, such that
E‘i i Fi > (0=0,. . .,ei = f’i" . .,0=0) .

Clearly equations can be derived to correspond to the final equation in
each component place. Hence there exist V-functions, E,,...,E,,
F,,...,F, such that

E, =F, o (,=£,0=0,...,0=0),
(4.5) E, =F, © (0=0,e,=f,,...,0=0),

................................

In both the V-system and the C-system a derived rule of inference can
be established of the following form:

a=2>b A=B
c=d C=D
a+c =b+d A+4C = B+D

Applying these rules to equations (4.5),
E4...4+E, =F,+...4F, o (e,=f1,....e,=f,) .

This can be written
E=F o (e, =f1,..-,¢, = [) -

(4.6) Hence for every proof in the C-system there is a corresponding
proof in the V-system.

The converse of this result, namely that for every proof in the V-system
there is a corresponding proof in the C-system, is more straightforward.
(4.71) Let

Fx) = G®) o (fi(@y,....x,) = g1(@1,. . 1 2), o o, ful@ye - o, 2)
= Gn(@y,. . ., T)) -
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Suppose that rule Sb, is applied in the V-system to give
F(a) = G(a) .

The corresponding result in the C-system is obtained by applying rule
Sb, n times to each component equation to give

(filag,. . vay) = galag,. @), ooy ful@as o o,0,) = gu(ay,. . .,a,)).
(4.72) Suppose that
a=b o (a,=by,...,a,=b,),
Fx) o (fi@y. . 0®),e ooy ful@y . o02,))
Let rule Sb, be applied in the V-system to give
F(a) = F(b) .

The corresponding result in the C-system can be obtained by repeated
application of rule 8b, to give

(falags+ . oyay) = falby,e o sby)se e s ful@aye o) = fr(by,. . .,0,)) .
(4.73) Suppose that

a=b o (a;=by,...,a,=0,),

a=c o (@;=Cp...,0,=Cy).

Let rule T be applied to give
b=c.

The corresponding result in the C-system can be obtained by applying
rule 7' in each component place. This gives

(by=cy,...,0,=c,) .
(4.74) Suppose that

F(O) = G(O) « (fl(O" . °’0) = 91(0>' . *’0))' . "fn(O" . "O) = gn(O’ . °10))s
F(S,x) = H,(x, F(x)) < (fi(xy,...,8%,...,2,)
= Pyo(@yse e 3@y frse e s fu)se ) s
G(S,x) = H(x,G(x)) < (g:1(x1,...,8%,...,2,)

s vy *

= hlv(xl" . ':xn’fla' . ',fn);- . ) .
Then in the V-system rule U can be applied to give
F(x) = G(x) .

It has already been shown in section (3.8) that the equations in the
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C-system given above constitute a definition by simultaneous recursion.
Hence the component functions are primitive recursive and rule U can
be applied to give

(fi@ss e 20) = Gu(@gse e @)oo, fu@rse - 2,) = gul@y,. . .,7,))

(4.71-4) show that to every step in a proof in the V-system, there is
a corresponding step in the C-system.
(4.8) Hence for every proof in the V-system there will be a correspond-
ing proof in the C-system.

The results established in (4.6) and (4.8) demonstrate the deductive
isomorphism of the two systems.

5.

In his paper Vuctkovié¢ introduces n additive functions defined by the
schema
(5.1) x0,0 =x, u=0,...,n-1,
20,8, = Syyp(®0,y), v=1,....n.

(See note on suffixes in section (3.53)).

The most important of these functions is ®oyy, which Vuckovié calls
addition and represents by x4y. From (5.1), it follows that its defining
schema will be

40 =,

4SS,y =S, (x+y), v=1,...,n.

This defining schema in the V-system was discussed in (3.4) and it was
shown that

2ty o (X1 +Yp.-Tpt+Y,) -

The other additive functions can also be defined directly in the C-system,
but it is simpler when the number of successors is finite to use the functions
g, x, which were introduced in (3.53). These will be called rotational
functions.

ReMARK. In the V-system the number of successors is not necessarily
finite. That is to say the theory developes along the same lines if an
infinite number of successors are introduced. When this is done, a
representation by ordered sets becomes less straightforward, and it is
preferable to retain the additive functions in their original form rather
than to express them it terms of the rotational functions.

(5.2) THEOREM. xo,y =x+49.y .
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Proor. 0, 0 =x; x4+9,0=x40=2x.
wousvy = Su—l-v(xouy) .
w+6usvy - w+su+u(guy) = Su-l-v(w'l'auy) .
.. By rule U,
xo,y =x+4+9,y .
This theorem shows that the additive functions, other than oy, can
be regarded as a combination of addition and the rotational functions.

This interpretation helps to explain why the additive functions are not
commutative, i.e.

(5.21) xo,y =k yo,x (for u>0).

From (5.2), xo,y=x+90,y, whilst yo, x=y+0,x. It is clear that in
general

49,y = y+9,x .
Hence (5.21) is a result to be expected. The following properties of the
rotational functions are noted:

(5.22) 9,9x=0,00x=0,.,.%,
(5.23) gx=0xx=c,
(5.24) 9. (x+y) = (9,2)+(9,Y) .
6.

In this section we discuss the key equations

4 (y=x) = y+(x=y),
and

r=(x=y) =y=(y=x).

In his paper Vulkovié has to apply the uniqueness rule to a schema of
double recursion in order to prove these equations. However, since the
deductive isomorphism of the V-system and the C-system has been
established, it is possible to show that the introduction of double recur-
sion is unnecessary. The existence of a proof in the V-system using only
primitive recursion follows from the existence of a corresponding theorem
in single successor recursive number theory.

(6.1) THEOREM. 4 (y=-x) = y4(x=y).
Proor. From (3.4) and (3.52),

(6-11) w+(y-’-w) « (x1+(y1;'x1)9‘ . -’xn+(yn;xn)) .
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Similarly,
(6.12) y+E=y) © @t @=0) - Yut @ =Yn) -
It has been shown by R. L. Goodstein [1, chapter 5], that

T+ (y-2) = y+(@=9)
can be proved by primitive recursion using only the rules of inference
given in section 4. Hence a proof can be constructed in the C-system that
(@1 + G =2) = Y+ @ =Y1)se Tt Yo = Tp) = Y+ (@0 =Yy)) -
It has been shown in (4.6) that to each proof in the C-system there is a
corresponding proof in the V-system.
.. There exists a proof in the V-system, using only primitive recursion,
that x4-(y—x)=y+(x=9).
(6.2) THEOREM. = (T =Y) == Y= (Y =) .
Proor. From (3.52),
= (@=y) o (@@ =Y1) T (@) s
Yy=y=x) o U= Yo Ua=2a)) -
It can be proved in the C-system that

= (=Y = Y~ (Y~ 2y) -

Hence there exists a primitive recursive proof in the V-system that

T=(x=y) =y=(y=x).

7.

In this section it will be shown that x+4-(y —x) is the least upper bound
of ® and y, and that = (x=y) is the greatest lower bound. From this
it follows that the commutative partially ordered recursive arithmetics
discussed in this paper are lattices.

The inequality relationship is introduced in the V-system as follows:

(7.1) a<b if and only if, a=b=(b=a)
(7.1%) or a=b=0
(7.1) or b=a+4(b=a).

The equations given above are not, of course, independent. Given any
one of them the other two can be derived.

(7.2) THEOREM. x4 (y=x) is the least upper bound of x and y.
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Proor.
Zi= 2+ (Y~ 2)] = (@;~2) = (y;~x,)
= 0=(y;~x;) = 0.

Hence, by (4.6), there exists a proof in the V-system that
(7.21) r=[r4(y=x)] =0.
Similarly it can be shown that

y=[y+x=y)]=0.
But in (6.1) it was shown that y4-(x—=y)=x+4(y=—=x).
(7.22) o y=[e(y=x)] =0.

Let # be an upper bound of  and y. Then x <z and y <z, and con-
sequently z;<z; and y;<z,. Hence,

[+ (s = x)] ~2; = (2;-2) +[(y; = 2;) = (2, = ))]
= (@2 + [y~ {2 + (2~ 2y)}]
= (0;=2)+(y;~2) = 0+0 =0.

Hence by (4.6), there exists a proof in the V-system that
[x+(y=x)]=2=0.
(7.23) oo ed(y=x) S 2.

Results (7.21) and (7.22) show that x4-(y—x) is an upper bound of
x and y. (7.23) shows that it is less than or equal to any other upper

bound.
. &4 (y==x) is the least upper bound of x and y.

(7.3) THEOREM. &= (x=14) 18 the greatest lower bound of x and y.

The proof of this theorem follows the same pattern as that of the pre-
ceding theorem and is, therefore, omitted.

(7.4) TaEOREM. Commutative partially ordered recursive arithmetics are
lattices.

Proor. Let @ and y be any two numbers in the V-system. Then
theorems (7.2) and (7.3) show that they have a least upper bound and
a greatest lower bound which are also numbers in the V-system. Hence,
the numbers of the V-system constitute a lattice.
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8.

The previous sections indicate some of the results which emerge from
comparison of the component system with that set up by Vulkovié.
A further paper will show how the limited universal and existential
quantifiers can be produced using the component system.

The author would like to thank Professor R. L. Goodstein for his help
and encouragement.
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