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QUASI-SPECTRAL THEORY

E. R. DEAL

Dunford [3] has shown that a necessary and sufficient condition for
an operator to be spectral is that it have a canonical representation in
the form T'=8+ N, where N is a generalized nilpotent operator com-
muting with S, and § is an operator of scalar type; that is, S is spectral
with resolution of the identity {£(d)}, and

S = f AE(dY)
o(S)
with the integration in the strong operator topology. The question
arises, whether for some non-spectral operator 7, there exists a represen-
tation in the form
T = fw(dz) + N,
o(T)

where N, though a generalized nilpotent operator is not required to
commute with 7', and where {E(d)} is required only to be a projection
valued measure. That is, for J the empty set, p the complex plane, and
o and J subsets of the complex plane in some Boolean algebra of subsets,
we have

1. E9)=0, E(p)=1.

2. E(6')=E(d)', where &' is the complement of §, and E(8) =1 — E(9).

3. E(dno)=E(6)nk(c), where E(8)nE(c)=E(6)E(0).

4. E(6uc)=E()uE(c), where E(6)UE(c)=E(6)+ E(c)— E(d)E(0).

If there exists such a projection valued measure, and such a generalized
nilpotent operator, then 7' is said to be quasi-spectral, and {E(d)} its
quasi-resolution of the identity. This paper is concerned with the exis-
tence of such quasi-spectral operators.

1. An example.
In L?[0,1] the operator T'f(x)=xzf(x) is a spectral operator with reso-
lution of the identity {E(d)}; E(d)f(x) being the function equal to f(x)
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on ¢ and equal to zero on ¢’. But in C[0,1] 7' is not spectral (in general
E(6)f(x) is not in C[0,1]). However, T' does have a quasi-resolution of
the identity, given by the following definitions:

E@) = 0.

If 6 intersects o(7')=[0,1] in a single interval [a,b] or (a,b) or [a,b)
or (a,b], with a0, then

E@)f(x) =0 0Zz<a,
=f®)—fla) a=zxz=?,
=f(0)—fla) b=z=1.

If a=0, then

E(0)f(zx) = f(x) 0<xz=b,

= f(b) bzl

If 6 intersects [0,1] in a finite number of intervals, then E(9) is the sum
of the projections associated with the individual intervals. The algebra
of sets consists of those sets whose intersection with [0,1] consists of a
finite number of intervals. It follows directly that

1
f Edy) =1,
and that 0
1
fw(dz) - T-N,
0
where

x

Nf@ = [fe e,

0

which is a generalized nilpotent operator. Thus 7' is a quasi-spectral
operator. The same sort of operator on the space of continuous functions
on a monotone sequence contained in [0,1] or on the space of functions
on a finite subset of [0, 1], yields an analogous result.

Clearly, quasi-resolutions of the identity are in general not unique,
since in L?[0,1] the operator 7'f(x) =af (x) possesses both a resolution of
the identity (which is @ fortiori a quasi-resolution of the identity) and
the above quasi-resolution of the identity.

2. Conditions for the existence of a quasi-resolution of the identity.

Keeping the example of the previous paragraph in mind, we set up
the following conditions, which are satisfied by the example, and which
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are sufficient to assure that the operator 7' on the Banach space X has
a quasi-resolution of the identity.

A. X is separable.
B. o(T)<[0,1].
C. Vieo(T), (AI -T)X is a hyperplane.
From C, we know that it is possible to choose for each A € ¢(T) a linear
functional @(A) of norm 1, whose nullspace is (Al —7)X. We further
assume that:
D. 3 M >0, such that Yz € X, ||#]| £ M sup;c . <%, p(4))].
E. Vze X, Vieo(T), 32" € X such that
<x"(p(”)> =0 v
= <x: q)(v)) - <x’ (p(l)) 2

F. vz e X, {x,p()) is a continuous function of A.

IIA IA

V.

Assuming these conditions, we construct a quasi-resolution of the
identity for 7' in a series of lemmas and theorems.

Lemma 1. (Tz,¢(2)) =2z, p(A)) for all 1€ o(T).

Proor. (=T, () = 0.

Gz, (2)) = (Tz,9(2)) .
K, @A)y = (T, 9(2)) .

TurEorREM 1. Condition D implies that
1/d(2) £ |(AI-T)7Y < M/d(4),
for all A in the resolvent set of T, for some M independent of A (in fact, the
M in condition D).
By d(2) we denote the distance from A to the spectrum of 7'.

Proor.
fle]
(A —T')z|
M sup,eom)| <2, @(#))]
* 8UD, () (A —¥)(2, (»))]
M sup,,n|<z, p(*))|
infvea\’T)M - supvea(T)Kx’ ()|
M M
inf, cpli =2 A3’
Since 1/d(2) < ||(AI —T')-1|| [6, Theorem VII 3.31], the result follows.

I(AI - T')7| = sup,

IA

sup,

IA
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THEOREM 2. Condition D implies that there exists a K such that || <
Kijz+yll, if <2,9(2)) <y, 9(2))=0 for all 4 e o(T).

Proor.
llzll £ M Sup;cqr)|<®, @A) S M SUP;cqry MAX,_, ,|<2, @(1))]
= M sup;.,n|<, p(2)) + ¥, p(A))]
= M sup; o) {x + ¥, 9(2))]
s Mlx+yl .
Lemma 2. Condition D implies N,(AI —T)X =0.

Proor. Suppose (AL —T)X +0. Then there would exist an x40,
such that z € (Al —T)X for all 1 € o(T'). Therefore ||z||3 0 but {(x,p(1))=0
for all 2 € ¢(7"). This contradicts condition D.

Lemma 3. {p(A)} is total over X.

Proor. {x,p(A))=0 for all 2 implies z € N,(AI —T)X which in turn
implies z=0.

LemMma 4. Condition A implies that the weak closure of L{p(A)} is X.
Proor. This is Theorem 7, p. 126 of [1].

Let @ and b be two points in ¢(7"), a <b, and let 6=[a,b]. If a=0,
define E(6) by the relationships

CE@)x,p(2)) = (z,p(4)) A1=D,
= (z,9(b)) b=2.

If a=0 is not in o(7"), this still makes sense, since ¢(0) is not used. We
shall continue to use E([0,b]) for b € o(T") whether 0 € o(7T") or not. If
a=+ 0, define E(5) by the relationships

CE(d)x,p(2)) = 0 Aga,
=z, p(A))—{z,p(@)) a=Asb,
= (x,q)(b))—(x,tp(a)) bsa.

Let 6,=[A,1]. Define E(A)=EH(d;). By condition D there exists an
x',= E(a)x, there exists an z',=E(b)x, and therefore there exists an

E(@)x = E(a)x—E(b)x = (E(a)—E(b))x .

By Lemma 2, E(d)z is unique. Since the right sides of our defining equa-
tions are linear, E(d) is linear.

THEOREM 3. Condition E implies that there exists an T € X such that for
all 2€o(T), {Z,p(A))=1.
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Proor. Let 4, be the smallest number in the spectrum of 7', and x
be a point such that (x,p(4,) )= 1. Then let z=x— E ().

<@, 9( > = (2= E(ho)x, (1))

= <x’¢(l)>"<x’¢(l)>+<x’ ‘P(lo» =1
for all 1€ a(T).

THEOREM 4. Conditions D, E, and ¥ imply that for T as in Theorem 3,
L{T"z} is dense in X.

Proor. By condition F, {x,¢(1)) is a continuous function of A, and
therefore it may be approximated uniformly by polynomials. That is,
given ¢>0, there exists an n, and numbers a;, ¢=0,1,..., n such that

Kz, p(A)y— > a;2H < ¢fM  forall ZAeo(T).
i=0
By Lemma 1, and by Theorem 3, this may be written
Ke— 3 a;T%, @A)y < ¢/M  forall 2Aeo(T).
i=0

By condition D we have
lo— 3 a7 < e,
i=0
and the proof is complete.

THEOREM 5. If there exists an T as in Theorem 3, and if L{T"Z} is
dense in X, then @ is a weak*ly continuous map from o(T) into X*.

Proor. We need to show that given an ¢> 0, and #,,. . .,%, € X, there
exists a >0 such that |1 —»|<d implies that

[z, (A)) — oy p(v))| < € for 1=1,...,n.

Since L{T*z} is dense in X, there exist numbers m;, i=1,...,n; and
numbers a;;, 1=1,...,n and k=1,...,m,;; such that

Exi'" ( Zz a‘kiT’%)
| k=1

< ¢[3.

Therefore

(@, p(A)) (ré )(i,m))‘ =

(x;— % a;; T*%, (1)) l
F=1

= llp@)l < ¢f3.

mg

.

Zi— kZ o T*T
=1
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Similarly,
< ¢f3.

(@) — (kg,l“ki”k> &, ()

Now pick d; such that

(3 aui*) @00 ( 3 awe) @000
k=1 k=1

if |A—»|<d;. Pick §=mind;. Then

Koy, @A) —(xpp()>| < e if  [A—9| < 9.

CoroLLARY. If there exists an T as in Theorem 3, and if L{T"%} is dense
in X, then condition F holds.

< ¢[3,

We have now shown that if we assume conditions A, B, C, D, and E,
then there exists an Z as in Theorem 3, and condition F is equivalent
to L{T™z} being dense in X.

THEOREM 6. K(d) is a continuous operator on X.

Proor.

E(d)x, p(A
IEQ)]| = sup,x KE@)z, ()|

(2l

M sup,.x sup,<;<p @)l%lwl‘{ﬂm
[z, p(4)) — (x, p(a))]
[l
[l

o ll!lllp(4) — ()|
SUPgex SUP,<a<h

fle]
S M sup,i<p (lpA) + llp(a)l)

=2M.

E(6

=M SUPyex SUPG<a<h

=M SUPgex SUPg<a<b

IA

TarOREM 7. E(6,)E(5,)=E(6,ndy).

TarEoREM 8. E(8,Ud,)=E(8,)+ E(S,) — E(6,)E(d,), when 6, and d, are
overlapping intervals.

The proofs of these two theorems follow directly from the definitions,
and are omitted.

Math. Scand. 13 — 13
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So far we have considered E(d) only for é a closed interval. If 6 is a
finite union of intervals, we now define

B() = E’( kL=Jl ak) =§1E(6k) .

By this definition we remove the restriction in Theorem 8 that the inter-
vals be overlapping. Theorem 7 is also extended to the case where d;
and d, are finite unions of intervals by observing that addition distrib-
utes over multiplication just as union distributes over intersection. From
our original definition it follows that E(#)=0, and E(c(T'))=1. Therefore
we define E(6')=1—E(d). The mapping E:6 - E(6) is now a homo-
morphism of the Boolean algebra of finite unions, complements and
intersections of closed intervals onto the Boolean algebra of projections

{E(5)}-

THEOREM 9. Let O=x,<x;<...<%, ,<z,=1 be a partition of
o(T)<[0,1]. Let 6, be the interval [x;_y,x;]. Then 37 E(8,)=1.

Proor.
G O, p0) = 3 (BG)2,p(0) -

Let x;,_;<A=<z,. Then
n k-1
;(E(ai)x, p(A)) = (@, p(@))+ ;Kx, P(@;)) — &, p(xs2))] +

+ D)~ @ gtz + 3 0
= {z,p(4)) .

Since {p(4)} is total, (T}, E(8;))x=x for all z € X, and therefore

SEG)=1.
=1

‘We now define

f E(d) tobe lmy, o S E(),
ol t=1

where the J; are as in Theorem 9, and ||4|| -~ 0 means that for all ¢,
|#;—x;_4| = 0, as long as there are points in the spectrum of 7' interior
to 8;. If o(T') only has a finite number of points, we are therefore taking
the limit of a finite sequence, which we take to be the last term in the
sequence (or we might consider that we have an infinite sequence which
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becomes constant after a while). Convergence of the limit is in the
following sense: A4, — A means {A4,z,p(1)) - (Ax,p(l)> for all xe X
and for all 4 € o(T).

CoroLLARY. [,mE(dA)=1.

Now let S=[,mAE(d)) where the integral is defined similarly to
JoryE(dA), that is

Sz, p(A)) = lims|4||—>o <§1 x:B(d;)x, p(A)) .

Notice that while one might expect E(d;) to be multiplied by any 4, € 4,,
we insist that the right hand end point be used. This is because in the
case of a finite spectrum, choice of the left hand endpoint would lead to
difficulty.

THEOREM 10. S exists as a continuous linear operator.

Proor.
lim”AH—)O leiE(‘si)x, P(A) = limudu—w_zlE(‘si)%'I’(l) .
1= 1=

Let 2 € 04, n)» 1 £k <n. Then the second limit above may be written

k—1 n
limy,, ., Lglxi<E(6i)x’(p(l)> + 2 (B (Ok)x, @(A)) + > xi<E(5i)xa‘P(l)>]

1=k+1

k—1
= 1im||41[—>0 I:.glxi(<x,¢(xi)> - (x,‘P(xi—l») + xk((@‘P(l»—<x:¢(xk—1)>)]
k-1
= T o [0 g = 3 Gple) =)

Since 4 € §,, and since z;, is the right hand end point of §,, z; either be-
comes A or approaches it. That is, as we subdivide the spectrum, we might
pick A as one of our division points. The interval to the right of 1 gives
the first zero term in the above sum, and the one to the left the last
non-zero term, so A=x;. If 1 is never chosen as a division point, then
since A € ¢(T'), 6, always has interior points in o(7"), and so |z, —x;_,| - 0.
That is, ;, > A. Therefore,

212, @(A)) = Kz, @(A)) = (Tz,9(2)) .

The second part of the limit,
k-1
limy, o zo<x: P@)) (@541 —T;)
1=

is the integral



196 E. R. DEAL

A
[ o0y av
0

if we define {(x,@(»)) for » € [0,1] but not in o(7T") by the equation

(x,0(v)) = (=, 0(»))

where v~ is the first point in the spectrum of 7' to the left of ». If there
are no points in the spectrum of 7' to the left of », set (x,p(»))=0. Since
{(x,p(v)) is a continuous function on the spectrum of 7', if there are at
most a countable number of gaps in the spectrum of 7', then {x,¢(»))
will be an integrable function, and the integral will exist. We now define
the operator N by the equation

A
W) = [ <a90)) dv.
0

Since 7' is linear and continuous, if we can show that N is linear and
continuous, then S=7—-N will be linear and continuous. Because
{x,p(v)) is linear, and integration is linear, N is linear. To show that ¥V
is continuous, we show that || V]| is finite:

V)| = supzex'll%”ﬁ—” < M sup,.x supxeam'w—ﬁl’;ﬂ”—m
13, p)) dv|

a

131w, p0))] dv
El

3 sup, 2, <z, g()))|

o]

lExXoN

El

=M SUPyex SUP;eq(T)

é M SuP,ex suplea(T)

é M SupxeX sup,iea(T)

IIA

M SUup,ex Supvg). suplea(T)

lell _ o

] =
]

IIA

Thus N and S are both linear and continuous.
An
Lunnna 5. (N, p(2))] S — [l

Proor. The proof is by induction. For n=1,
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2
[N, )] = | [ <e,p0)) db
0

A

S EONES

0
2
< [ el &> = Aal).
0
Assume the lemma true for n=%. Then

A
KNk, p(a))] = | [ (ke p(0)) dv
0

2

< f KNz, @(v))] dv

0

A
pk Ak+1

S| —=lxdv = — x| .

< of’“ lelldv = oy e
TaeorEM 11. |N*||< M/n!
Proor.

[V "]
N7 = sup,ex )
fl]
[(N", p(2))|
= M Sup,.x suplea(T) T
el
A||
=M —_—
i M

=M sup/lea(T)m = nl
CorOLLARY. N is a generalized nilpotent operator.
Proor.

Min
lim,,_, |IN?|t/* < lim =0

n—>00 WW

Thus, T is a quasi-spectral operator, and {£(d)} is its quasi-resolution
of the identity.
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