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ON PERMUTATIONS INDUCED
BY COMMUTING FUNCTIONS, AND AN EMBEDDING
QUESTION

GLEN BAXTER?! and J.T.JOICHI?

1. Introduction.

Let f=f(x) and g=g(x) be two continuous and commuting functions
(under substitution) each mapping the closed interval [a,b] into itself.
Isbell [2] has conjectured that f and ¢ must have a common fixed point,
or equivalently, that f and the composite function % =fg=f(g(x)) must
have a common fixed point. Except in special cases the conjecture has
not been verified.

One interesting special case of the conjecture was investigated a
number of years ago by Ritt [4]. He proved that if f and g are polynomials
which do not belong to a certain class (f and g do not come from the
multiplication theorems of e* and cosz, cf. [3] for definition), then (neg-
lecting a linear transformation) they are both iterates of a third poly-
nomial p. Thus, they would have as common fixed points the fixed
points of p. Also in this case, f and g would be members of a semi-group
of commuting functions formed from the iterates of p.

Among the commuting polynomials excluded from the Ritt theorem
are the Tchebycheff polynomials defined by 7',(x)=cos(narccosz) for
—1=z=<1. It appears that even in this case the polynomials could be
embedded in a one-parameter semi-group of commuting functions de-
fined by
(1) f{x) = T (x) = cos(xarccosx), o« = exp(t) .

This suggests that one method for attacking the Isbell conjecture is to
try to embed the commuting functions in a semi-group and thereby hope
to prove the existence of the common fixed point.

Let us first observe that there is difficulty in defining a one-parameter
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semi-group of commuting functions by means of formula (1). Using
half-angle formulas, the function 7, can be shown to satisfy

(2) [T3/5(®)]* = (42— 3z +1)
and that the commutativity relations
(3) T4(T3/2(‘”)) = Tg(x), [Talz(T:;(f“’f'))]2 = [T4(x)]?

are valid. On the other hand, it is difficult to see how one would define
the square root in (2) to determine 7'y, so that 7'y, and 7', would com-
mute. We shall show below that this difficulty is really fundamental,
and that in fact we cannot embed the Tchebycheff polynomials in the
semi-group, as suggested. We will give a simple necessary condition for
when it is possible to embed f and g in a ‘““nice”’ semi-group of commuting
and continuous functions. This condition is not satisfied by the Tche-
bycheff polynomials.

The key to our result lies in an investigation of what f and g do to the
fixed points of the composite function k. It is easily seen that the re-
strictions of f and g to the set H of fixed points of % are permutations of H
which are inverses of each other. However, in case the set H is finite,
and we shall assume this throughout, much more can be said. If we let
H={x,,x,,...,x,} with x;<x,,,, then each of the intervals [z;,z;,,] can
be classified as an up-interval or down-interval according as h(x) >z or
h(z) <z, for x;<x <x,,,, respectively. The classification of the intervals
between the successive points in H induces a classification of the points
in H. The point x; will be called:

(a) an up-crossing if I, =[x, ;,;] and I,=[x;,z;,,] are down and up-
intervals, respectively,

(b) a down-crossing if I, , and I, are up and down-intervals, respec-
tively,

(c) a touching if I,_; and I, are intervals of the same type,

and

(d) the point x, is a down-crossing or touching according as I, is a
down or up-interval, respectively,

(e) the point z, is a down-crossing or touching according as I,,_, is an
up or down-interval, respectively.

Now, let o be either of the (inverse) permutations ¢, and o, of H
induced by the functions f and g. For convenience, we shall write z,,
for o(;), that is, we write o as a permutation of the index set {1,2,...,n}
rather than the set H. In a recent paper by one of us [1], it was shown
that ¢ must satisfy the following three properties.
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(x) o preserves each of the three classes of points.

(B) Suppose o(i) and o(:+1) are consecutive integers. Then, for
o(t+1)=0(¢) + 1, the intervals [x;, 2, ;] and [x,),%,;.p] are of the
same type. For o(t)=o(:+1)+1, the intervals [x;,x;.,] and
[%:+1, T,()] are of opposite type.

(y) Suppose o(2) and o(i+ 1) are not consecutive integers. Then, for
each v=o0(j) between o(t) and o(i+1), j=0(v)>i+1 or j=
o-1(v) <t according as [x;,x;,,] is an up or down-interval, respec-
tively.

It is clear that for every k= 2, the permutation ¢* will satisfy property
(). However, we cannot expect in general that o*, k=2, will satisfy
properties () and (y). If each of the permutations o,0%,...,0m1,6m=1
(the identity) satisfy properties («), (f) and (y), then we shall say that ¢
generates an admissible sequence of permutations of H. We are now in a
position to state a special case of one of our main theorems.

THEOREM 1'. Let f and g be elements of a semi-group {f;, t € T} of com-
muting and continuous functions on [a,b] whose parameter set T consists
of the non-negative elements of an additive subgroup of the real mumbers.
Let the set H of fixed points of the composite function h=fg be finite, and let
os be the permutation of H induced by f. Then, o generates an admissible
sequence of permutations of H.

Let us return for the moment to the Tchebycheff polynomials discussed
above. If, for example, f(x)=T;(x)=4a®—3x and g(z)="T,(x)=22%—1
could be embedded in a semi-group of the type considered, then the
permutation o, of the six fixed points of the composite function A =7
would generate an admissible sequence. A computation shows that
o= (135)(24)(6) and o,2=(153)(2)(4)(6), and we observe that o,* does not
satisfy property (y). As the proof of our theorem will show, the permu-
tation o, would be the one associated with the hypothetical function
T, mentioned in (2) and (3). Thus, no such function exists and there is
no ,nice”’ semi-group of commuting and continuous functions con-
taining 7', and T',.

Regarding Isbell’s conjecture, Theorem 1’ gives only negative in-
formation concerning one possible method of attack. Moreover, if o,
generates an admissible sequence, Theorem 1’ gives no information about
the conjecture even though there may exist a semi-group containing f
and g. However, we can prove Isbell’s conjecture directly in the case
that o, generates an admissible sequence of permutations. We now
state a special case of the second of our main theorems.
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THEOREM 2'. Let f and g be a pair of commuting and continuous func-
tions on [a,b] such that the set H of fixed points of the composite function
h=fg is finite, and let o, generate an admissible sequence of permutations
of H. Then, o; has a fixed point, that is, f and b have a common fized point.

Finally, on the basis of the Ritt theorem, our discussion of the Tche-
bycheff polynomials, and Theorem 2’ above, we would like to make a
conjecture. Let us say that the two commuting and continuous functions
f and g on [a,b] are irreducible if there is no proper sub-interval I of
[@,b] such that f(I)<I and g(I)<I. Then, we conjecture that if the
composite function ~=fg has only a finite number of fixed points and if
f and g are irreducible functions for which o, does not generate an ad-
missible sequence of permutations of H, f and ¢ have a common fixed
point at either a or b.

The proofs of our main theorems are contained in sections 3 and 4.
In section 5 we show that if ¢ is any permutation satisfying properties
(«), (8) and (y), then its inverse will also, giving a nice symmetry to the
statements and conditions of the theorems. Appropriate notation and
terminology is given in section 2.

2. Notation and terminology.

For the sake of simplifying proofs, and at the same time, proving
more general results, we wish to abstract the essential properties of the
set H and the permutation o;, We do this in three stages. It shall be
assumed throughout that all functions involved are defined on the inter-
val [a,b], take values in [a,b], and are continuous.

DeriniTION 1. Let H be a subset of [a,b] (finite or infinite). Then,
a permutation o of H will be called gp-admissible if there exists a pair of
commuting functions f and g so that H is the set of fixed points of the
composite function % =fg and the permutation ¢; of H which is induced
by f is exactly o.

It is clear that the inverse of any g-admissible permutation will be
g-admissible. We turn next to the finite case.

DEriNITION 2. Let H = {&,,%,,. . .,2,}, ¥; <¥;,,, be a finite set with each
interval [z;,z;,,] specified (arbitrarily) as an up-interval or down-inter-
val. Let the points in H be classified according to the rules (a)—(e) given
in the introduction. Then, H with the specifications given to the inter-
vals and points will be called an s-sef. A permutation o of an s-set H
will be called s-admissible if it satisfies properties («), (8) and (y) given
in the introduction.
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Using this terminology, we remark that [1] was concerned with show-
ing that any @-admissible permutation of an s-set H is also s-admissible
if the specification of the intervals in H coincides with that which is
induced by the composite function 4. It is also interesting to note that
in the proof given in [1] that o, has properties (8) and (y), the fact that
o; and o,7! =g, came from functions f and g was utilized in an essential
manner. However, the proof that o, satisfies (x) was based only on the
fact that o, and o, satisfied properties (8) and (y). We shall show, in
section 5, that the inverse of any s-admissible permutation is also s-ad-
missible.

In the second of our main results, we shall be concerned only with
the up and down-crossings in H and shall ignore the touchings. With
this in mind we make the following definition.

DeriniTION 3. Let H = {,,7,,...,2,}, ;<%;,;, be a finite set with »
odd. Let the intervals be specified as alternately down and up with
[%;,2,] a down-interval, and let the points be classified as before (they
will be alternately down-crossings and up-crossings with «, and «,, down-
crossings). Then, H with the specifications given the intervals and points
will be called a w-sef. A permutation ¢ of a w-set H will be called w-ad-
missible if it statisfies properties (x), (8), and (y).

We remark that if o is an s-admissible permutation of an s-set H, and
H’ is the w-set of up and down crossings in H, then the restriction ¢’ of
o to H' will be w-admissible.

3. The first main theorem.

THEOREM 1. Let f and g be elements of a semi-group {f;, t € T'} of commut-
ing and continuous functions on [a,b] whose parameter set T consists of
the non-negative elements of an additive subgrowp of the real numbers. Let
H be the set of fixed points of the composite function h=fq, and let o, be the
permutation of H induced by f. Then, for every k=1,23,..., o/ is ¢-ad-
missible.

This theorem is an immediate consequence of the following lemma and
the fact that the permutation of H induced by the function f*, the k-fold
iterate of f, is exactly o/*.

Lemma 1. Let {f, t € T} be as in the statement of the theorem above. Let
t, be a fixed element in T, ty,+ 0, and let H be the set of fixed points of the
Sfunction f,. Then, for every t in T, the restriction of the function f, to H
18 a p-admissible permutation of H.
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Proor. If t<¢), then s=¢,—¢ is in 7, and we have f fi=f.,,=f, as
desired. If ¢>t,, then there exists a positive integer £ such that ¢ = kt,+ s,
where 0<s<t, Hence, we have f,=f,(f,)¥, so that f; coincides with f,
on H. But, by the previous case, the permutation of H induced by f,
is @-admissible since s <¢%,.

4. The second main theorem.

THEOREM 2. Let H be a w-set, and let o be a permutation of H such
that each of 0,02,...,0™m"1,6™=1 (the identity) is w-admissible. Then, ¢ has
a fized point.

Proor. The proof will be by induction on the number of points in H.
The theorem is obviously true for n=1. For convenience we assume,
without loss of generality, that x;=14. By the period of a point ¢, we shall
mean the length of the cycle to which point ¢ belongs when ¢ is written
as a product of disjoint cycles.

Step 1. If point 2 has period p, then point 1 has period either p or 2p.

We note first that for any %, ¢%(1) and ¢%(2) must be successive points
in H. This follows since [1,2] is a down-interval and property (y) of o*
requires that j < 1 whenever ¢%(j) is between o%(1) and ¢%(2). In particular,
if g%(1)=1, then it necessarily follows that ¢%(2)=2. Thus, the period
of point 2 must be a divisor of the period of point 1. On the other hand,
if p is the period of point 2 so that o?(2)=2, then we must have either
a?(1)=1 or ¢?(1)=3. If 0?(1)=1, then the periods of point 1 and point 2
each divide the other and hence, must be equal. If ¢?(1)=3, then we
must have ¢?(3)=1. This follows since [2,3] is an up-interval and if
oP(3) = 5, then we would have ¢?(1)=3 between ¢?(2) and ¢7(3), and by
property (y) of o, we would have 1>3. But, if ¢?(1)=3 and ¢?(3)=1,
then ¢27(1) =1, that is, the period of point 1 is 2p. We note that if p=1,
our proof is complete.

Step 2. Suppose points 1 and 2 each have period p>1. Let

H' = H-{1,0(1),0%1),...,077Y(1),2,0(2)6%(2),. . .,07"1(2)}

and let ' be the restriction of o to H'. Then, for each k=1,2,..., (¢')¢ is a
w-admissible permutation of the w-set formed from H'. It will follow by
our induction hypothesis that ¢’, and hence ¢, has a fixed point in H’.
It is clear that ¢’, and hence (o')¥, is a permutation of H’. We shall show
that ¢’ is w-admissible, the same proof being valid for each (¢')* since
(d')¥ is simply the restriction of o* to H'.

We note first that to show w-admissibility of ¢’, we need only check
properties (x) and (y), property (8) being an immediate consequence of

Math. Scand. 13 — 10
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(x) on a w-set. Now, under the present assumptions, if we let 4, be the
pair {1,2} and A4; be the pair of successive points {¢7(1),0%(2)}, then we
have determined for us p mutually disjoint pairs 4,,4,,...,4,_,, and
the union of the sets A4; is precisely the set of elements in the cycles to
which points 1 and 2 belong. Thus, if we write H'={i;,45,...,0,_5,},
(¢4<1%g41), then ¢; is odd and successive elements are of opposite parity,
that is, ¢, and s have the same parity. Thus, in classifying the points
and intervals in H’ so that H’ becomes a w-set, the points in H' retain
the classification they originally had in H. It follows that ¢’ has property
(). Asfor property (y), we note first that if ¢, ., =7, + 1, then the interval
[¢,,%,41] is an interval in both H and H’, and it retains in H’ the classifi-
cation it had in H. It follows that if ¢’(u) is between ¢’'(r) and o'(r + 1),
that is, if o(i,) is between o(¢,) and o(¢,,,), then u will satisfy the appro-
priate inequality with respect to r and r+ 1. Suppose now that 7,,,=
i,+28+1 with s>0. We note first that for each f, 0=t <s, the pair of
points {i,+2t+ 1,9, + 2t +2} is one of the pairs 4; and that each of the
corresponding intervals [¢,+ 2t + 1,7, 4+ 2+ 2] in H have the same classi-
fication, and for the sake of argument, let us say down. It follows that
each of the intervals [4,+ 2¢,¢,+2t+1], 0S¢ <s, are up-intervals in H.
We note that in this case [¢,,%,.,,] is also an up-interval (in H’) since this
is determined by the parity of » which is the same as the parity of ¢,.
Suppose now that ¢'(u) is between o’(r) and ¢’'(r+ 1) so that ¢(¢,) is be-
tween o(¢,) and o(4,,,). To satisfy property (y), we need to show that
w>r+1, or equivalently, that i,>:,,,. Since for 0<t<s, the pair
{i,+2t+1,i,4+2t+2} is one of the pairs 4;, it follows that the pair
{o(3,+2t+1), o(i,+ 2t + 2)} is also, that is, (i, + 2t + 1) and o(¢, + 2t + 2)
are successive points in H. Thus, it follows that ¢(:,) must be between
o(i,+2t) and o(¢,+2t+1) for some ¢, 0<t<s. Since for each such ¢,
[¢,+ 2t,¢,+ 2t + 1] is an up-interval and ¢ is w-admissible, it follows that
1,>1,+2t+1. But, 4, is in H' with ¢,=*1,,,, and ¢, and ¢,,, are succes-
sive points in H'. Thus, we must have i,>1,,; as desired.

Step 3. Suppose point 2 has period p>1 and point 1 has period 2p.
Then, the permutation ¢ may be modified so as to satisfy the conditions
considered in Step 2.

We recall that for any k, ¢%(1) and o*(2) are successive points in H.
We note that since o?(2)=2 and o?(1) =3, it follows that ¢*(2) =c*+P(2)
and ¢%(3)=o*+?(1), that is, ¢*(2) and o*(3) are also successive points in
H. This implies that ¢%(1), 0*(2) and o*(3) form a successive triple of
points in H with ¢*(2) (an up-crossing) between ¢*(1) and ¢*(3) (down-
crossings). Let B, be the triple {1,2,3} and let B; be the triple {07(1),
09(2),09(3)}. We note that the mon-ordered sets B, B,,...,B,_, are
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mutually disjoint, and that B;=B; when j=j' (modp). If we write the
permutation ¢* in the form

4) ok (123...7.1),

Iy Ty g oot Oy

where i,=0%(s), then each of the triples B; appears in each row with its
elements successive (in one of the two possible orders). We note that
we may take any number of these triples in the second row and reverse
the order of the elements within these triples, and the resulting permuta-
tion will still be w-admissible. In particular, if we let (¢*)? be the permu-
tation o* with the orders of the elements within the triples By, B,,...,B;_;
reversed in the second row, when ¢* is written in the form (4), then
(o*)? is w-admissible. Note that if j = p, then each triple may be reversed
several times, possibly restoring the original order. Now let ¢’ =o.
Then, it can be seen that (¢')%=(c*)®. It follows that for each k, (o’)*
is a w-admissible permutation of H. But the points 1 and 2 each have
period p with respect to ¢’, and it follows from step 2 that ¢’ has a fixed
point. This fixed point cannot be an element in any of the cycles to which
the points 1, 2 and 3 belong since these are each points of period p> 1.
But ¢ and ¢’ agree on the complimentary set (which is necessarily non-
empty since any two of the triples B; are separated in H by at least one
up-crossing). Hence, o has a fixed point.

5. A useful lemma.

We shall show here that the inverse of an s-admissible permutation
of an s-set H is also s-admissible. As a special case, it follows that the
inverse of a w-admissible permutation of a w-set H is also w-admissible.
We assume, as before, that H=/{1,2,...,n}. Before proceeding to the
main lemma, we prove two sub-lemmas.

SuB-LEMMA 1. Let o be an s-admissible permutation of an s-set H and
suppose a(r) and a(s) (r < 8) are consecutive points in H. Then, there cannot
be a pair of points t and u between r and s such that o(t) < o(r), o(s) and
o(u)>a(r), os).

Proor. If we assume the contrary, then there is a pair of consecutive
points ¢ and ¢+ 1 with r<¢<t+1<s, such that o(f) and o(t+1) are on
opposite sides of o(r) and o(s), say o(t) <o(r), o(s)<o(t+1). But then,
by property (y), if [¢,t+ 1] is an up-interval, we must have r>¢+1, or
if [t,t+1] is a down-interval, we must have s<#, neither of which is
possible.
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SuB-LEMMA 2. Let o be an s-admissible permutation of an s-set H and
suppose the point r is an up-crossing (then r+1,n). Then, one of o(r—1) <
o(r)<o(r+1) or o(r—1)>0o(r)>a(r+1) must hold.

Proor. The proof of this sub-lemma was given also in [1]. However,
we show here that it depends only on the permutation o satisfying prop-
erty (y). Thus, suppose a(r—1)>0o(r) and o(r+1)>0o(r). Then, either
g(r—1)>0(r+1)>0(r), or o(r+1)>a(r—1)>0(r). If the former holds,
then property (y) implies that r+1<r—1 since [r—1,r] is a down-
interval. If the latter holds, it again follows that r+1<r—1 since
[r,r+1] is an up-interval. A similar argument shows that we cannot
have both ¢(r—1)<a(r) and o(r+ 1) <o(r).

We proceed now to the main lemma.

Lemma 2. Let o be an s-admissible permutation of an s-set H. Then, o1
s also an s-admissible permutation of H.

Proor. It is obvious that o—! satisfies properties («) and (8). Thus,
the burden of the proof is to show that ¢! satisfies property (y) on each
of the intervals [¢,5+1]. We do this by considering certain possible
specifications of the interval [4,2+ 1] and the allowable specifications of
the points ¢ and ¢+ 1.

Case 1. [i,i+ 1] an up-interval and point ¢ an up-crossing. Suppose o1
violates property (y) on the interval [¢,7+1]. Then, there exists a point
t=0"1(j) between r=0"1(i) and s=0"1(1+1) with j=o0(f) <¢. Assume
r<t<s. Since o(r)=1¢ and o(s)=1+ 1 are consecutive points in H and
there exists a point ¢ between r and s with o(t) < o(r) < (8), it follows by
Sub-Lemma 1 that o(r+ 1) <e(r). Also, since point ¢ is an up-crossing,
it follows that o~'(¢)=r is an up-crossing. In view of the inequality
o(r+1) < o(r) and Sub-Lemma 2, it follows that o(r +1) <o(r) < o(r—1).
Also, o(s)=o0(r)+1 so that ¢(r) <a(s)<e(r—1). But point r being an
up-crossing, it follows that [r—1,7] is a down-interval. Thus, property(y)
of o applied to the interval [r— 1,r] yields s <r—1, a contradiction. Now
assume s <¢<r. In this case, it follows from Sub-Lemma 1 that o(r—1) <
a(r) and by Sub-Lemma 2 that o(r—1)<o(r) <o(r+1), and since o(s) =
a(r) + 1, we have o(r) < o(s) < o(r+ 1). But now, [r,r+1] is an up-interval
and property (y) implies s>r+1, a contradiction.

Case 1'. [i,i+1] a down-interval and point t+1 an up-crossing. An
argument similar to that given in Case 1 will hold here.

Case 2. [1,t+ 1] an up-interval and point ¢ a touching. We shall show
below that if o-! violates property (y) on the interval [¢,7+ 1], then it
will do so also on the interval [¢ —1,7], where there will necessarily exist
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a point ¢ —1 in H. But point ¢ being a touching, it follows that [+ —1,7]
is again an up-interval. In a finite number of repetitions of our argu-
ment, we would conclude that o—! must have violated property (y) on
an interval of the type considered in Case 1, which we have proven im-
possible. These are the only cases that need be considered for [¢,7+ 1]
an up-interval.

Suppose o1 violates property () on the interval [¢,¢ + 1]. Then, there
exists a point t=0"1(j) between r=0¢-1({) and s=0"1(:+1) with j<1
(thus, ¢—1 exists). We assume that r<t<s, with a similar argument
holding if » >#>s. By Sub-Lemma 1, it follows that o(r + 1) <¢. We con-
sider now four subcases according to different values of o-1(s —1):

oY (i—1) > r+1, o (i—-1)=r+1, ol(i—-1)=r-1
and
o l(i—1) < r-1.

For emphasis we repeat that o(r+1) <.

Case 2.1. Suppose o~1(¢t—1)>r+1. Then, it follows that we have
the point r+ 1 between the points ¢-1(: — 1) and o-1(¢) with o(r+1) <3,
a violation of property (y) on the up-interval [z —1,3].

Case 2.2. Suppose ¢~i—1)=r+1. Then, by property (8), [r,r+1]
must be a down-interval, and since point r is a touching, it follows that
[r—1,r] is also a down-interval. The point r— 1 must exist since point 1
is not a touching when [1,2] is a down-interval. We have now o(r)=1,
a(r+1)=7~1 and o(s)=¢+1, where s>r+1. Thus, either o(r—1)<i—1
or o(r—1)>¢+1. If the former holds, then o(r+1) is between o(r—1)
and o(r) with [r—1,7] a down-interval and it would follow that r+ 1<
r—1. If the latter holds, then o(s) is between o(r—1) and o(r), and it
would follow that s<r—1. Thus, this case is tmpossible.

Case 2.3. Suppose o-1(¢—1)=r—1. Then, by property (f) and the
fact that point r is a touching, it follows that [r—1,] and [r,7+ 1] are
both up-intervals. But then o(r—1)=¢—1 is between o(r)=t¢ and
o(r+1)<i—1, and hence, r—1>r+1, another impossible case.

Case 2.4. Suppose o-1(i—1)<r—1, so that o(r+1)<¢—1. Then, the
point ¢—1 is between ¢(r) and o(r+1) with ¢-1(¢ —1)<r. By property
(y), the interval [r,r + 1] must be a down-interval and, as before, [r—1,7r]
is also. Now, either o(r—1)>i+1 or o(r—1)<i—1. If o(r—1)>i+1,
then we have o(s)=1+ 1 between ¢(r) and o(r — 1) with [r—1,7] a down-
interval, and we conclude that s <r—1, a contradiction. Thus, we must
have o(r—1)<i—1. But then, point r—1 is between points o—1(¢—1)
and ¢-1(z) with o(r—1)<4—1, while [¢— 1,7] is an up-interval. Thus, ¢!
violates property (y) on the interval [i—1,¢], as desired.
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Case 2'. [1,1+ 1] a down-interval and point ¢+ 1 a touching. An argu-
ment similar to that given in Case 2 will show that if the permutation
¢~ violates property (y) on the interval [, + 1], then it will do so also
on the down-interval [7+4 1,7+ 2]. In this case, a finite number of repeti-
tions of the argument will lead to a violation of property (y) on an
interval of the type considered in Case 1’.

Since these are the only cases that need be considered, our proof is
complete.
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