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ON THE SOLUTION
OF THE COMMUTATION RELATION PQ—-QP= -1l

LARS C. MEJLBO

1. Introduction and theorem.

The problem we shall consider in this note originates in quantum
physics. If we—for simplicity —take a mechanical system with one
degree of freedom, then quantum mechanics motivates the study of a
pair of linear operators P and @ defined on a vector space #~ with a
scalar product, such that P and @ are symmetric with respect to the
scalar product and satisfy the commutation relation

(1.1) PQ—QP = —il

where I denotes the identity operator in # .

Since a scalar product is assumed to exist in #” it is natural to suppose
W~ to be a Hilbert space. In this case Wielandt [11] has proved that at
least one of the operators P or @ must be unbounded and hence only
densely defined in #". It follows that (1.1) cannot be satisfied in a literal
sense.

By examples it is easy to see that the problem does not have a unique
solution. Take #~ as L2(I), where I is an interval on the real axis, and
take P as —id/dt, @ as multiplication by ¢. Then the assumptions are
satisfied, and we see that if I is a bounded interval then @ is a bounded
operator while if I is the whole real axis then @ is unbounded. Hence
we have solutions to our problem which are not unitarily equivalent.

To assure uniqueness further assumptions on the operators P and @
are therefore needed, and the problem of posing such assumptions has
been extensively studied by several authors (see [1], [2], [3], [5], [7], (8],
[9]). The main difficulty is that the operators are only densely defined
and it is therefore not easy to justify the necessary functional calculus.
One can say that the Hilbert space in a certain sense is too large.

On the other hand one also wants to solve operator equations such as
Py =0, and this equation has no non-trivial solutions in the Hilbert space.
So, in another sense the Hilbert space is too small.
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One way to circumvent these difficulties is to use the theory of topo-
logical vector spaces since, loosely speaking, this theory allows us to use
a space % smaller than the Hilbert space and with a larger dual space.

DzeriniTiON 1. By Schwartz’ space (&) we mean the space of those
infinitely often differentiable, complex valued functions ¢ defined on the
real axis for which

(1.2) sup |t*¢P(t)] < oo, «,f=0,1,....

The space (%) is topologized by the norms (1.2). In (&) we define a
scalar product by

(o]

(2w = [ o) 5 at

—0Q

and operators p and g by

(PP)t) = —ig’'(t),  (99p)(t) = to(t) .

Obviously the space (%) with the operators p and ¢ is a solution to
our problem. In [6] the following theorem was proved. Let &7 be a
vector space with a scalar product (-,-) and let P and @ be linear opera-
tors in #’, symmetric with respect to (-,+) and satisfying (1.1). If &’
is complete in the topology determined by all semi-norms (K¢, K¢)t,
where K € R, the algebra generated by P and @, and if there exists an
element y, € &’, such that Py,=iQy, and such that the set {Ry,} is
dense in &’, then &' is a copy of (&) in the precise sense explained in
theorem 1 below.

Here we shall show that these assumptions can be weakened consider-
ably. We shall prove:

THEOREM 1. Let # {0} be a vector space over the complex field satis-
fying the following conditions:

1° There is defined a scalar product (-,*) on W with corresponding
norm |||

2° There are defined two linear operators P and Q mapping W~ into W~

such that
(Pe,y) = (p,Py),  (Qp,v) = (9.Qv)
Sfor all o, y e #", and such that
PQ—-QP = —iI,

where I is the identity operator in #".
3° The operators P and Q have the property that

PtdyW = Q)W =W .
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4° The space W~ is complete in the topology T determined by all semi-
norms of the form ||K-||, K € R, the algebra generated by P and Q.

5° If #1+{0} is a subspace of W~ closed in the topology T and invariant
under the operators P, @, (P +¢I)™! and (Q £iI), then Wi=#". (The
operators all exist by the symmetry of P and @ and by 3°.)

Then there exists a one-to-one, bicontinuous, linear mapping J of W~ onto
(&), such that J preserves the scalar product and such that

JP =pJ, JQ=4¢qJ.

We remark that by embedding #” in a Hilbert space § we can of course
get a theorem about operators P and @ in . This theorem is somewhat
weaker than the corresponding theorem proved by Foias, Gehér and
Sz.-Nagy [2].

2. Proof of the theorem.

Let ¥~ be a vector space satisfying the conditions stated in theorem 1.
The topology 7' of # is determined by a countably infinite set of semi-
norms e.g. by all semi-norms of the form

(21) ”PaQﬂ.”’ 0‘7/3=0713-~-9
or by all semi-norms of the form
(2.2) lQ*PP-|, «,=0,1,....

The topological vector space % is therefore a complete, metrizable space.
Lemma 1. If t 0 is real and if
(2.3) (P—uthyW = (Q@—ulyW =W,

then (P —itl)~1 and (Q —itl)~! exist and are continuous in W .
Furthermore, if

F(x) = (x—1s)™(x—1it)~™, m,n=0,1,..

v

then

(2.4) PFQ-FQP = 3 (~ip () Fo@P,
J=1 J

(2.5) Q*F(P)-F(P)Q* = z if("f) FO(P)Q=— .
j=1 \J

Proor. The existence of the operators mentioned follows from (2.3)
and the symmetry of P and . The formulas (2.4) and (2.5) follow for
n=0 by induction from condition 2° in theorem 1 and for n >0 by first
putting e.g.
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¢ = (@—ul)"y
and then using this to calculate the left hand side of (2.4).
From this the continuity follows immediately using the fact that e.g.

(2.6) (P —ael) el = [l -

LeMma 2. Condition (2.3) s satisfied for all real t+0 and hence
(P—at)" and (@ —1itl)~! exist and are continuous in W .

Proor. If (2.3) is satisfied for ¢, then the series

(2.7 S ir(s—t)»(P—iatl)™ g
n=0
converges in the topology 7' for all real s for which |s—¢| < [¢| and for all
peEW.
This follows from (2.5) and (2.6) since by (2.5) we only need to prove
that (2.7) converges in norm and that any series of the form

E (s=t)"n(n+1)...(n+j—1)(P—itl)-"-i-1y
n=0

converges in norm for all € #” and all fixed j. But this follows from (2.6).
If y is the sum of (2.7), then we have

¢ = (P—isl)y,

and hence (2.3) is satisfied with ¢=s.
Using condition 3° we get the lemma for 0<t<2 and for —2<£¢<0,
and then by “induction” for all ¢+ 0.

Let $ denote the completion of #~ with respect to the scalar product;
then 9 is a Hilbert space, and by conditions 2° and 3° it follows that P
and @ are essentially self-adjoint operators in §, i.e. that the closures P
and @ are self-adjoint operators in . Let Ep(x) and Ey(z) denote the
resolutions of the identity connected with P and . Then we define the

operators
o0

(2.8) U(s) = expisP = f e dE p(x), s real,
(2.9) V(t) = expitQ = fe“‘” dEy(x), treal.

It is well known that e.g. U(s) form a strongly continuous group of
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unitary operators in § and that an element f is in the domain of P if
and only if

1
Z;(U(s)—l)f
has a limit as s tends to zero and that the limit is Pf.
LemMA 3. For all real s and t the following statements hold :
(2.10) UsyW =V =W
and U(s), V(t) are continuous operators in W,
(2.11) U@s)V(t) = etV ()U(s);
when s tends to zero, then for all p e W

1
= (U(s)~I)p ~ P,

1
= (Ve -I)p > Qp,
in the topology T.

Proor. The operators

28 _\" 28
F PYy=(I+—P _—
(6, P) ( T ) (I 2nP)

-n

exist as continuous operators in ¥~ for all real s and all n=0,1,....
We prove that for all p € #° the sequence {F,(s,P)p} converges in the
topology T' to U(s)p. To this end we first have to prove that

{Q"PPF (s, P)g}

(cf. (2.2)) is a Cauchy sequence in norm. Using (2.5), a straightforward
calculation shows that it is enough to prove that

is _\"d ts _\~"k
I+—P I—-—P
{( “on ) (1-5.7) ¢}
is a Cauchy sequence in norm for all y € #” and all fixed j and k. But this
follows from the formula

-n-k |2

” U(s)yp— (1 + ;-'ZP)H (1 - %P) v

is \" i \ "k
gisz _ 1+——x) (1——-x>
( 2n 2n

[o.o]

-]

—00

2

d||Ep(x)y|*
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since this expression tends to zero as n becomes infinite. Hence the
sequence {F,(s,P)p} converges in the topology 7', and since it converges
in norm to U(s)p, we have U(s)p € #". The inverse U(—s) also maps
W into #°, and thus U(s) maps #  onto # .

If F(x)=(1-1isx)™(1—1tx)~™, then

FP)YV({') = V(') F(P+t'I),

(2.12) FQU(s') = U )FQ—5T) .

For »=0 this is a consequence of the continuity of F(P) and lemma 1.
For n>0 we first remark that

(2.13) W = V(=\I-isP)V{E)YW = (I—is(P+t )W .

Thus (I —is(P+t'1 ))~! and also F(P+t'I) exist as continuous operators
in #°. Then (2.12) follows easily. Now the continuity of U(s) and V(s)
is obvious.

By (2.13) and trivial calculations we see that the pair P'=P +tI and
Q satisfies all the conditions of theorem 1 and hence for all ¢ € #~

Fo(s,P+thp — ¢U(s)p

in the topology 7'. From this (2.11) follows using (2.12) and the con-
tinuity of V(t).

The last part of the lemma follows from (2.12), (2.4), and the remarks
preceding lemma 3.

RemaRK. Since # is dense in §, the relation (2.11) is valid when we
consider U(s) and V(f) as operators in §. Therefore we have a represen-
tation of the commutation relation in § in the sense of Weyl [10]. In [7]
von Neumann found all representations of the commutation relation in

the sense of Weyl. We shall follow von Neumann’s exposition in some
detail.

If a(s,t) is Lebesgue integrable in the plane, then
(2.14) A= f f a(s,t) exp (— yist) U(s)V(t) dsdé
is a bounded operator in the Hilbert space $ defined by the formula
(Af.g) = f f a(s, ) exp (— yist) (U(s) V(t)f,g) dsdt .

Here A=0 if and only if a(s,t)=0 almost everywhere, and if a(s,?) is
real, then A is self-adjoint. (For the details we refer the reader to [7].)
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Lemma 4. If a(s,t) is continuous and if

sup |s*ta(s,t)] < o, «,8=0,1,...,

8,t

then the operator A defined by (2.14) maps W into W' .

Proor. Let K be any closed unit square in the plane with sides
parallel to the coordinate axes. We divide K into squares of side length
2-m, Let (s;t;), j=1,...,22", be the midpoints of these squares.

If b(s,t) is continuous in K, then it follows from the strong continuity
of U(s) and V(¢) that

22n
B(K,n)p = 2 2_2nb(8j’tj)U(8j) V(tj)q’
Jj=1
converges in norm to B(K)gp, say, as n tends to infinity. In view of (2.12)
it is obvious that it also converges in the topology 7'. A short calcula-
tion shows furthermore that we have an estimate of the form

IP*@*B(K)g|| < &(K) f j (1462 +2)2 dsdt |
K

where
e(K) = Zﬁszplpya(s,t)b(s,t)l I1P"@l| ,
Vs

the sum being finite and the p,, polynomials.

If b(s,t) satisfies the conditions of the lemma, then £(K) tends to zero
if K is “moved out to infinity”’. If we divide the plane into unit squares
K, K,,..., then ¢(K,) tends to zero as » tends to infinity, and therefore,
for all p € #", the series

By = le(Kn)q)

converges in the topology 7' and hence determines an operator B
mapping #  into #".
Let A’ be determined in this way from

b(s,t) = a(s,t) exp(— §est) .

Then by construction (4'p,y) = (4@, y) for all p,p € #” such that 4=4".
This proves the lemma.

Still following von Neumann we define 4 by (2.14) using the function
a(s,t) = (2n)~'exp(—}(s2+12)).

Then A is non-zero, self-adjoint and maps ¥~ into #". Furthermore,
by [7] we have
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(2.15) A exp(—4ist) Us) V() A = exp(—Hs2+2)) 4,

and hence A4 is an orthogonal projection in §. Let §, denote the range
of 4 in . Then H,n# is dense in §,, since fe 9, f orthogonal to
940 W imply that
0 = (f,49) = (f,9)
for all pe#". Thus $,n# +{0}.
Let o € 94 n# . Then using (2.15) and

. 1 1
(P-iQ)y = lim [0~ Dy~ (Vie)~T)g]
one finds that

(2.16) Py = iQp .
We have proved

Lemma 5. There exists a non-zero element ¢ € W~ such that Pp=1iQgp.

Let yp, be a normalized solution of (2.16), and let the operators B and
B* be defined by

1 1
B = 5(P-iQ), B*=_(P+iq).

Then

(2.17) BB*—B*B = 1.

From (2.17) it follows that the sequence

(2.18) Yy = (—7;%—*3*”%, n=01,...,
is orthonormal in #°. Furthermore we have

(2.19) B*p, = (n+ 1)y, ,
(2.20) By, = niy,_,

the latter expression being interpreted as zero if n=0.

Let #, denote the smallest closed subspace of #  containing all ¢,
and let ¥, denote the linear span of the y,’s. From (2.19) and (2.20)
it follows that #, and #, are invariant under B and B* and hence
under P and Q. If ¢ €%, then it can be written uniquely as

(2'21) @ = z TpYn >
n=0

where the sum is only formally infinite. If K is any polynomial in P
and @, then it can be written as a polynomial in B and B*. Using this
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remark, (2.19) and (2.20), it is easily seen that if we topologize #, by
the norms

2:22) gl = (P(BBYY9) = 3 (et olts v = 0L,

then this topology in # coincides with the topology induced by the
topology 7' of # .

Since #,, is the topological closure of #;, we get that ¥, is the space
of all those p € #~ which can be written as an infinite series (2.21)
where all the norms defined by (2.22) are finite. The series (2.21) then
converges to ¢ in the topology 7'

We now turn to the space (&) of definition 1. It is easily verified that
the topology of (&) also can be determined by the semi-norms ||k,
where ||-|| denotes the L2-norm and where k € R, the algebra generated
by p and gq.

Let ¢, be the function

Po(t) = 2~ texp (- 412,
and let the operators b and b* be defined by

1 1
—_ —_—a * y
b = 2,(? iq), b* = 2}(p+@q)-

Then the functions

1
(2.23) P, = Wb*n%’ n=0,1,...,
are the normalized Hermite functions. These functions are all in (&)
and they form a complete orthonormal system in L2
By exactly the same reasoning as above and since (%) is a complete
space, we see that (&) contains all functions ¢ € L? whose Fourier devel-
opment with respect to the Hermite functions

(2.24) ¢ = zxn{/}n
n=0
has the property that
(2.25) lell,® = Eo(n+1)’|90nl2 < o0
n=

for all r=0,1,...
On the other hand, since ¢ € (&) implies that (bb*)"p exists and is in
L2, we have

((B6*)@9n) = (95 (B0*)9,) = (n+ 1)y,
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and we see that the Fourier development (2.24) of ¢ satisfies (2.25).
The following lemma is now obvious.

LeMma 6. There exists a one-lo-one, bicontinuous, linear mapping J
of the subspace Wy of W~ onto (&), such that J preserves the scalar product,
Jyo= 99, JP=pJ and JQ=qJ.

To prove theorem 1 we now only have to prove that () and hence
W, satisfies the conditions of theorem 1. But this is almost obvious
since 1°, 2°, 3° and 4° are satisfied for () and we have proved that any
space satisfying these conditions contains a copy of (%). Note that until
now we have not used 5° at all.

This finishes the proof of theorem 1.

3. Concluding remarks.

For a mechanical system with a finite number f of degrees of freedom
the situation is completely analogous to the case studied above. Here
one is led to study f pairs of operators P,,@,,...,P,,Q, defined on a
vector space #; with a scalar product, such that the operators are
symmetric with respect to the scalar product and satisfy the relations

P.Q,.-Q.P, = —i6,,,1,
PmPn=Pan’ Qan=Qan

In this situation the obvious generalization of theorem 1 is true, and the
proof is also the obvious generalization of the proof given above.

For the case f=oco — the case pertinent for quantum field theory —
the situation is radically changed. For, although we can prove (by the
same reasoning as given in the proof of theorem 1) that for any finite
n the system of equations

P.p =1Q,9, m=1,...,n,

has a non-trivial solution, we cannot prove that this holds for the infinite
system of equations. Indeed by use of the results of Garding and Wight-
man [4] one can construct counterexamples.

Assuming as an extra axiom the existence of a solution of the infinite
system of equations, one can again show existence and uniqueness of
space and operators. Sadly enough it turns out that the resulting space
is singularly uninteresting — it does not have the simplicity of the Hil-
bert space and on the other hand it is still so large that its dual space
is of no use. Therefore we shall not give this analysis.
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