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FACTORIZATION OF BANACH SPACES?

J.R.ISBELL

Introduction.

This paper treats the factorization of Banach spaces as [-products
(like 7,) and as m-products (like /). The central results are, first, that the
subspaces of a given space which are I-factors (or those which are m-fac-
tors) form a Boolean algebra; so for finite-dimensional spaces there is
a unique factorization into prime factors. Second, with a well known
exception in dimension 2, a non-trivial /-product cannot be a non-trivial
m-product. Thus for finite-dimensional spaces there is a unique decom-
position as an l-product of m-products of ... (and so on, alternating)
except for the ambiguities concerning 1-dimensional factors. In general,
the Boolean algebra of I-factors is complete. Splitting it into atomic
and atomless parts, every Banach space is represented as the I-product
of all its prime /-factors and a remainder. On the other hand, simple
examples show that the algebra of m-factors need not be complete, and
even if it is complete atomic, the space may be a proper subspace of the
m-product of its m-prime factors.

There is a whole continuum of product constructions, like /,, and one
may conjecture that similar results hold for p+2. Probably nothing in
this paper could be of any use in proving such results.

I am indebted to V. L. Klee and to R. R. Phelps for some conversa-
tions concerning factorization.

1. Pure factorization.

For any family of Banach spaces {E,}, the l-product VE, is the set of
all choice functions {z,}, with xz, € E_, such that |jz,| is zero except for
countably many indices and the non-zero norms form a convergent series.
The norm ||{z,}|| is defined to be 3 |lz,/|. One verifies easily that VE,
is a Banach space £, and that the external definition of the I-product
corresponds to the following internal characterization. E is (isomorphic
with) the l-product of its subspaces E, if the E, are (finitely) linearly

Received March 14, 1963.
1 Research partially supported by the U. 8. National Science Foundation.



106 J.R.ISBELL

independent and the unit ball of E is the smallest closed convex set con-
taining the unit balls of all £,. (For a general reference, see [1].)

The m-product XE, is the set of all choice functions {z,} such that
lz,|| is bounded, with the norm |/{z,}|| defined as sup|z,|. As the sub-
spaces E, do not generate a dense subspace of X% , internal characteriza-
tion is not so simple. Note that both V and X are unrestrictedly associa-
tive (and commutative); so at any rate the subspaces £ are m-factors.
(XE,=E;x F, where F=X({E,: x=f}.) Then E is the I-product of a
set of [-factors whenever they are linearly independent and generate a
dense subspace; £ is the m-product of a set of m-factors &, if they are
linearly independent and the projections £ — E, are the coordinates of
a one-to-one mapping of £ onto XE,. This awkward characterization is
not more awkward than it seems, for the projections # — E, are unique;
the complementary m-factor F is the set of all x such that y € £, and
Il < || imply |l + gl = |l2|l.

For finite products, the conjugate space of VE, is the m-product of
the conjugate spaces, XE;*; and the conjugate space of XE, is VE*.
In any case, the extreme points of the unit ball of VE, are exactly the
extreme points of the unit balls of the subspaces £,. The extreme points
of the unit ball of XE, are those {z,} such that every z, is an extreme
point of the unit ball of E,. By the Krein—-Milman Theorem, the unit ball
of any conjugate space is the closed convex hull of its extreme points.

LemMA. Any two factorizations of a conjugate Bamach space as an
l-product, VF,=V@,, have a common refinement.

Proor. The subspaces F, NG, are linearly independent. As their unit
balls include every extreme point of the unit ball of the given space, it
is the smallest closed convex set containing them.

THEOREM 1. The I-factors of any Banach space form a Boolean algebra
(ordered by inclusion); and the m-factors form a Boolean algebra.

Proor. Any two finite m-factorizations of B, say XF;=XG;, have a
common refinement; for the factorizations of E* as VF *=VG,* have
a common refinement which induces a common refinement in E**=
XF**=X@;**, and the natural embedding of E in E** gives the re-
finement in £. By a similar argument, any two finite /-factorizations
of £ have a common refinement. This shows that the [-factors and the
m-factors form lattices with 0 and 1; and each factor has at least one
complement, the complementary factor. If E=F, x F,=@Q, x G,, where
G, is another complement of F,, one computes F,;=@, from F,=
(Fin@,) x (F;nG,), and then Fy=@, similarly. Hence complements are
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unique and the m-factors form a Boolean algebra. Similarly, the I-fac-
tors form a Boolean algebra.

THEOREM 2. The Boolean algebra of l-factors of a Banach space is com-
plete. In particular, the I-product of all prime l-factors is an I-factor.

REMAREK. One can define /- and m-products for arbitrary metric spaces.
The factors can be identified, not as subspaces, but as equivalence rela-
tions. It is not very difficult to prove that the I-factors of any (complete)
metric space form a (complete) Boolean algebra. Even for a space of
four points, the m-factors need not form a distributive lattice. A serious
study of this decomposition theory should go much further, and I have
not attempted it.

Proor or TurorEM 2. Let {F,} be a disjoint set of I-factors of Z,
that is, F,nF;=0 for a+pf. Let {p,} be the associated projections,
p,: B — F,. As the norm on a finite /-product is the sum norm, hence
for each x in E the finite partial sums of ¥ p.(r) have increasing norms
bounded above by ||x||, and they converge to a limit p(z). Since pa(p(x)) =
p.(x), p>=p; and the linear operator p projects E upon a subspace F.
Also 1—p projects £ upon a subspace G. By continuity, ||x|| = ||p(z)|| +
lle —p(x)||; so F is an I-factor, an upper bound of {F}. It is the supremum
since the F', generate a dense subspace of F.

For I-factorizations, the algebra of I-factors tells the complete story;
representations of E as an l-product correspond precisely to Boolean
partitions, i.e. disjoint sets of factors having supremum E. For m-fac-
torizations, first, the algebra is not complete, e.g. for the space of all
convergent sequences. The subspace of sequences converging to zero is
worse, in that its algebra is complete atomic but has partitions corre-
sponding to no m-factorization. One can associate ‘‘subdirect’ factoriza-
tions to all partitions; also, one easily proves the following:

Any two factorizations of a Banach space as an m-product have a common
refinement.

2. Mixed factorization.

LEMMA. An m-product F x G cannot be an l-product if the unit ball of F
has an extreme point and the unit ball of G has two linearly independent
extreme points.

Of course this lemma will imply, by passing to the conjugate space:

THEOREM 3. A Banach space of dimension different from 2 cannot be
both an l-product and an m-product.
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Proor or LEMMaA. Let p be an extreme point of the unit ball 4 of F;
let ¢, r be linearly independent extreme points of the unit ball B of G.
Then p + q and p + r are extreme in the unit ballof E=F xG. H E=JvK,
these four points must be in the unit balls C of J, D of K. But p+¢q
and p—gq cannot be in the same one. If they were, that unit ball would
contain p and g. Observe that the boundary of the unit ball of Z is the
geometric join of the boundaries S of C, T' of D; that is, the union of
all line segments joining points of S to points of 7. Suppose p and ¢
lie in 8. The set p+ B is in the boundary of the unit ball, and it is a
union of line segments passing through p. Every such line segment with
an interior point in § lies in §; so S contains p+ B. Similarly S con-
tains 4 +¢. Thus J contains A+ B, and K=0. We conclude that the
points p+gq are one in J, one in K, and so are p+r. By choice of
notation we may suppose p+q and p+r are the ones in J. But

g—r = (p+q) —(p+r) = (p—7)—(p—q);

J and K are not linearly independent. The contradiction completes the
proof.
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