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THE DEPTH AND LS CATEGORY OF
A TOPOLOGICAL SPACE

YVES FELIX and STEVE HALPERIN

Abstract

The depth of an augmented ring £: A — k is the least p, or oo, such that
Exth (k, A) # 0.

When X is a simply connected finite type CW complex, H,.(Q2X; Q) is a Hopf algebra and
the universal enveloping algebra of the Lie algebra Ly of primitive elements. It is known that
depth H,(2X; Q) < cat X, the Lusternik-Schnirelmann category 011 X.

For any connected CW complex we construct a completion H(2X) of H,.(2X; Q) as a
complete Hopf algebra with primitive sub Lie algebra Ly, and define depth X to be the least p or
oo such that N

Ext’(’]LX (Q, H(QX)) # 0.

Theorem: for any connected CW complex, depth X < cat X.

The Lusternik-Schnirelmann category of a topological space X is the least
number m such that X can be covered by (m + 1) open sets, each contractible
in X. On the other hand, if ¢: A — Q is an augmented algebra then the depth
of A is the least integer p such that Extﬁ (Q, A) # 0, where Q is an A-module
via e. When X is a simply-connected CW complex with finite rational Betti
numbers, the principal theorem of [3] asserts that

depth H,(2X; Q) < cat X.

This result remains true [4, Chap. 35] when Q is replaced by any field k.
Additionally, an extension of the rational result to some non-simply connected
spaces is established in [5].

Our objective here is to introduce a new invariant depth X, defined via a
completion H (Q2X) of H,(2X; Q). Here H(2X) is a complete Hopf algebra
with primitive sub Lie algebra Ly and

depth X = least p (or co) such that Extf,LX (Q, ﬁ(QX)) # 0.
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Then, in our main theorem, we establish the inequality
depth X < catX

for all connected CW complexes X. R

Here we first outline the construction of H (2X), with the details and proofs
provided in Section 1, and Section 2. In Section 3 we interpret H (2X) in terms
of Sullivan models, and use this to establish the main theorem.

The completion H (2X) is constructed by considering homotopy classes of

maps,
fo: X — Yy,

where Y, is a nilpotent CW complex for which H;(Yy) and 7>, (Y,) are finite-
dimensional rational vector spaces. Spaces Y, satisfying this condition are
called F-spaces. For such spaces Yy, let Iy, C H,(2Y,; Q) be the augmenta-
tion ideal and set

H(QY,) = lim H.(QYo; Q)/ 1} ;

n

this is the classical completion of H,(2Y,; Q). As observed in Proposition 3.2
below, it follows from the work of Quillen [8] that

H(QY,) = ULy,,

where Ly, is the primitive sub Lie algebra of the complete Hopf algebra
H (2Y,).

We then restrict attention to those f,: X — Y, which satisfy the following
property: if f, factors up to homotopy as

Xy, sy,

where Yy is also an F-space, then m,(g4p) is surjective.

For such maps Im 7, ( f,) is maximal in 77, (¥ ). In particular, if f,: X — Y,
satisfies H;(fy; Q) and m>»(f,) ® Q are surjective, then f, satisfies this
condition. If f;,, fg both satisfy this condition we set f, < fg. It follows from
Proposition 1.6 that this makes the set of based homotopy classes [ f, ] into an
inverse system and that H (£2g4p) is independent of the choice of g,g. Thus the
collection H (R2Y,), indexed by the [ f,,] is also an inverse system, and we set

H(QX) := @H(QYO,).

o

This is a complete Hopf algebra depending functorially on X.
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Now it follows from the construction that the maps f, induce morphisms

H.(QX; Q) — lim H.(QX; Q)/I§ — lim H(QY,) = H(QX),

n

which exhibits A (2X) as a completion of H,(2X; Q). Moreover, when X is
simply connected, an early result of Milnor-Moore-Cartan-Serre ([4]) identi-
fies the Hopf algebra H,(2X; Q) as the universal enveloping algebra of the
graded Lie algebra L(X) = m,.(QX) ® Q.

In this case our construction defines a morphism L(X) — Ly of graded
Lie algebras, but unless X has finite rational Betti numbers this map may not
be an isomorphism. However, when X has finite rational Betti numbers then

H(QX: Q) — H(QX) and L(X) — Ly,

so that our result reduces to the original one in [4]. In general, the possible
connections even in the simply-connected case between depth H,. (2 X; Q), and
depth X and cat X remain an open question.

Whereas the definitions of ULy and H (£2X) rely on the work of Quillen, the
proof of the main theorem relies on the minimal models of Sullivan ([9], [5]).
This ([5, Chapter 1]) assigns to each path-connected CW complex, X, a com-
mutative differential graded algebra (cdga for short), (Ap.(X), d), a quasi-
isomorphism from a minimal Sullivan algebra,

m: (AV,d) — (Ap(X), d),
a spatial realization |[AV, d|, and a natural homotopy class of maps
m: X — |AV,d|.

An early result in rational homotopy, following a suggestion of Jean-Michel
Lemaire, is the introduction in [1] of an invariant cat(AV, d) and the proof that
cat(AV,d) < cat X. Given this, the proof of the main theorem has two parts.
First, associated with (AV, d) is a graded Lie algebra Ly = s~! Hom(V, Q)
and an invariant Sdepth Ly defined via the acyclic closure of (AV, d). The
first part of the proof is given in [2], where we show that

Sdepth Ly < cat(AV, d).
The second part of the proof, which we provide here, is the equality

depth X = Sdepth Ly.
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It depends in part on an isomorphism Ly = Ly, which gives a topological
interpretation of the Lie algebra Ly .

1. F-maps and their Sullivan representatives

Throughout this paper, all spaces, cdga’s, maps, morphisms and homotopies
are based. The lower central series of a group G is denoted by

G=G'>G*>---,
and a morphism o: G — H of groups induces morphisms o (k): G¥/ G**! —
Hk/Hk—H )
DEFINITION 1.1. An F-space is a connected CW complex Y satisfying:
(1) for k > 2, m;(Y) is a rational vector space, and Zkzz dimm, (Y) < oo,
(i) H,(Y) is a finite-dimensional rational vector space,
(ii1) 71 (Y) is nilpotent and acts nilpotently in each 7 (Y), k > 2.

DEFINITION 1.2. An F-map is amap f: X — Y from a connected CW
complex to an F-space.

LEMMA 1.3.
() If Y is an F-space then each JT{‘(Y)/nf+1(Y) is a finite-dimensional
rational vector space and ¥ (Y) = 0 for some k.

(i) If g:Y' — Y is a map between F-spaces, then m,(g) is surjective if and
only if Hi(g) and m,>,(g) are surjective.

Proor. Since H{(Y) = m;(Y)/[m1(Y), 71 (Y)] this is automatic for k = 1.
Moreover, an identity of Hall ([6, Theorem 5.3]) shows that the commutator
map a, b — [a, b] induces a surjection

m () /[ (), m(V)] x 7f (V) /7 (V) — 7P () /22 (Y)

of abelian groups. Thus (i) follows by induction on k.
The same argument establishes (ii).

If Y is an F-space then
> dimaf (V) /ai TN (Y) + Y dim (V)
k k>2

is the length of Y. Thus if length Y = r then Y has the homotopy type of a
finite Postnikov tower

Y~P,—>P,_1—>---—>Pi£>Pi_1—>---—>P0=pt
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in which each p; is a principal K (Q, n;)-fibration.
On the other hand, associated with any minimal Sullivan algebra (AV, d)
is the surjection ATV — A1V /AZ2V, which we identify as a linear map,

AtV — v,

satisfying { od = 0. A morphism ¢: (AV,d) — (AZ, d) of minimal Sullivan
algebras induces the linear map

O(p):V —Z

defined by Q(¢)¢ = ¢ og, and Q(¢) depends only on the homotopy class of ¢.
Evidently, if ¥: (AW,d) — (AV,d) is also a morphism then Q(¢ o ¥) =
Q(p) o Q). Finally, associated with (AV, d) is the CW complex |AV, d|
together with a natural morphism

A AV, d) — Ap(IAV,d)).

Now suppose m: (AV, d) = App(X) is a minimal Sullivan model of a
connected CW complex. Then m determines a homotopy class of maps

m: X — |AV,d]|
satisfying m ~ App () o A. It also determines maps
pX:T[n(X) _)Hom(vnaQ)’ n Z 17

which are linear for n > 2 and are defined as follows: identify S” as the quotient
A"/dA", equipped with the standard orientation, and with fundamental class
[S"] € H,(S™; Z). If 0 € m,(X) is represented by g: S — X, compose
a Sullivan representative of g with the natural surjection from the minimal
model of §" to H*(S"; Q) to obtain a morphism

y:(AV,d) — H*(S"; Q).

This, restricted to ATV, factors over ¢ to define y: V — H*(S"; Q), and px

is defined by
(U, pXO> = (71)5 [Sn]>

For simplicity, we will write
(v,0) = (v, pxo).

Now suppose f: X — Y is a map between connected CW complexes
with Sullivan models (AV, d) and (AW, d). If ¢: (AW,d) — (AV,d) is a
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Sullivan representative for f, then the homotopy class of ¢ only depends on
the homotopy class of f and the diagrams

X —— |AV,d| 7. (X) 2 Hom(V, Q)
fl ll«pl and n*(f)l lHom(Q(vJ),Q) (D)
Y — |AW, d| n*(Y)T>Hom(W, Q)

are respectively homotopy commutative and commutative.

In particular a minimal Sullivan algebra (AW, d) is the Sullivan model of an
F-space Y if and only if dim W < oo. In this case it follows from [5] that the
maps py: 74(Y) — Hom(W, Q) are bijections and thatthe map ¥ — |[AW, d|
is a homotopy equivalence. In particular, we may and do restrict attention to
F-spaces of the form |AW, d| with model morphism the canonical morphism
(AW, d) — Ap(IAW, d]).

PROPOSITION 1.4. Suppose (AV, d) and (AW, d) are respectively the min-
imal models of a connected CW complex X and an F-space Y.

(i) The correspondences
@ |plom and f > a Sullivan representative ¢

define inverse bijections between homotopy classes of morphisms
o: (AW,d) — (AV,d)and of maps f: X — Y.

(i) If X is also an F-space and ¢ is a Sullivan representative of f: X — Y
then m,(f) is surjective if and only if Q(¢) is injective.

PROOF. (i) As observed above we may assume ¥ = |AW,d|. Then, in
view of (1), f ~ |p| o m where ¢ is a Sullivan representative of f. On
the other hand, it follows from Proposition 1.15 in [5] that any morphism
Y (AW, d) — (AV,d) is a Sullivan representative of || o m.

(i1) In this case the commutative diagram

. (X) = Hom(V, Q)
ﬂ*(f)l lﬂom(Q(w),Q)
7.(Y) —— Hom(W, Q)

shows that . ( f) is surjective if and only if Hom(Q(¢), Q) is surjective. But
this is equivalent to Q(¢) is injective.

DEFINITION 1.5. An F-map f: X — Y from a connected CW complex is
F-surjective if, whenever f factors as the composite

rxLoy S,y
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of an F-map f’ and a map g, then m,(g) is surjective.

PROPOSITION 1.6. Let X be a connected CW complex. Then

(1) an F-map f: X — Y is F-surjective if and only if a Sullivan represent-
ative, @, for f satisfies Q(¢) is injective,
(i) any F-map f: X — Y factors up to homotopy as

X Sy f,y
in which f'is F-surjective

(iii) if fo, fp: X — Yy, Yg are F-surjective then there is a third F-surjection
fy: X — Y, and a homotopy commutative diagram

/ A
\ /
g

is a homotopy commutative diagram in which fy and fg are F-surject-
ions then 1. (gap) is surjective, and independent of the choice of gup.

(iv) if

ProoF. (i) Suppose ¢: (AW, d) — (AV, d) is a Sullivan representative for

[, so that we may assume f = |¢| o m. If f factorizes as
x Loy £y

and ¢’ and ¢ are Sullivan representatives for f" and g, then Q(¢) = Q(¢') o
Q). If Q(p) is injective so is Q () and Proposition 1.4 asserts that 7, (g)
is surjective. Thus f is F-surjective.

Conversely, suppose f is F-surjective. For some finite dimensional sub-
space Z C V with AZ preserved by d we can decompose ¢ as

(AW, d) 2 (AZ, d) —X— (AV, d).
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Now f ~ |¥| o (|x| o m) and therefore m.(|1|) is surjective, which implies
Q) is injective. Since Q(yx) is injective by construction, Q(¢) must be
injective.

(i1) As in the proof of (i), factor a Sullivan representative of fasp = x o
with x extending the inclusion of a finite dimensional subspace Z C V. Thus
[Y/| is an F-map and by (i), | x| om is F-surjective since Q () is injective. But
f ~ |¥] o (|x]| o m). Thus we have a decomposition of f as g o f’ in which
f'is F-surjective.

(iii) Because of (ii) the map (f,, fg): X — Y4 x Yp factors as

e Jy % 1(8a>88) Y, x Yﬂ

in which f, is F-surjective.

(iv) This follows because Sullivan representatives ¢, g for f,, fp satisfy
0O(@«) and Q(¢p) are injective, and because if @4 is a Sullivan representative
of gup then Q(¢,p) is independent of the choice of @ug.

ProposITION 1.7. Suppose f: X — Y is an F-map.
G) IfH (f; Q) andmi (f)®Q, k = 2, are surjective then f is F-surjective.
(1) If the natural maps

px ® Q:m(X) ® Q — Hom(VK, Q), &k >2,

are surjective then f is F-surjective ifand only if Hi(f; Q) and ;. (f)®
Q, k = 2, are surjective.

PrOOF. Letg: (AW,d) — (AV, d) be a Sullivan representative of f. Then
0(p) = ¢: W! — V! Denote by v the restriction of ¢ to (AW', d). Since
dim W < oo an easy induction shows that v is injective if and only if H'(y/)

is injective. But 1 1 1
H'(y)=H'(p) = H'(f; Q),

since @ is a Sullivan representative of f. But H I f; Q)isthedual of H(f; Q),
and the dual of a linear map is injective if and only if the linear map is surjective.
This establishes

Q(p)|w isinjective <= H,(f; Q) is surjective.
On the other hand, for k > 2 we have a commutative diagram
(X)) ® Q —— Hom(V¥, Q)
nk(f)@@l lHom(Q(w)‘Q)

7 (Y) ——=—— Hom(W*, Q)
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Thus if 7 () ® Q is surjective, then Hom(Q(¢), Q) is surjective and Q (@) is
injective. In the reverse direction, if 7, (X) ® Q — Hom(V¥, Q) is surjective
and Q(p) is injective then Hom(Q(¢), Q) is surjective and ;. (f) ® Q must
be surjective.

EXAMPLE 1.8.

1. The F-map f:(S° x S%) v §° — 5° defined as the smash product on
S3 x §3 and the trivial map on S is not F-surjective because it factorizes
through §3 x S°.

2. The conditions of Proposition 1.7 are not the only examples of F-
surjective maps. In fact, let o € H°((S*)*; Q) be an indecomposable
element. Then the associated map f: ($H* — K(Q,6) is trivial in
homotopy but is F-surjective, since if ¢ is a Sullivan representative of
f then Q(¢) is injective.

3. Sullivan spaces. A Sullivan space [5, Chap. 7] is a connected CW com-
plex X such that in particular its minimal Sullivan model (AV, d) sat-
isfies px ® Q: 722(X) ® Q — Hom(V=%, Q). Thus if f: X — Y is
an F-map from a Sullivan space then f is F-surjective if and only if
H(f; Q) and >, (f) ® Q are surjective.

4. Spaces with Sullivan minimal models of the form (AV!, d). For these
spaces it is trivially true that an F-map f is F-surjective if and only if
H'(f; Q)isinjective. A number of examples of such spaces are provided
in [5, Chap. 8].

2. Construction of H (2X) and the definition of depth X

Denote by & = {«} the set of homotopy classes of F-surjective maps f,: X —
Y, from a connected CW complex X. Then set

fﬁZfa — fa'\’gaﬁofﬂ

for some map gup: Yg — Y,. It follows from Proposition 1.6 that this makes
this set of homotopy classes into an inverse system. Moreover, since 7, (gqup) =
Nep 1s independent of the choice of gqg it follows that

{n*(Ya)» naﬂ}aey

is an inverse system of groups.

Recall now the structure of H, (Q}i ; Q) when X is a CW complex with
fundamental group G = m;(X). Let X be the universal cover of X and for
g € G denote by (2X), the component of X of the loops representing g.
Then QX = L[geG(QX)g and (2X), = QX. Finally let y:G — QX be a
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choice of representing elements. For v € (2X), and g € G we define »? to
the the composition of loops: @ = ¥ (g)~! - @ - ¥ (g). Then the morphism

¢:G x (X)), — QX
defined by ¢(g, w) = y(g) - w induces an isomorphism of algebras
QIGI ® H.(QX; Q) — H.(QX; Q),
where the multiplication on the left is given by
(g @) - (g, a) = (gg', e - ).

This isomorphism is independent of the choice of y, and the action of G,
o — af, is induced by the conjugation @ — ¥ .
Therefore,

H.(QY,; Q) = Q[mY,] ® Hy(QWy) = Q[ Yy] ® UE,,

where E, = 71*(170[) with the Samelson Lie bracket ([7]). In particular, the
morphism H, (£2g,p) is determined by m,(g,p) and so is independent of g.g.
This makes { H,(2Y,; Q)} into an inverse system.

On the other hand, the H,(2Y,; Q) are naturally augmented Hopf algebras
with augmentation ideals I, and, the collection

H.(QY,; Q) = lim H,(QY; Q)/1;

is an inverse system of complete Hopf algebras ([5], [8]). We define
H(QX) = lim H.(QY,; Q).

Now set

H@QX) ® H(QX) = lim H(QY,; Q) ® H(QY,; Q).

Then H (2X) is a complete Hopf algebra with diagonal A = l(ir_na Agy.
LEMMA 2.1. The primitive sub Lie algebra Lx of H (2X) satisfies

Lx =1(1I_nLYa,

and the inclusion Ly — H (2X) extends to an inclusion
jiULy — H(QX)

of graded algebras.
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PrOOF. The fact that j exists is immediate because L is a sub Lie algebra
of H (2X). The fact that the extension is injective follows from the Poincaré-
Birkhoff-Witt Theorem ([4, Theorem 21.1]) and the fact that (j ® j)o Ay, =
Aoj.

Finally the restriction maps H (QX) — H (R2Y,; Q) necessarily send Ly
to L, and so define a morphismo: Ly — l(iﬂla Ly,. The commutative diagram

H(QX) —=— lim H(QY,; Q)
T ]
% 1
LX Lgl Lyu
o
shows that o is injective. The inverse limit of injections is injective, and so

l(gl Ly, C 1<£n H(QY,; Q). Butif ® € H(QX) corresponds to an element
ofhm Ly, thenA® —P®@1—-1®P=0,andso P € Ly.

DEFINITION 2.2. The depth of a connected CW complex X is the least p,

or 00, such that R
Ext’z,LX (Q, H(2X)) # 0.

ExAaMPLE 2.3.
1. Let X be the wedge of infinitely many spheres S°,

x=\/s.

k>1

Then 7, (2X) ® Q is the free Lie algebra on infinitely many variables in
degree 2. The loop space homology H,(Q2X; Q) = T(®:Qa;) = UL
is the tensor algebra on the a;. Let «; be the basis of H,(£2X) formed
by the monomials in the a;. Then H(2X) is the set of series Zj Ajaj
with A; € Q, with usual multiplication. Remark that in this case the Lie
algebra Ly is very big; for instance (Lx), is the bidual of m3(X) ® Q.

2. Let X be the wedge X = S! v 2. Then 7,(X) ® Q is countably infinite
with abasis a;,i € Z,and Z = m;(X) acts on 7, (X) ® Q by translation:
if 7 is the generator of Z, then ¢ - a; = a; 1. Not (Lx)o is Q, the Malcev
completion of Z, and (Lx), = ﬁl(QX ) is the Malcev completion of
m2(X) ® Q as a module over 11 (X) ® Q,

(Lx) = 1iI£T1 m(X)®Q/I”,

where /7 denotes the submodule generated by the (t — id)” (a;).
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3. The loop space homology of an F-space, Y

Here we identify ﬁ*(QY; Q@) in terms of a Sullivan minimal model (AW, d)
for Y. For this recall that the homotopy Lie algebra, L, for (AW, d) is defined [5,
Chap. 2] by L; = Hom(W**!, Q) with Lie bracket determined by the quad-
ratic part of the differential. Recall as well [5, Chap. 3] that (as with any min-
imal Sullivan algebra) (AW, d) extends to an acyclic closure (AW ® AUy, d)
with homology just Q, and where the quotient differential in AUy = Q @w
(AW ® AUy ) is zero. Moreover, according to [5, §6.1], AUy is equipped with
a diagonal which makes it into a graded Hopf algebra. Finally, we recall [5,
Chap. 3] the commutative diagram

AW, d) —— (AW QR AUy, d) —— (AUyw, 0)

O F Ok

App(Y) ——— Ap (PY) ———— Ap (QY)

PRrROPOSITION 3.1. With the notation above, if Y is simply connected there is
a natural isomorphism of Hopf algebras

UL —> H,(QY; Q)
restricting to an isomorphism
L — Ly
of graded Lie algebras.

Proor. Since H*(Y; Q) has finite type, Theorem 5.1 in [5] asserts that mq
induces an isomorphism

AUy —> H*(QY; Q).
Corollary 6.2 in [5] then asserts that the dual isomorphism,
Hom(AUy, Q) «— H.(QY; Q)

is an isomorphism of graded Hopf algebras. On the other hand, Theorem 6.2
and Proposition 6.3 in [5] provide a natural isomorphism

UL =5 Hom(AUy, Q)
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of graded Hopf algebras. Since L and Ly are respectively the primitive sub Lie
algebras of ULy and H,(2Y; Q) it follows that the composite isomorphism

UL = H(QY: Q)

restricts to an isomorphism L = Ly of graded Lie algebras.

On the other hand, because Y is an F-space, the natural map ¥ — [AW, d|
is a homotopy equivalence [5, Theorem 1.4]. We use this to identify 7 (Y) =
w1 (JAW, d]). Thus Theorem 2.4 in [5] produces a natural isomorphism of
groups, N

T (Y) — Gy,

where G is the group of group-like elements in the complete Hopf algebra
ULy.

PROPOSITION 3.2. The inclusion of G|, extends uniquely to an isomorphism
QIG.]1 — ULy

of complete Hopf algebras.

ProOF. Because exp and log are inverse bijections between L and G, it
follows that G is nilpotent and each G¥ /G G* ™! is arational vector space. Thus
it follows from [8] that the completion, Q[G 1] satisfies

Q[G,] = UP,

where P C QTG\L] is the primitive sub Lie algebra. In fact the inclusion of P
extends uniquely to a morphism

p: l?l\D — Q/[E].

By [8, Appendix A, Corollary 3.9], the linear map P — UPisan isomorphism
onto the primitive sub Lie algebra of UP. By [8, Appendix A, Corollary 2.18],
p is thus an isomorphism.

On the other hand, the inclusion G; — 17170 extends to a morphism
Q[/G\L] — ZTL\O which sends G toitself. Moreover, by [8, Appendix A, Corol-
lary 3.7] G is the group of group-like elements. Thus we obtain a morphism

UP — UL,
which is the identity on the group of group- hke elements. Since exp and log

define inverse bijections P —> G and L =, G and so the morphism
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above restricts to an isomorphism P —> L. Thus altogether we obtain the
natural isomorphism _
QIGL] — ULy

extending the identity in G .

We can now prove

PropoSITION 3.3. Suppose L is the homotopy Lie algebra of the minimal
Sullivan model, (AW, d), of an F-space Y. Then with the notation above there
is a natural isomorphism of complete Hopf algebras,

UL = H.(QY; Q),
restricting to an isomorphism
L =Ly
of graded Lie algebras.
Proor. First recall the isomorphism of Hopf algebras
H.(QY; Q) = QI Y] ® H(QY; Q)

in which the product uses the action of 7 (Y) on H, (2 )7). Passing to comple-
tions gives

H.(QY; Q) = Q[m Y] ® H.(QY) = ULy ® UL~ = UL.

It follows from [5, Theorem 2.5] that the middle identification is an isomorph-
ism of graded Hopf algebras, and this is trivially true for the other two. Thus

this isomorphism H,(Q2Y; Q) = UL restricts to an is’(_)\morphism L = Ly,
because [5, Prop. 2.3] L is the primitive subspace of UL.

4. The main theorem

THEOREM 4.1. Let X be a connected CW complex with minimal Sullivan model
(AV,d). Then Ly is the homotopy Lie algebra Ly of (AV, d) and

depth X < cat X.

Firstrecall that the homotopy classes of F-maps f,: X — Y, areinbijection
with the homotopy classes of morphisms

Oo: AWy, d) — (AV,d)
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to the minimal Sullivan model of W, where dim W, < oo. Moreover, f, is
F-surjective if and only if Q (¢, ) is injective. In particular, the inverse system
of the main theorem is isomorphic to the inverse system of homotopy classes
of such morphisms, with

P = Yo = Pa ™~ P O Pup

for some @qup: (ANWy, d) —> (AWp, d).

Now any morphism of minimal Sullivan algebras ¢: (AW, d) — (AV,d)
with dimW < oo satisfies o(AW) C AS for some finite dimensional subspace
S C V with AS preserved by d. It follows that the homotopy classes of
inclusions ¢,: (AWy,d) — (AV,d) extending the inclusion of a subspace
W, C V form a cofinal set

I ={a}

in our inverse system.
Now observe that in _#,

B>a— W, C Wg,

since in this case the map Q(g,p) is just the inclusion W, — Wpg. (This
follows at once from the fact that Q(¢,) and Q(¢g) are just the inclusions of
Wy and Wgin V)

Denote by L, the homotopy Lie algebra of (AW, d) and by Ly the homo-
topy Lie algebra of (AV, d). Then

sLy = Hom(V,Q) = l(ingom(Wa, Q) = LiLnsLa.
aEf aEf

It follows from the definition of the Lie bracket [5, Chap 2] that this defines
an isomorphism N
Ly — l<iLnLa
o
of graded Lie algebras. Moreover, the surjections Ly — L, induce morphisms
ULy — UL,, which define a morphism

ULy —> 1lim UL,.
o

ProrosITION 4.2. Let X be a connected CW complex. Then there are natural
isomorphisms

Ly =Ly and  limUL, — H(QX)

o
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which make the diagram
lim UL, —=—— H(QX)
«
T T

ULy —=—— ULy

commute.
PrROOF. In view of Lemma 2.1, this is immediate from the isomorphisms

L, =, Ly, and le\a =, ﬁ(QYa; Q) of Proposition 3.3.

As described in the previous section, we have natural isomorphisms

Hom(AU,, Q) —> UL,.

Moreover, it follows from [5, §6.2] that these isomorphisms convert right
multiplication by L, to the dual of the holonomy representation of L, in AU, .
Thus we obtain

Extur, (Q, H(2X)) = Extor, (Q, lim UL,)
=3
aef
_ ULy ;
= Hom(Tor”™"(Q, lim AUy), Q).

o

Butif (AV ® AU, d) is the acyclic closure of (AV, d) then

AU = lim AU,
H
ac g

as Ly-modules, because V = lim W,. This yields
—>aed
Ext}, (Q, H(QX)) = Hom(Tor/"" (Q, AU), Q).
Now by definition ([2]),
Sdepth Ly = least p (or co) such that Tor[‘,”‘V (Q, AU) # 0.

This establishes
depth X = Sdepth Ly .

By [2, Theorem C], Sdepth Ly < cat(AV,d) < cat X, and the main theorem
is proved.
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5. The morphism 7,(2X) ® Q — Lx: examples

We begin with the Filenberg-MacLane space X = K (V, 3), where V is a ra-
tional vector space whose dimension is countably infinite. Denote by x;, x7, . . .
a basis of V and by (AW, d) a minimal Sullivan model for X. Denote by
yi € Hom(V, Q) the elements defined by (y;, x;) = §;;. The series

w = Z Y2i—1/\Y2i

i>1
is then a well-defined element in Hom(A2V, Q).

LEMMA 5.1. @ ¢ A2(Hom(V, Q)).

Proor. Denote by V,, C V the subspace generated by xi, ..., x;,,. Then
the restriction of ™ to V;,, is

mYyLAYI A oA Yo

Therefore ™ # 0 for all m. This implies that w ¢ A?(Hom(V, Q)) because
ifo=>3"'_, firgi thenw ! = 0.

PROPOSITION 5.2. The minimal Sullivan model (AW, d) for X satisfies the
following properties:

H*(X; Q) = Hom(AV,Q), W? =Hom(V, Q),
WH=Ww>=0, and WS #0.

PROOF. Let e be a base point in S3 and let ¢,: (S?)" — (S*)"*! be the map
defined by ¢, (uy,...,u,) = (uy,...,u,,e). We form the space ($3H>* =
li_rr)lr(S3)’. Since homology commutes with direct limits, H,((S*)*®; Q) =
AV, and H*((§%)®; Q) = Hom(AV, Q). On the other hand, since each map
§9 — (83)™ factors through some (S3)", we have (53)* = X. By construc-
tion W3 = Hom(V, Q), and by Lemma 5.1, wo # 0.

Denote by z an element of W% corresponding to the class . The rational
homotopy Lie algebra 7,.(Q2X) ® Q is isomorphic to s™'V and Ly is the
dual of s W. Therefore the morphism 7, (R2X) ® Q — Ly is injective but not
surjective.

Now consider the map g: X — K (Q, 6) associated to w, and let

K@Q,5) —Y — X
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be the pullback along g of the path space fibration on K (Q, 6). Since 7, (X) #
0forg # 3, 75(Y) = Q, and 7. (Y) = 75(Y) @ 7(X) = 75(Y) & m3(X) =
ns(Y)o V.

ProrosITION 5.3. The map w,.(QY) ® Q — Ly is neither injective or
surjective.

ProOF. The relative Sullivan model for the path fibration has the form
(A(c, u),d) with du = ¢ and a basis element v € 74 (QK (Q, 5)) satisfies

(u, sv) = 1.

The map ¢ +— z gives a (non-minimal) Sullivan model (AW ® Au, d) for Y,
with du = z. Since z is a generator in AW, the minimal Sullivan model of Y is
(AW/(z),d). Thus (Ly), = Hom(W?, Q) and the map V — Hom(W?3, Q)
is not surjective.

On the other hand 74(2Y) = 75(Y) = Q and the image of this element is
zeroin Ly, since W> = 0. This shows that 774 (QY) ® Q — Ly is not injective.

PROPOSITION 5.4. The Lie algebra L = . (2Y) ® Q is the quotient of the
free Lie algebra I on the elements a; = s~'x; by the ideal I generated by 1.3,
the brackets [a;, aj] for |i — j| > 2, and the elements [azi_1, ax ] — [ay, az].

PrOOF. Note first that L*> = 0 for degree reasons. Then fix integers j and
k and let h: Q* — V be the injection of the sub vector space generated by x;
and x;. The morphism 4 induces a map 4: K (Q?, 3) — X and we denote by
Z the pullback of Y over h:

| l

4 ¢ Y
K(Q?3) ——— Xx.

In the case (j, k) = (2i — 1, 2i), the minimal Sullivan model of Z is given
by (A(y2i—1, Y2i, #),d) with du = y»;_ys. Then the relation between the
quadratic part of the differential and the Lie bracket of Ly [4, Prop. 23.2]
gives

(du, sazi1, saz) = —(u, slazi—1, axl).

Since Z is a nilpotent space with finite Betti numbers, in 7,(2Z) we have
v = —[ani_1, ap;]. By naturality, this is also true in m,(2Y). Since the left
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hand side is independent of i, in 7, (Y), we have [ay;—1, ay;] = [ay, a;] for all
i.

When |j — k| > 2, then H*(h)w = 0 and therefore the minimal Sullivan
model of Z is (A(yj, yk, u), d = 0). It follows in the same way that [a;, a;] =
0. This gives a surjection L/I — m,(QY) ® Q, and since s 'V @ v maps onto
[L/1, this surjection is an isomorphism.

Finally consider the space T obtained from the cohomology class w-[y;] €
9y
H°(X; Q),
K(Q,8) — T — X.

The minimal Sullivan model of T is (AW ® At, d) with dt = zy;, so Ly is
non abelian. On the other hand, for degree reasons, 7, (27) ® Q is an abelian
Lie algebra.

REFERENCES

1. Félix, Y., and Halperin, S., Rational LS category and its applications, Trans. Amer. Math.
Soc. 273 (1982), no. 1, 1-38.

2. Félix, Y., and Halperin, S., Malcev completions, LS category, and depth, Bol. Soc. Mat. Mex.
(3) 23 (2017), no. 1, 267-288.

3. Félix, Y., Halperin, S., Jacobsson, C., Lofwall, C., and Thomas, J.-C., The radical of the
homotopy Lie algebra, Amer. J. Math. 110 (1988), no. 2, 301-322.

4. Félix, Y., Halperin, S., and Thomas, J.-C., Rational homotopy theory, Graduate Texts in
Mathematics, vol. 205, Springer-Verlag, New York, 2001.

5. Félix, Y., Halperin, S., and Thomas, J.-C., Rational homotopy theory. II, World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.

6. Magnus, W., Karrass, A., and Solitar, D., Combinatorial group theory: Presentations of groups
in terms of generators and relations, Interscience Publishers, New York-London-Sydney,
1966.

7. Milnor, J. W., and Moore, J. C., On the structure of Hopf algebras, Ann. of Math. (2) 81
(1965), 211-264.

8. Quillen, D., Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295.

9. Sullivan, D., Infinitesimal computations in topology, Inst. Hautes Etudes Sci. Publ. Math.
(1977), no. 47, 269-331.

INSTITUT DE MATHEMATIQUE ET DE PHYSIQUE DEPARTMENT OF MATHEMATICS
UNIVERSITE CATHOLIQUE DE LOUVAIN MATHEMATICS BUILDING

2, CHEMIN DU CYCLOTRON UNIVERSITY OF MARYLAND
1348 LOUVAIN-LA-NEUVE COLLEGE PARK

BELGIUM MD 20742

E-mail: yves.felix@uclouvain.be UNITED STATES

E-mail: shalper@umd.edu



