THE DEPTH AND LS CATEGORY OF A TOPOLOGICAL SPACE

YVES FÉLIX and STEVE HALPERIN

Abstract

The depth of an augmented ring $\varepsilon: A \to k$ is the least p, or ∞ , such that

$$\operatorname{Ext}_{A}^{p}(\mathbb{k}, A) \neq 0.$$

When X is a simply connected finite type CW complex, $H_*(\Omega X; \mathbb{Q})$ is a Hopf algebra and the universal enveloping algebra of the Lie algebra L_X of primitive elements. It is known that depth $H_*(\Omega X; \mathbb{Q}) \leq \operatorname{cat} X$, the Lusternik-Schnirelmann category of X.

For any connected CW complex we construct a completion $\widehat{H}(\Omega X)$ of $H_*(\Omega X; \mathbb{Q})$ as a complete Hopf algebra with primitive sub Lie algebra L_X , and define depth X to be the least p or ∞ such that

 $\operatorname{Ext}_{UL_{\mathbf{Y}}}^{p}(\mathbb{Q}, \widehat{H}(\Omega X)) \neq 0.$

Theorem: for any connected CW complex, depth $X \leq \operatorname{cat} X$.

The Lusternik-Schnirelmann category of a topological space X is the least number m such that X can be covered by (m + 1) open sets, each contractible in X. On the other hand, if $\varepsilon: A \to \mathbb{Q}$ is an augmented algebra then the *depth* of A is the least integer p such that $\operatorname{Ext}_{A}^{p}(\mathbb{Q}, A) \neq 0$, where \mathbb{Q} is an A-module via ε . When X is a simply-connected CW complex with finite rational Betti numbers, the principal theorem of [3] asserts that

depth $H_*(\Omega X; \mathbb{Q}) \leq \operatorname{cat} X$.

This result remains true [4, Chap. 35] when \mathbb{Q} is replaced by any field k. Additionally, an extension of the rational result to some non-simply connected spaces is established in [5].

Our objective here is to introduce a new invariant *depth* X, defined via a completion $\widehat{H}(\Omega X)$ of $H_*(\Omega X; \mathbb{Q})$. Here $\widehat{H}(\Omega X)$ is a complete Hopf algebra with primitive sub Lie algebra L_X and

depth $X = \text{least } p \text{ (or } \infty)$ such that $\text{Ext}_{UL_X}^p(\mathbb{Q}, \widehat{H}(\Omega X)) \neq 0.$

Received 29 October 2016.

DOI: https://doi.org/10.7146/math.scand.a-106920

Then, in our main theorem, we establish the inequality

depth
$$X \leq \operatorname{cat} X$$

for all connected CW complexes X.

Here we first outline the construction of $\widehat{H}(\Omega X)$, with the details and proofs provided in Section 1, and Section 2. In Section 3 we interpret $\widehat{H}(\Omega X)$ in terms of Sullivan models, and use this to establish the main theorem.

The completion $\widehat{H}(\Omega X)$ is constructed by considering homotopy classes of maps,

$$f_{\alpha}: X \longrightarrow Y_{\alpha},$$

where Y_{α} is a nilpotent CW complex for which $H_1(Y_{\alpha})$ and $\pi_{\geq 2}(Y_{\alpha})$ are finitedimensional rational vector spaces. Spaces Y_{α} satisfying this condition are called *F*-spaces. For such spaces Y_{α} , let $I_{Y_{\alpha}} \subset H_*(\Omega Y_{\alpha}; \mathbb{Q})$ be the augmentation ideal and set

$$\widehat{H}(\Omega Y_{\alpha}) = \lim_{\stackrel{\leftarrow}{n}} H_*(\Omega Y_{\alpha}; \mathbb{Q})/I_{Y_{\alpha}}^n;$$

this is the classical completion of $H_*(\Omega Y_{\alpha}; \mathbb{Q})$. As observed in Proposition 3.2 below, it follows from the work of Quillen [8] that

$$\widehat{H}(\Omega Y_{\alpha}) = \widehat{UL}_{Y_{\alpha}},$$

where $L_{Y_{\alpha}}$ is the primitive sub Lie algebra of the complete Hopf algebra $\widehat{H}(\Omega Y_{\alpha})$.

We then restrict attention to those $f_{\alpha}: X \to Y_{\alpha}$ which satisfy the following property: if f_{α} factors up to homotopy as

$$X \xrightarrow{f_{\beta}} Y_{\beta} \xrightarrow{g_{\alpha\beta}} Y_{\alpha},$$

where Y_{β} is also an *F*-space, then $\pi_*(g_{\alpha\beta})$ is surjective.

For such maps Im $\pi_*(f_\alpha)$ is maximal in $\pi_*(Y_\alpha)$. In particular, if $f_\alpha: X \to Y_\alpha$ satisfies $H_1(f_\alpha; \mathbb{Q})$ and $\pi_{\geq 2}(f_\alpha) \otimes \mathbb{Q}$ are surjective, then f_α satisfies this condition. If f_α , f_β both satisfy this condition we set $f_\alpha \leq f_\beta$. It follows from Proposition 1.6 that this makes the set of based homotopy classes $[f_\alpha]$ into an inverse system and that $\widehat{H}(\Omega g_{\alpha\beta})$ is independent of the choice of $g_{\alpha\beta}$. Thus the collection $\widehat{H}(\Omega Y_\alpha)$, indexed by the $[f_\alpha]$ is also an inverse system, and we set

$$\widehat{H}(\Omega X) := \lim_{\alpha} \widehat{H}(\Omega Y_{\alpha}).$$

This is a complete Hopf algebra depending functorially on X.

Now it follows from the construction that the maps f_{α} induce morphisms

$$H_*(\Omega X; \mathbb{Q}) \longrightarrow \lim_{\stackrel{\leftarrow}{n}} H_*(\Omega X; \mathbb{Q})/I_X^n \longrightarrow \lim_{\stackrel{\leftarrow}{\alpha}} \widehat{H}(\Omega Y_\alpha) = \widehat{H}(\Omega X),$$

which exhibits $\widehat{H}(\Omega X)$ as a completion of $H_*(\Omega X; \mathbb{Q})$. Moreover, when X is simply connected, an early result of Milnor-Moore-Cartan-Serre ([4]) identifies the Hopf algebra $H_*(\Omega X; \mathbb{Q})$ as the universal enveloping algebra of the graded Lie algebra $L(X) = \pi_*(\Omega X) \otimes \mathbb{Q}$.

In this case our construction defines a morphism $L(X) \rightarrow L_X$ of graded Lie algebras, but unless X has finite rational Betti numbers this map may not be an isomorphism. However, when X has finite rational Betti numbers then

$$H_*(\Omega X; \mathbb{Q}) \xrightarrow{\cong} \widehat{H}(\Omega X) \quad \text{and} \quad L(X) \xrightarrow{\cong} L_X,$$

so that our result reduces to the original one in [4]. In general, the possible connections even in the simply-connected case between depth $H_*(\Omega X; \mathbb{Q})$, and depth X and cat X remain an open question.

Whereas the definitions of UL_X and $\widehat{H}(\Omega X)$ rely on the work of Quillen, the proof of the main theorem relies on the minimal models of Sullivan ([9], [5]). This ([5, Chapter 1]) assigns to each path-connected CW complex, X, a commutative differential graded algebra (cdga for short), $(A_{PL}(X), d)$, a quasi-isomorphism from a minimal Sullivan algebra,

$$m: (\wedge V, d) \xrightarrow{\simeq} (A_{PL}(X), d),$$

a spatial realization $|\land V, d|$, and a natural homotopy class of maps

$$\overline{m}: X \longrightarrow |\land V, d|.$$

An early result in rational homotopy, following a suggestion of Jean-Michel Lemaire, is the introduction in [1] of an invariant $\operatorname{cat}(\wedge V, d)$ and the proof that $\operatorname{cat}(\wedge V, d) \leq \operatorname{cat} X$. Given this, the proof of the main theorem has two parts. First, associated with $(\wedge V, d)$ is a graded Lie algebra $L_V \cong s^{-1} \operatorname{Hom}(V, \mathbb{Q})$ and an invariant Sdepth L_V defined via the acyclic closure of $(\wedge V, d)$. The first part of the proof is given in [2], where we show that

Sdepth
$$L_V \leq \operatorname{cat}(\wedge V, d)$$
.

The second part of the proof, which we provide here, is the equality

depth
$$X =$$
Sdepth L_V

It depends in part on an isomorphism $L_V \cong L_X$, which gives a topological interpretation of the Lie algebra L_V .

1. F-maps and their Sullivan representatives

Throughout this paper, all spaces, cdga's, maps, morphisms and homotopies are based. The lower central series of a group G is denoted by

$$G = G^1 \supset G^2 \supset \cdots,$$

and a morphism $\sigma: G \to H$ of groups induces morphisms $\sigma(k): G^k/G^{k+1} \to H^k/H^{k+1}$.

DEFINITION 1.1. An *F*-space is a connected CW complex *Y* satisfying:

- (i) for $k \ge 2$, $\pi_k(Y)$ is a rational vector space, and $\sum_{k>2} \dim \pi_k(Y) < \infty$,
- (ii) $H_1(Y)$ is a finite-dimensional rational vector space,
- (iii) $\pi_1(Y)$ is nilpotent and acts nilpotently in each $\pi_k(Y)$, $k \ge 2$.

DEFINITION 1.2. An *F*-map is a map $f: X \to Y$ from a connected CW complex to an *F*-space.

Lemma 1.3.

- (i) If Y is an F-space then each $\pi_1^k(Y)/\pi_1^{k+1}(Y)$ is a finite-dimensional rational vector space and $\pi_1^k(Y) = 0$ for some k.
- (ii) If $g: Y' \to Y$ is a map between *F*-spaces, then $\pi_*(g)$ is surjective if and only if $H_1(g)$ and $\pi_{n \ge 2}(g)$ are surjective.

PROOF. Since $H_1(Y) = \pi_1(Y)/[\pi_1(Y), \pi_1(Y)]$ this is automatic for k = 1. Moreover, an identity of Hall ([6, Theorem 5.3]) shows that the commutator map $a, b \mapsto [a, b]$ induces a surjection

$$\pi_1(Y)/[\pi_1(Y), \pi_1(Y)] \times \pi_1^k(Y)/\pi_1^{k+1}(Y) \longrightarrow \pi_1^{k+1}(Y)/\pi_1^{k+2}(Y)$$

of abelian groups. Thus (i) follows by induction on k.

The same argument establishes (ii).

If *Y* is an *F*-space then

$$\sum_{k} \dim \pi_{1}^{k}(Y) / \pi_{1}^{k+1}(Y) + \sum_{k \ge 2} \dim \pi_{k}(Y)$$

is the *length* of *Y*. Thus if length Y = r then *Y* has the homotopy type of a finite Postnikov tower

$$Y \sim P_r \longrightarrow P_{r-1} \longrightarrow \cdots \longrightarrow P_i \xrightarrow{\rho_i} P_{i-1} \longrightarrow \cdots \longrightarrow P_0 = \mathrm{pt}$$

in which each ρ_i is a principal $K(\mathbb{Q}, n_i)$ -fibration.

On the other hand, associated with any minimal Sullivan algebra $(\wedge V, d)$ is the surjection $\wedge^+ V \to \wedge^+ V / \wedge^{\geq 2} V$, which we identify as a linear map,

$$\zeta: \wedge^+ V \longrightarrow V,$$

satisfying $\zeta \circ d = 0$. A morphism $\varphi: (\wedge V, d) \to (\wedge Z, d)$ of minimal Sullivan algebras induces the linear map

$$Q(\varphi): V \longrightarrow Z$$

defined by $Q(\varphi)\zeta = \zeta \circ \varphi$, and $Q(\varphi)$ depends only on the homotopy class of φ . Evidently, if $\psi: (\wedge W, d) \to (\wedge V, d)$ is also a morphism then $Q(\varphi \circ \psi) = Q(\varphi) \circ Q(\psi)$. Finally, associated with $(\wedge V, d)$ is the CW complex $|\wedge V, d|$ together with a natural morphism

$$\lambda: (\wedge V, d) \longrightarrow A_{PL}(|\wedge V, d|).$$

Now suppose $m: (\land V, d) \xrightarrow{\simeq} A_{PL}(X)$ is a minimal Sullivan model of a connected CW complex. Then *m* determines a homotopy class of maps

$$\overline{m}: X \longrightarrow |\land V, d|$$

satisfying $m \sim A_{PL}(\overline{m}) \circ \lambda$. It also determines maps

$$p_X: \pi_n(X) \longrightarrow \operatorname{Hom}(V^n, \mathbb{Q}), \quad n \ge 1,$$

which are linear for $n \ge 2$ and are defined as follows: identify S^n as the quotient $\Delta^n/\partial \Delta^n$, equipped with the standard orientation, and with fundamental class $[S^n] \in H_n(S^n; \mathbb{Z})$. If $\sigma \in \pi_n(X)$ is represented by $g: S^n \to X$, compose a Sullivan representative of g with the natural surjection from the minimal model of S^n to $H^*(S^n; \mathbb{Q})$ to obtain a morphism

$$\gamma\colon (\wedge V, d) \longrightarrow H^*(S^n; \mathbb{Q}).$$

This, restricted to $\wedge^+ V$, factors over ζ to define $\overline{\gamma} \colon V \to H^*(S^n; \mathbb{Q})$, and p_X is defined by

$$\langle v, p_X \sigma \rangle = \langle \overline{\gamma} v, [S^n] \rangle.$$

For simplicity, we will write

$$\langle v, \sigma \rangle := \langle v, p_X \sigma \rangle.$$

Now suppose $f: X \to Y$ is a map between connected CW complexes with Sullivan models $(\wedge V, d)$ and $(\wedge W, d)$. If $\varphi: (\wedge W, d) \to (\wedge V, d)$ is a

224

Sullivan representative for f, then the homotopy class of φ only depends on the homotopy class of f and the diagrams

$$\begin{array}{lll} X \longrightarrow |\wedge V, d| & \pi_*(X) \xrightarrow{p_X} \operatorname{Hom}(V, \mathbb{Q}) \\ f & & \downarrow |\varphi| & \text{and} & \pi_*(f) & & \downarrow \operatorname{Hom}(\mathcal{Q}(\varphi), \mathbb{Q}) & (1) \\ Y \longrightarrow |\wedge W, d| & & \pi_*(Y) \xrightarrow{p_Y} \operatorname{Hom}(W, \mathbb{Q}) \end{array}$$

are respectively homotopy commutative and commutative.

In particular a minimal Sullivan algebra $(\wedge W, d)$ is the Sullivan model of an *F*-space *Y* if and only if dim $W < \infty$. In this case it follows from [5] that the maps $p_Y: \pi_*(Y) \to \text{Hom}(W, \mathbb{Q})$ are bijections and that the map $Y \to |\wedge W, d|$ is a homotopy equivalence. In particular, we may and do restrict attention to *F*-spaces of the form $|\wedge W, d|$ with model morphism the canonical morphism $(\wedge W, d) \to A_{PL}(|\wedge W, d|)$.

PROPOSITION 1.4. Suppose $(\land V, d)$ and $(\land W, d)$ are respectively the minimal models of a connected CW complex X and an F-space Y.

(i) The correspondences

$$\varphi \mapsto |\varphi| \circ \overline{m}$$
 and $f \mapsto a$ Sullivan representative φ

define inverse bijections between homotopy classes of morphisms $\varphi: (\wedge W, d) \rightarrow (\wedge V, d)$ and of maps $f: X \rightarrow Y$.

(ii) If X is also an F-space and φ is a Sullivan representative of $f: X \to Y$ then $\pi_*(f)$ is surjective if and only if $Q(\varphi)$ is injective.

PROOF. (i) As observed above we may assume $Y = |\wedge W, d|$. Then, in view of (1), $f \sim |\varphi| \circ \overline{m}$ where φ is a Sullivan representative of f. On the other hand, it follows from Proposition 1.15 in [5] that any morphism $\psi: (\wedge W, d) \to (\wedge V, d)$ is a Sullivan representative of $|\psi| \circ \overline{m}$.

(ii) In this case the commutative diagram

shows that $\pi_*(f)$ is surjective if and only if Hom $(Q(\varphi), \mathbb{Q})$ is surjective. But this is equivalent to $Q(\varphi)$ is injective.

DEFINITION 1.5. An *F*-map $f: X \to Y$ from a connected CW complex is *F*-surjective if, whenever *f* factors as the composite

$$f: X \xrightarrow{f'} Y' \xrightarrow{g} Y$$

of an *F*-map f' and a map g, then $\pi_*(g)$ is surjective.

PROPOSITION 1.6. Let X be a connected CW complex. Then

- (i) an *F*-map $f: X \to Y$ is *F*-surjective if and only if a Sullivan representative, φ , for *f* satisfies $Q(\varphi)$ is injective,
- (ii) any *F*-map $f: X \to Y$ factors up to homotopy as

$$f: X \xrightarrow{f'} Y' \xrightarrow{g} Y$$

in which f' is F-surjective

(iii) if f_{α} , $f_{\beta}: X \to Y_{\alpha}$, Y_{β} are *F*-surjective then there is a third *F*-surjection $f_{\gamma}: X \to Y_{\gamma}$ and a homotopy commutative diagram

(iv) if

is a homotopy commutative diagram in which f_{α} and f_{β} are *F*-surjections then $\pi_*(g_{\alpha\beta})$ is surjective, and independent of the choice of $g_{\alpha\beta}$.

PROOF. (i) Suppose $\varphi: (\wedge W, d) \to (\wedge V, d)$ is a Sullivan representative for f, so that we may assume $f = |\varphi| \circ \overline{m}$. If f factorizes as

$$X \xrightarrow{f'} Y' \xrightarrow{g'} Y$$

and φ' and ψ are Sullivan representatives for f' and g, then $Q(\varphi) = Q(\varphi') \circ Q(\psi)$. If $Q(\varphi)$ is injective so is $Q(\psi)$ and Proposition 1.4 asserts that $\pi_*(g)$ is surjective. Thus f is F-surjective.

Conversely, suppose f is F-surjective. For some finite dimensional subspace $Z \subset V$ with $\wedge Z$ preserved by d we can decompose φ as

$$(\wedge W, d) \xrightarrow{\psi} (\wedge Z, d) \xrightarrow{\chi} (\wedge V, d).$$

226

Now $f \sim |\psi| \circ (|\chi| \circ \overline{m})$ and therefore $\pi_*(|\psi|)$ is surjective, which implies $Q(\psi)$ is injective. Since $Q(\chi)$ is injective by construction, $Q(\varphi)$ must be injective.

(ii) As in the proof of (i), factor a Sullivan representative of f as $\varphi = \chi \circ \psi$ with χ extending the inclusion of a finite dimensional subspace $Z \subset V$. Thus $|\psi|$ is an *F*-map and by (i), $|\chi| \circ \overline{m}$ is *F*-surjective since $Q(\chi)$ is injective. But $f \sim |\psi| \circ (|\chi| \circ \overline{m})$. Thus we have a decomposition of f as $g \circ f'$ in which f' is *F*-surjective.

(iii) Because of (ii) the map $(f_{\alpha}, f_{\beta}): X \to Y_{\alpha} \times Y_{\beta}$ factors as

$$X \xrightarrow{f_{\gamma}} Y \xrightarrow{!(g_{\alpha},g_{\beta})} Y_{\alpha} \times Y_{\beta}$$

in which f_{γ} is *F*-surjective.

(iv) This follows because Sullivan representatives φ_{α} , φ_{β} for f_{α} , f_{β} satisfy $Q(\varphi_{\alpha})$ and $Q(\varphi_{\beta})$ are injective, and because if $\varphi_{\alpha\beta}$ is a Sullivan representative of $g_{\alpha\beta}$ then $Q(\varphi_{\alpha\beta})$ is independent of the choice of $\varphi_{\alpha\beta}$.

PROPOSITION 1.7. Suppose $f: X \to Y$ is an *F*-map.

- (i) If $H_1(f; \mathbb{Q})$ and $\pi_k(f) \otimes \mathbb{Q}$, $k \ge 2$, are surjective then f is F-surjective.
- (ii) If the natural maps

$$p_X \otimes \mathbb{Q}: \pi_k(X) \otimes \mathbb{Q} \longrightarrow \operatorname{Hom}(V^k, \mathbb{Q}), \quad k \ge 2,$$

are surjective then f is F-surjective if and only if $H_1(f; \mathbb{Q})$ and $\pi_k(f) \otimes \mathbb{Q}$, $k \geq 2$, are surjective.

PROOF. Let $\varphi: (\wedge W, d) \to (\wedge V, d)$ be a Sullivan representative of f. Then $Q(\varphi) = \varphi: W^1 \to V^1$. Denote by ψ the restriction of φ to $(\wedge W^1, d)$. Since dim $W < \infty$ an easy induction shows that ψ is injective if and only if $H^1(\psi)$ is injective. But

$$H^{1}(\psi) = H^{1}(\varphi) = H^{1}(f; \mathbb{Q}),$$

since φ is a Sullivan representative of f. But $H^1(f; \mathbb{Q})$ is the dual of $H_1(f; \mathbb{Q})$, and the dual of a linear map is injective if and only if the linear map is surjective. This establishes

 $Q(\varphi)|_{W^1}$ is injective $\iff H_1(f; \mathbb{Q})$ is surjective.

On the other hand, for $k \ge 2$ we have a commutative diagram

Thus if $\pi_k(f) \otimes \mathbb{Q}$ is surjective, then $\operatorname{Hom}(Q(\varphi), \mathbb{Q})$ is surjective and $Q(\varphi)$ is injective. In the reverse direction, if $\pi_k(X) \otimes \mathbb{Q} \to \operatorname{Hom}(V^k, \mathbb{Q})$ is surjective and $Q(\varphi)$ is injective then $\operatorname{Hom}(Q(\varphi), \mathbb{Q})$ is surjective and $\pi_k(f) \otimes \mathbb{Q}$ must be surjective.

Example 1.8.

- 1. The *F*-map $f: (S^3 \times S^3) \vee S^5 \to S^6$ defined as the smash product on $S^3 \times S^3$ and the trivial map on S^5 is not *F*-surjective because it factorizes through $S^3 \times S^3$.
- 2. The conditions of Proposition 1.7 are not the only examples of *F*-surjective maps. In fact, let $\omega \in H^6((S^3)^\infty; \mathbb{Q})$ be an indecomposable element. Then the associated map $f: (S^3)^\infty \to K(Q, 6)$ is trivial in homotopy but is *F*-surjective, since if φ is a Sullivan representative of *f* then $Q(\varphi)$ is injective.
- Sullivan spaces. A Sullivan space [5, Chap. 7] is a connected CW complex X such that in particular its minimal Sullivan model (∧V, d) satisfies p_X ⊗ Q: π_{≥2}(X) ⊗ Q → Hom(V^{≥2}, Q). Thus if f: X → Y is an *F*-map from a Sullivan space then f is *F*-surjective if and only if H₁(f; Q) and π_{≥2}(f) ⊗ Q are surjective.
- Spaces with Sullivan minimal models of the form (∧V¹, d). For these spaces it is trivially true that an *F*-map *f* is *F*-surjective if and only if H¹(f; Q) is injective. A number of examples of such spaces are provided in [5, Chap. 8].

2. Construction of $\widehat{H}(\Omega X)$ and the definition of depth X

Denote by $\mathscr{S} = \{\alpha\}$ the set of homotopy classes of *F*-surjective maps $f_{\alpha}: X \to Y_{\alpha}$ from a connected CW complex *X*. Then set

$$f_{\beta} \ge f_{\alpha} \iff f_{\alpha} \sim g_{\alpha\beta} \circ f_{\beta}$$

for some map $g_{\alpha\beta}: Y_{\beta} \to Y_{\alpha}$. It follows from Proposition 1.6 that this makes this set of homotopy classes into an inverse system. Moreover, since $\pi_*(g_{\alpha\beta}) = \eta_{\alpha\beta}$ is independent of the choice of $g_{\alpha\beta}$ it follows that

$$\{\pi_*(Y_\alpha), \eta_{\alpha\beta}\}_{\alpha\in\mathscr{S}}$$

is an inverse system of groups.

Recall now the structure of $H_*(\Omega X; \mathbb{Q})$ when X is a CW complex with fundamental group $G = \pi_1(X)$. Let \widetilde{X} be the universal cover of X and for $g \in G$ denote by $(\Omega X)_g$ the component of ΩX of the loops representing g. Then $\Omega X = \coprod_{g \in G} (\Omega X)_g$ and $(\Omega X)_e = \Omega \widetilde{X}$. Finally let $\gamma: G \to \Omega X$ be a choice of representing elements. For $\omega \in (\Omega X)_e$ and $g \in G$ we define ω^g to the the composition of loops: $\omega^g = \gamma(g)^{-1} \cdot \omega \cdot \gamma(g)$. Then the morphism

$$\varphi: G \times (\Omega X)_e \longrightarrow \Omega X$$

defined by $\varphi(g, \omega) = \gamma(g) \cdot \omega$ induces an isomorphism of algebras

$$\mathbb{Q}[G] \otimes H_*(\Omega X; \mathbb{Q}) \longrightarrow H_*(\Omega X; \mathbb{Q}),$$

where the multiplication on the left is given by

$$(g, \alpha) \cdot (g', \alpha') = (gg', \alpha^{g'} \cdot \alpha').$$

This isomorphism is independent of the choice of γ , and the action of G, $\alpha \mapsto \alpha^{g'}$, is induced by the conjugation $\omega \mapsto \omega^{g'}$.

Therefore,

$$H_*(\Omega Y_\alpha; \mathbb{Q}) = \mathbb{Q}[\pi_1 Y_\alpha] \otimes H_*(\Omega Y_\alpha) = \mathbb{Q}[\pi_1 Y_\alpha] \otimes UE_\alpha,$$

where $E_{\alpha} = \pi_*(\widetilde{Y}_{\alpha})$ with the Samelson Lie bracket ([7]). In particular, the morphism $H_*(\Omega g_{\alpha\beta})$ is determined by $\pi_*(g_{\alpha\beta})$ and so is independent of $g_{\alpha\beta}$. This makes $\{H_*(\Omega Y_{\alpha}; \mathbb{Q})\}$ into an inverse system.

On the other hand, the $H_*(\Omega Y_{\alpha}; \mathbb{Q})$ are naturally augmented Hopf algebras with augmentation ideals I_{α} and, the collection

$$\widehat{H_*}(\Omega Y_{\alpha}; \mathbb{Q}) := \underset{n}{\underset{n}{\underset{}}} H_*(\Omega Y_{\alpha}; \mathbb{Q})/I_{\alpha}^n$$

is an inverse system of complete Hopf algebras ([5], [8]). We define

$$\widehat{H}(\Omega X) = \lim_{\alpha} \widehat{H}_*(\Omega Y_\alpha; \mathbb{Q}).$$

Now set

$$\widehat{H}(\Omega X)\widehat{\otimes}\widehat{H}(\Omega X) = \lim_{\alpha} \widehat{H}(\Omega Y_{\alpha}; \mathbb{Q})\widehat{\otimes}\widehat{H}(\Omega Y_{\alpha}; \mathbb{Q}).$$

Then $\widehat{H}(\Omega X)$ is a complete Hopf algebra with diagonal $\Delta = \lim_{\alpha \to \alpha} \Delta_{\alpha}$.

LEMMA 2.1. The primitive sub Lie algebra L_X of $\widehat{H}(\Omega X)$ satisfies

$$L_X = \varprojlim_{\alpha} L_{Y_{\alpha}},$$

and the inclusion $L_X \hookrightarrow \widehat{H}(\Omega X)$ extends to an inclusion

$$j: UL_X \hookrightarrow \widehat{H}(\Omega X)$$

of graded algebras.

PROOF. The fact that *j* exists is immediate because L_X is a sub Lie algebra of $\widehat{H}(\Omega X)$. The fact that the extension is injective follows from the Poincaré-Birkhoff-Witt Theorem ([4, Theorem 21.1]) and the fact that $(j \otimes j) \circ \Delta_{UL_X} = \Delta \circ j$.

Finally the restriction maps $\widehat{H}(\Omega X) \to \widehat{H}(\Omega Y_{\alpha}; \mathbb{Q})$ necessarily send L_X to L_{α} and so define a morphism $\sigma: L_X \to \lim_{k \to \alpha} L_{Y_{\alpha}}$. The commutative diagram

shows that σ is injective. The inverse limit of injections is injective, and so $\lim_{\alpha \to T} L_{Y_{\alpha}} \subset \lim_{\alpha \to T} \widehat{H}(\Omega Y_{\alpha}; \mathbb{Q})$. But if $\Phi \in \widehat{H}(\Omega X)$ corresponds to an element of $\lim_{\alpha \to T} L_{Y_{\alpha}}$, then $\Delta \Phi - \Phi \otimes 1 - 1 \otimes \Phi = 0$, and so $\Phi \in L_X$.

DEFINITION 2.2. The *depth* of a connected CW complex X is the least p, or ∞ , such that

$$\operatorname{Ext}_{UL_{X}}^{p}(\mathbb{Q}, H(\Omega X)) \neq 0.$$

Example 2.3.

1. Let X be the wedge of infinitely many spheres S^3 ,

$$X = \bigvee_{k \ge 1} S_k^3.$$

Then $\pi_*(\Omega X) \otimes \mathbb{Q}$ is the free Lie algebra on infinitely many variables in degree 2. The loop space homology $H_*(\Omega X; \mathbb{Q}) = T(\bigoplus_k \mathbb{Q}a_k) = U\mathbb{L}$ is the tensor algebra on the a_k . Let α_j be the basis of $H_*(\Omega X)$ formed by the monomials in the a_i . Then $\widehat{H}(\Omega X)$ is the set of series $\sum_j \lambda_j \alpha_j$ with $\lambda_j \in \mathbb{Q}$, with usual multiplication. Remark that in this case the Lie algebra L_X is very big; for instance $(L_X)_2$ is the bidual of $\pi_3(X) \otimes \mathbb{Q}$.

2. Let *X* be the wedge $X = S^1 \vee S^2$. Then $\pi_2(X) \otimes \mathbb{Q}$ is countably infinite with a basis $a_i, i \in \mathbb{Z}$, and $\mathbb{Z} = \pi_1(X)$ acts on $\pi_2(X) \otimes \mathbb{Q}$ by translation: if *t* is the generator of \mathbb{Z} , then $t \cdot a_i = a_{i+1}$. Not $(L_X)_0$ is \mathbb{Q} , the Malcev completion of \mathbb{Z} , and $(L_X)_1 = \widehat{H}_1(\Omega X)$ is the Malcev completion of $\pi_2(X) \otimes \mathbb{Q}$ as a module over $\pi_1(X) \otimes \mathbb{Q}$,

$$(L_X)_1 = \lim_p \pi_2(X) \otimes \mathbb{Q}/I^p,$$

where I^p denotes the submodule generated by the $(t - id)^p(a_i)$.

3. The loop space homology of an F-space, Y

Here we identify $\widehat{H}_*(\Omega Y; \mathbb{Q})$ in terms of a Sullivan minimal model $(\wedge W, d)$ for *Y*. For this recall that the homotopy Lie algebra, *L*, for $(\wedge W, d)$ is defined [5, Chap. 2] by $L_k = \text{Hom}(W^{k+1}, \mathbb{Q})$ with Lie bracket determined by the quadratic part of the differential. Recall as well [5, Chap. 3] that (as with any minimal Sullivan algebra) $(\wedge W, d)$ extends to an acyclic closure $(\wedge W \otimes \wedge U_W, d)$ with homology just \mathbb{Q} , and where the quotient differential in $\wedge U_W = \mathbb{Q} \otimes_{\wedge W} (\wedge W \otimes \wedge U_W)$ is zero. Moreover, according to [5, §6.1], $\wedge U_W$ is equipped with a diagonal which makes it into a graded Hopf algebra. Finally, we recall [5, Chap. 3] the commutative diagram

PROPOSITION 3.1. With the notation above, if Y is simply connected there is a natural isomorphism of Hopf algebras

$$UL \xrightarrow{\cong} H_*(\Omega Y; \mathbb{Q})$$

restricting to an isomorphism

$$L \xrightarrow{\cong} L_Y$$

of graded Lie algebras.

PROOF. Since $H^*(Y; \mathbb{Q})$ has finite type, Theorem 5.1 in [5] asserts that m_{Ω} induces an isomorphism

$$\wedge U_W \xrightarrow{\cong} H^*(\Omega Y; \mathbb{Q}).$$

Corollary 6.2 in [5] then asserts that the dual isomorphism,

$$\operatorname{Hom}(\wedge U_W, \mathbb{Q}) \xleftarrow{\cong} H_*(\Omega Y; \mathbb{Q})$$

is an isomorphism of graded Hopf algebras. On the other hand, Theorem 6.2 and Proposition 6.3 in [5] provide a natural isomorphism

$$UL \xrightarrow{\cong} \operatorname{Hom}(\wedge U_W, \mathbb{Q})$$

of graded Hopf algebras. Since L and L_Y are respectively the primitive sub Lie algebras of UL_W and $H_*(\Omega Y; \mathbb{Q})$ it follows that the composite isomorphism

$$UL \cong H(\Omega Y; \mathbb{Q})$$

restricts to an isomorphism $L \xrightarrow{\cong} L_Y$ of graded Lie algebras.

On the other hand, because Y is an F-space, the natural map $Y \rightarrow |\wedge W, d|$ is a homotopy equivalence [5, Theorem 1.4]. We use this to identify $\pi_1(Y) = \pi_1(|\wedge W, d|)$. Thus Theorem 2.4 in [5] produces a natural isomorphism of groups,

$$\pi_1(Y) \xrightarrow{\cong} G_L,$$

where G_L is the group of group-like elements in the complete Hopf algebra \widehat{UL}_0 .

PROPOSITION 3.2. The inclusion of G_L extends uniquely to an isomorphism

$$\mathbb{Q}\widehat{[G_L]}\longrightarrow \widehat{UL_0}$$

of complete Hopf algebras.

PROOF. Because exp and log are inverse bijections between L and G_L , it follows that G_L is nilpotent and each G_L^k/G_L^{k+1} is a rational vector space. Thus it follows from [8] that the completion, $\mathbb{Q}[G_L]$ satisfies

$$\mathbb{Q}[\widehat{G}_L] = \widehat{UP},$$

where $P \subset \mathbb{Q}[\widehat{G}_L]$ is the primitive sub Lie algebra. In fact the inclusion of *P* extends uniquely to a morphism

$$p:\widehat{UP}\longrightarrow \widehat{\mathbb{Q}[G]},$$

By [8, Appendix A, Corollary 3.9], the linear map $P \rightarrow \widehat{UP}$ is an isomorphism onto the primitive sub Lie algebra of \widehat{UP} . By [8, Appendix A, Corollary 2.18], *p* is thus an isomorphism.

On the other hand, the inclusion $G_L \to \widehat{UL_0}$ extends to a morphism $\mathbb{Q}[\widehat{G}_L] \to \widehat{UL_0}$ which sends G_L to itself. Moreover, by [8, Appendix A, Corollary 3.7] G_L is the group of group-like elements. Thus we obtain a morphism

$$\widehat{UP} \longrightarrow \widehat{UL_0}$$

which is the identity on the group of group-like elements. Since exp and log define inverse bijections $P \xrightarrow{\cong} G_L$ and $L_0 \xrightarrow{\cong} G_L$ and so the morphism

above restricts to an isomorphism $P \xrightarrow{\cong} L_0$. Thus altogether we obtain the natural isomorphism

$$\mathbb{Q}\widehat{[G_L]} \xrightarrow{\cong} \widehat{UL_0}$$

extending the identity in G_L .

We can now prove

PROPOSITION 3.3. Suppose L is the homotopy Lie algebra of the minimal Sullivan model, $(\land W, d)$, of an F-space Y. Then with the notation above there is a natural isomorphism of complete Hopf algebras,

$$\widehat{UL} \xrightarrow{\cong} \widehat{H}_*(\Omega Y; \mathbb{Q})_{\mathfrak{g}}$$

restricting to an isomorphism

$$L \xrightarrow{\cong} L_Y$$

of graded Lie algebras.

PROOF. First recall the isomorphism of Hopf algebras

$$H_*(\Omega Y; \mathbb{Q}) = \mathbb{Q}[\pi_1 Y] \otimes H_*(\Omega Y; \mathbb{Q})$$

in which the product uses the action of $\pi_1(Y)$ on $H_*(\Omega \widetilde{Y})$. Passing to completions gives

$$\widehat{H}_*(\Omega Y; \mathbb{Q}) = \mathbb{Q}[\widehat{\pi_1}Y] \otimes H_*(\widetilde{\Omega}Y) = \widehat{UL}_0 \otimes UL_{\geq 1} = \widehat{UL}.$$

It follows from [5, Theorem 2.5] that the middle identification is an isomorphism of graded Hopf algebras, and this is trivially true for the other two. Thus this isomorphism $H_*(\Omega Y; \mathbb{Q}) \cong \widehat{UL}$ restricts to an isomorphism $L \xrightarrow{\cong} L_Y$, because [5, Prop. 2.3] L is the primitive subspace of \widehat{UL} .

4. The main theorem

THEOREM 4.1. Let X be a connected CW complex with minimal Sullivan model $(\land V, d)$. Then L_X is the homotopy Lie algebra L_V of $(\land V, d)$ and

depth
$$X \leq \operatorname{cat} X$$
.

First recall that the homotopy classes of *F*-maps $f_{\alpha}: X \to Y_{\alpha}$ are in bijection with the homotopy classes of morphisms

$$\varphi_{\alpha} \colon (\wedge W_{\alpha}, d) \longrightarrow (\wedge V, d)$$

to the minimal Sullivan model of W, where dim $W_{\alpha} < \infty$. Moreover, f_{α} is F-surjective if and only if $Q(\varphi_{\alpha})$ is injective. In particular, the inverse system of the main theorem is isomorphic to the inverse system of homotopy classes of such morphisms, with

$$\varphi_{\beta} \geq \varphi_{\alpha} \Longleftrightarrow \varphi_{\alpha} \sim \varphi_{\beta} \circ \varphi_{\alpha\beta}$$

for some $\varphi_{\alpha\beta}$: $(\wedge W_{\alpha}, d) \longrightarrow (\wedge W_{\beta}, d)$.

Now any morphism of minimal Sullivan algebras $\varphi: (\wedge W, d) \to (\wedge V, d)$ with dim $W < \infty$ satisfies $\varphi(\wedge W) \subset \wedge S$ for some finite dimensional subspace $S \subset V$ with $\wedge S$ preserved by d. It follows that the homotopy classes of inclusions $\varphi_{\alpha}: (\wedge W_{\alpha}, d) \to (\wedge V, d)$ extending the inclusion of a subspace $W_{\alpha} \subset V$ form a cofinal set

$$\mathscr{J} = \{\alpha\}$$

in our inverse system.

Now observe that in \mathcal{J} ,

$$\beta \geq \alpha \iff W_{\alpha} \subset W_{\beta},$$

since in this case the map $\mathbb{Q}(\varphi_{\alpha\beta})$ is just the inclusion $W_{\alpha} \hookrightarrow W_{\beta}$. (This follows at once from the fact that $Q(\varphi_{\alpha})$ and $Q(\varphi_{\beta})$ are just the inclusions of W_{α} and W_{β} in V.)

Denote by L_{α} the homotopy Lie algebra of $(\wedge W_{\alpha}, d)$ and by L_{V} the homotopy Lie algebra of $(\wedge V, d)$. Then

$$sL_V = \operatorname{Hom}(V, \mathbb{Q}) = \lim_{\substack{\leftarrow \\ \alpha \in \mathscr{J}}} \operatorname{Hom}(W_{\alpha}, \mathbb{Q}) = \lim_{\substack{\leftarrow \\ \alpha \in \mathscr{J}}} sL_{\alpha}.$$

It follows from the definition of the Lie bracket [5, Chap 2] that this defines an isomorphism

$$L_V \xrightarrow{\cong} \lim_{\alpha} L_{\alpha}$$

of graded Lie algebras. Moreover, the surjections $L_V \to L_{\alpha}$ induce morphisms $UL_V \to \widehat{UL}_{\alpha}$, which define a morphism

$$UL_V \longrightarrow \lim_{\alpha} \widehat{UL}_{\alpha}.$$

PROPOSITION 4.2. Let X be a connected CW complex. Then there are natural isomorphisms

$$L_V \xrightarrow{\cong} L_X$$
 and $\lim_{\alpha} \widehat{UL}_{\alpha} \xrightarrow{\cong} \widehat{H}(\Omega X)$

which make the diagram

commute.

PROOF. In view of Lemma 2.1, this is immediate from the isomorphisms $L_{\alpha} \xrightarrow{\cong} L_{Y_{\alpha}}$ and $\widehat{UL_{\alpha}} \xrightarrow{\cong} \widehat{H}(\Omega Y_{\alpha}; \mathbb{Q})$ of Proposition 3.3.

As described in the previous section, we have natural isomorphisms

$$\operatorname{Hom}(\wedge U_{\alpha}, \mathbb{Q}) \xrightarrow{\cong} \widehat{UL}_{\alpha}.$$

Moreover, it follows from [5, §6.2] that these isomorphisms convert right multiplication by L_{α} to the dual of the holonomy representation of L_{α} in $\wedge U_{\alpha}$. Thus we obtain

$$\operatorname{Ext}_{UL_{X}}(\mathbb{Q}, \widehat{H}(\Omega X)) \cong \operatorname{Ext}_{UL_{V}}(\mathbb{Q}, \lim_{\alpha \in \mathscr{J}} \widehat{UL_{\alpha}})$$
$$\cong \operatorname{Ext}_{UL_{V}}(\mathbb{Q}, \operatorname{Hom}(\lim_{\alpha \in \mathscr{J}} \wedge U_{\alpha}, \mathbb{Q}))$$
$$= \operatorname{Hom}(\operatorname{Tor}^{UL_{V}}(\mathbb{Q}, \lim_{\alpha \in \mathscr{J}} \wedge U_{\alpha}), \mathbb{Q}).$$

But if $(\land V \otimes \land U, d)$ is the acyclic closure of $(\land V, d)$ then

$$\wedge U = \varinjlim_{\alpha \in \mathscr{J}} \wedge U_{\alpha}$$

as L_V -modules, because $V = \lim_{\substack{\longrightarrow \alpha \in \mathscr{J}}} W_{\alpha}$. This yields

$$\operatorname{Ext}_{UL_X}^p(\mathbb{Q},\widehat{H}(\Omega X)) = \operatorname{Hom}(\operatorname{Tor}_p^{UL_V}(\mathbb{Q},\wedge U),\mathbb{Q}).$$

Now by definition ([2]),

Sdepth $L_V = \text{ least } p \text{ (or } \infty) \text{ such that } \operatorname{Tor}_p^{UL_V}(\mathbb{Q}, \wedge U) \neq 0.$

This establishes

depth
$$X =$$
Sdepth L_V .

By [2, Theorem C], Sdepth $L_V \leq \operatorname{cat}(\wedge V, d) \leq \operatorname{cat} X$, and the main theorem is proved.

5. The morphism $\pi_*(\Omega X) \otimes \mathbb{Q} \to L_X$: examples

We begin with the Eilenberg-MacLane space X = K(V, 3), where V is a rational vector space whose dimension is countably infinite. Denote by $x_1, x_2, ...$ a basis of V and by $(\wedge W, d)$ a minimal Sullivan model for X. Denote by $y_i \in \text{Hom}(V, \mathbb{Q})$ the elements defined by $\langle y_i, x_j \rangle = \delta_{ij}$. The series

$$\omega = \sum_{i \ge 1} y_{2i-1} \land y_{2i}$$

is then a well-defined element in Hom($\wedge^2 V$, \mathbb{Q}).

LEMMA 5.1. $\omega \notin \wedge^2(\operatorname{Hom}(V, \mathbb{Q})).$

PROOF. Denote by $V_m \subset V$ the subspace generated by x_1, \ldots, x_m . Then the restriction of ω^m to V_{2m} is

$$m! y_1 \wedge y_2 \wedge \ldots \wedge y_{2m}.$$

Therefore $\omega^m \neq 0$ for all *m*. This implies that $\omega \notin \wedge^2(\text{Hom}(V, \mathbb{Q}))$ because if $\omega = \sum_{i=1}^r f_i \wedge g_i$ then $\omega^{r+1} = 0$.

PROPOSITION 5.2. The minimal Sullivan model $(\land W, d)$ for X satisfies the following properties:

$$H^*(X; \mathbb{Q}) = \operatorname{Hom}(\wedge V, \mathbb{Q}), \quad W^3 = \operatorname{Hom}(V, \mathbb{Q}),$$

 $W^4 = W^5 = 0, \quad and \quad W^6 \neq 0.$

PROOF. Let *e* be a base point in S^3 and let $\varphi_e: (S^3)^r \to (S^3)^{r+1}$ be the map defined by $\varphi_x(u_1, \ldots, u_r) = (u_1, \ldots, u_r, e)$. We form the space $(S^3)^{\infty} = \lim_{N \to r} (S^3)^r$. Since homology commutes with direct limits, $H_*((S^3)^{\infty}; \mathbb{Q}) = \bigwedge V$, and $H^*((S^3)^{\infty}; \mathbb{Q}) = \operatorname{Hom}(\bigwedge V, \mathbb{Q})$. On the other hand, since each map $S^q \to (S^3)^{\infty}$ factors through some $(S^3)^r$, we have $(S^3)^{\infty} = X$. By construction $W^3 = \operatorname{Hom}(V, \mathbb{Q})$, and by Lemma 5.1, $W^6 \neq 0$.

Denote by z an element of W^6 corresponding to the class ω . The rational homotopy Lie algebra $\pi_*(\Omega X) \otimes Q$ is isomorphic to $s^{-1}V$ and L_X is the dual of sW. Therefore the morphism $\pi_*(\Omega X) \otimes \mathbb{Q} \to L_X$ is injective but not surjective.

Now consider the map $g: X \to K(\mathbb{Q}, 6)$ associated to ω , and let

$$K(\mathbb{Q},5) \longrightarrow Y \longrightarrow X$$

236

be the pullback along g of the path space fibration on $K(\mathbb{Q}, 6)$. Since $\pi_q(X) \neq 0$ for $q \neq 3$, $\pi_5(Y) = \mathbb{Q}$, and $\pi_*(Y) = \pi_5(Y) \oplus \pi_*(X) = \pi_5(Y) \oplus \pi_3(X) = \pi_5(Y) \oplus V$.

PROPOSITION 5.3. The map $\pi_*(\Omega Y) \otimes \mathbb{Q} \to L_Y$ is neither injective or surjective.

PROOF. The relative Sullivan model for the path fibration has the form $(\wedge(c, u), d)$ with du = c and a basis element $v \in \pi_4(\Omega K(\mathbb{Q}, 5))$ satisfies

$$\langle u, sv \rangle = 1.$$

The map $c \mapsto z$ gives a (non-minimal) Sullivan model ($\wedge W \otimes \wedge u, d$) for Y, with du = z. Since z is a generator in $\wedge W$, the minimal Sullivan model of Y is ($\wedge W/(z), d$). Thus $(L_Y)_2 = \text{Hom}(W^3, \mathbb{Q})$ and the map $V \to \text{Hom}(W^3, \mathbb{Q})$ is not surjective.

On the other hand $\pi_4(\Omega Y) \cong \pi_5(Y) = \mathbb{Q}$ and the image of this element is zero in L_Y , since $W^5 = 0$. This shows that $\pi_4(\Omega Y) \otimes \mathbb{Q} \to L_Y$ is not injective.

PROPOSITION 5.4. The Lie algebra $L = \pi_*(\Omega Y) \otimes \mathbb{Q}$ is the quotient of the free Lie algebra \mathbb{L} on the elements $a_i = s^{-1}x_i$ by the ideal I generated by \mathbb{L}^3 , the brackets $[a_i, a_i]$ for |i - j| > 2, and the elements $[a_{2i-1}, a_{2i}] - [a_1, a_2]$.

PROOF. Note first that $L^3 = 0$ for degree reasons. Then fix integers *j* and *k* and let $h: \mathbb{Q}^2 \to V$ be the injection of the subvector space generated by x_j and x_k . The morphism *h* induces a map $h: K(\mathbb{Q}^2, 3) \to X$ and we denote by *Z* the pullback of *Y* over *h*:

In the case (j, k) = (2i - 1, 2i), the minimal Sullivan model of Z is given by $(\land (y_{2i-1}, y_{2i}, u), d)$ with $du = y_{2i-1}y_{2i}$. Then the relation between the quadratic part of the differential and the Lie bracket of L_Y [4, Prop. 23.2] gives

$$\langle du, sa_{2i-1}, sa_{2i} \rangle = -\langle u, s[a_{2i-1}, a_{2i}] \rangle$$

Since Z is a nilpotent space with finite Betti numbers, in $\pi_*(\Omega Z)$ we have $v = -[a_{2i-1}, a_{2i}]$. By naturality, this is also true in $\pi_*(\Omega Y)$. Since the left

hand side is independent of *i*, in $\pi_*(Y)$, we have $[a_{2i-1}, a_{2i}] = [a_1, a_2]$ for all *i*.

When |j - k| > 2, then $H^*(h)\omega = 0$ and therefore the minimal Sullivan model of Z is $(\land(y_j, y_k, u), d = 0)$. It follows in the same way that $[a_j, a_k] = 0$. This gives a surjection $\mathbb{L}/I \to \pi_*(\Omega Y) \otimes \mathbb{Q}$, and since $s^{-1}V \oplus v$ maps onto \mathbb{L}/I , this surjection is an isomorphism.

Finally consider the space *T* obtained from the cohomology class $\omega \cdot [y_1] \in H^9(X; \mathbb{Q})$,

$$K(\mathbb{Q}, 8) \longrightarrow T \longrightarrow X.$$

The minimal Sullivan model of *T* is $(\wedge W \otimes \wedge t, d)$ with $dt = zy_1$, so L_T is non abelian. On the other hand, for degree reasons, $\pi_*(\Omega T) \otimes \mathbb{Q}$ is an abelian Lie algebra.

REFERENCES

- Félix, Y., and Halperin, S., *Rational LS category and its applications*, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1–38.
- Félix, Y., and Halperin, S., Malcev completions, LS category, and depth, Bol. Soc. Mat. Mex. (3) 23 (2017), no. 1, 267–288.
- Félix, Y., Halperin, S., Jacobsson, C., Löfwall, C., and Thomas, J.-C., *The radical of the homotopy Lie algebra*, Amer. J. Math. 110 (1988), no. 2, 301–322.
- Félix, Y., Halperin, S., and Thomas, J.-C., *Rational homotopy theory*, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001.
- Félix, Y., Halperin, S., and Thomas, J.-C., *Rational homotopy theory. II*, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
- Magnus, W., Karrass, A., and Solitar, D., Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers, New York-London-Sydney, 1966.
- Milnor, J. W., and Moore, J. C., On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264.
- 8. Quillen, D., Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295.
- Sullivan, D., Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 269–331.

INSTITUT DE MATHÉMATIQUE ET DE PHYSIQUE UNIVERSITÉ CATHOLIQUE DE LOUVAIN 2, CHEMIN DU CYCLOTRON 1348 LOUVAIN-LA-NEUVE BELGIUM *E-mail:* yves.felix@uclouvain.be DEPARTMENT OF MATHEMATICS MATHEMATICS BUILDING UNIVERSITY OF MARYLAND COLLEGE PARK MD 20742 UNITED STATES *E-mail:* shalper@umd.edu