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THE DEPTH AND LS CATEGORY OF
A TOPOLOGICAL SPACE
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Abstract
The depth of an augmented ring ε:A→ k is the least p, or∞, such that

ExtpA(k, A) �= 0.

When X is a simply connected finite type CW complex, H∗(�X;Q) is a Hopf algebra and
the universal enveloping algebra of the Lie algebra LX of primitive elements. It is known that
depthH∗(�X;Q) ≤ catX, the Lusternik-Schnirelmann category of X.

For any connected CW complex we construct a completion Ĥ (�X) of H∗(�X;Q) as a
complete Hopf algebra with primitive sub Lie algebra LX , and define depthX to be the least p or
∞ such that

ExtpULX
(Q, Ĥ (�X)) �= 0.

Theorem: for any connected CW complex, depthX ≤ catX.

The Lusternik-Schnirelmann category of a topological space X is the least
numberm such that X can be covered by (m+ 1) open sets, each contractible
in X. On the other hand, if ε:A→ Q is an augmented algebra then the depth
ofA is the least integer p such that ExtpA(Q, A) �= 0, whereQ is anA-module
via ε. When X is a simply-connected CW complex with finite rational Betti
numbers, the principal theorem of [3] asserts that

depthH∗(�X;Q) ≤ catX.

This result remains true [4, Chap. 35] when Q is replaced by any field k.
Additionally, an extension of the rational result to some non-simply connected
spaces is established in [5].

Our objective here is to introduce a new invariant depth X, defined via a
completion Ĥ (�X) ofH∗(�X;Q). Here Ĥ (�X) is a complete Hopf algebra
with primitive sub Lie algebra LX and

depthX = least p (or∞) such that ExtpULX (Q, Ĥ (�X)) �= 0.
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Then, in our main theorem, we establish the inequality

depthX ≤ catX

for all connected CW complexes X.
Here we first outline the construction of Ĥ (�X), with the details and proofs

provided in Section 1, and Section 2. In Section 3 we interpret Ĥ (�X) in terms
of Sullivan models, and use this to establish the main theorem.

The completion Ĥ (�X) is constructed by considering homotopy classes of
maps,

fα:X −→ Yα,

where Yα is a nilpotent CW complex for whichH1(Yα) and π≥2(Yα) are finite-
dimensional rational vector spaces. Spaces Yα satisfying this condition are
called F -spaces. For such spaces Yα , let IYα ⊂ H∗(�Yα;Q) be the augmenta-
tion ideal and set

Ĥ (�Yα) = lim←−
n

H∗(�Yα;Q)/I nYα ;

this is the classical completion ofH∗(�Yα;Q). As observed in Proposition 3.2
below, it follows from the work of Quillen [8] that

Ĥ (�Yα) = ÛLYα ,

where LYα is the primitive sub Lie algebra of the complete Hopf algebra
Ĥ (�Yα).

We then restrict attention to those fα:X→ Yα which satisfy the following
property: if fα factors up to homotopy as

X
fβ

Yβ
gαβ

Yα,

where Yβ is also an F -space, then π∗(gαβ) is surjective.
For such maps Im π∗(fα) is maximal inπ∗(Yα). In particular, if fα:X→ Yα

satisfies H1(fα;Q) and π≥2(fα) ⊗ Q are surjective, then fα satisfies this
condition. If fα , fβ both satisfy this condition we set fα ≤ fβ . It follows from
Proposition 1.6 that this makes the set of based homotopy classes [fα] into an
inverse system and that Ĥ (�gαβ) is independent of the choice of gαβ . Thus the
collection Ĥ (�Yα), indexed by the [fα] is also an inverse system, and we set

Ĥ (�X) := lim←−
α

Ĥ (�Yα).

This is a complete Hopf algebra depending functorially on X.
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Now it follows from the construction that the maps fα induce morphisms

H∗(�X;Q) −→ lim←−
n

H∗(�X;Q)/I nX −→ lim←−
α

Ĥ (�Yα) = Ĥ (�X),

which exhibits Ĥ (�X) as a completion ofH∗(�X;Q). Moreover, when X is
simply connected, an early result of Milnor-Moore-Cartan-Serre ([4]) identi-
fies the Hopf algebra H∗(�X;Q) as the universal enveloping algebra of the
graded Lie algebra L(X) = π∗(�X)⊗Q.

In this case our construction defines a morphism L(X) → LX of graded
Lie algebras, but unless X has finite rational Betti numbers this map may not
be an isomorphism. However, when X has finite rational Betti numbers then

H∗(�X;Q) ∼=−→ Ĥ (�X) and L(X)
∼=−→ LX,

so that our result reduces to the original one in [4]. In general, the possible
connections even in the simply-connected case between depthH∗(�X;Q), and
depthX and catX remain an open question.

Whereas the definitions of ULX and Ĥ (�X) rely on the work of Quillen, the
proof of the main theorem relies on the minimal models of Sullivan ([9], [5]).
This ([5, Chapter 1]) assigns to each path-connected CW complex, X, a com-
mutative differential graded algebra (cdga for short), (APL(X), d), a quasi-
isomorphism from a minimal Sullivan algebra,

m: (∧V, d) 
−→ (APL(X), d),

a spatial realization |∧V, d|, and a natural homotopy class of maps

m:X −→ |∧V, d|.
An early result in rational homotopy, following a suggestion of Jean-Michel

Lemaire, is the introduction in [1] of an invariant cat(∧V, d) and the proof that
cat(∧V, d) ≤ catX. Given this, the proof of the main theorem has two parts.
First, associated with (∧V, d) is a graded Lie algebra LV ∼= s−1 Hom(V ,Q)
and an invariant SdepthLV defined via the acyclic closure of (∧V, d). The
first part of the proof is given in [2], where we show that

SdepthLV ≤ cat(∧V, d).
The second part of the proof, which we provide here, is the equality

depthX = SdepthLV .
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It depends in part on an isomorphism LV ∼= LX, which gives a topological
interpretation of the Lie algebra LV .

1. F -maps and their Sullivan representatives

Throughout this paper, all spaces, cdga’s, maps, morphisms and homotopies
are based. The lower central series of a group G is denoted by

G = G1 ⊃ G2 ⊃ · · · ,
and a morphism σ :G→ H of groups induces morphisms σ(k):Gk/Gk+1 →
Hk/Hk+1.

Definition 1.1. An F -space is a connected CW complex Y satisfying:

(i) for k ≥ 2, πk(Y ) is a rational vector space, and
∑

k≥2 dim πk(Y ) <∞,

(ii) H1(Y ) is a finite-dimensional rational vector space,

(iii) π1(Y ) is nilpotent and acts nilpotently in each πk(Y ), k ≥ 2.

Definition 1.2. An F -map is a map f :X → Y from a connected CW
complex to an F -space.

Lemma 1.3.
(i) If Y is an F -space then each πk1 (Y )/π

k+1
1 (Y ) is a finite-dimensional

rational vector space and πk1 (Y ) = 0 for some k.

(ii) If g:Y ′ → Y is a map between F -spaces, then π∗(g) is surjective if and
only if H1(g) and πn≥2(g) are surjective.

Proof. SinceH1(Y ) = π1(Y )/[π1(Y ), π1(Y )] this is automatic for k = 1.
Moreover, an identity of Hall ([6, Theorem 5.3]) shows that the commutator
map a, b �→ [a, b] induces a surjection

π1(Y )/[π1(Y ), π1(Y )]× πk1 (Y )/πk+1
1 (Y ) −→ πk+1

1 (Y )/πk+2
1 (Y )

of abelian groups. Thus (i) follows by induction on k.
The same argument establishes (ii).

If Y is an F -space then
∑
k

dim πk1 (Y )/π
k+1
1 (Y )+

∑
k≥2

dim πk(Y )

is the length of Y . Thus if length Y = r then Y has the homotopy type of a
finite Postnikov tower

Y ∼ Pr −→ Pr−1 −→ · · · −→ Pi
ρi−→ Pi−1 −→ · · · −→ P0 = pt
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in which each ρi is a principal K(Q, ni)-fibration.
On the other hand, associated with any minimal Sullivan algebra (∧V, d)

is the surjection ∧+V → ∧+V/∧≥2V , which we identify as a linear map,

ζ :∧+V −→ V,

satisfying ζ ◦ d = 0. A morphism ϕ: (∧V, d)→ (∧Z, d) of minimal Sullivan
algebras induces the linear map

Q(ϕ):V −→ Z

defined byQ(ϕ)ζ = ζ ◦ϕ, andQ(ϕ) depends only on the homotopy class of ϕ.
Evidently, if ψ : (∧W, d) → (∧V, d) is also a morphism then Q(ϕ ◦ ψ) =
Q(ϕ) ◦ Q(ψ). Finally, associated with (∧V, d) is the CW complex |∧V, d|
together with a natural morphism

λ: (∧V, d) −→ APL(|∧V, d|).
Now suppose m: (∧V, d) 
−→ APL(X) is a minimal Sullivan model of a

connected CW complex. Then m determines a homotopy class of maps

m:X −→ |∧V, d|
satisfying m ∼ APL(m) ◦ λ. It also determines maps

pX:πn(X) −→ Hom(V n,Q), n ≥ 1,

which are linear forn ≥ 2 and are defined as follows: identifySn as the quotient

n/∂
n, equipped with the standard orientation, and with fundamental class
[Sn] ∈ Hn(Sn;Z). If σ ∈ πn(X) is represented by g: Sn → X, compose
a Sullivan representative of g with the natural surjection from the minimal
model of Sn to H ∗(Sn;Q) to obtain a morphism

γ : (∧V, d) −→ H ∗(Sn;Q).
This, restricted to ∧+V , factors over ζ to define γ :V → H ∗(Sn;Q), and pX
is defined by 〈v, pXσ 〉 = 〈γ v, [Sn]〉.
For simplicity, we will write

〈v, σ 〉 := 〈v, pXσ 〉.
Now suppose f :X → Y is a map between connected CW complexes

with Sullivan models (∧V, d) and (∧W, d). If ϕ: (∧W, d) → (∧V, d) is a
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Sullivan representative for f , then the homotopy class of ϕ only depends on
the homotopy class of f and the diagrams

X |∧V, d|
f |ϕ|

Y |∧W, d|
and

π∗(X)
pX Hom(V ,Q)

π∗(f ) Hom(Q(ϕ),Q)

π∗(Y ) pY
Hom(W,Q)

(1)

are respectively homotopy commutative and commutative.
In particular a minimal Sullivan algebra (∧W, d) is the Sullivan model of an

F -space Y if and only if dimW <∞. In this case it follows from [5] that the
mapspY :π∗(Y )→ Hom(W,Q) are bijections and that the map Y → |∧W, d|
is a homotopy equivalence. In particular, we may and do restrict attention to
F -spaces of the form |∧W, d| with model morphism the canonical morphism
(∧W, d)→ APL(|∧W, d|).

Proposition 1.4. Suppose (∧V, d) and (∧W, d) are respectively the min-
imal models of a connected CW complex X and an F -space Y .

(i) The correspondences

ϕ �→ |ϕ| ◦m and f �→ a Sullivan representative ϕ

define inverse bijections between homotopy classes of morphisms
ϕ: (∧W, d)→ (∧V, d) and of maps f :X→ Y .

(ii) If X is also an F -space and ϕ is a Sullivan representative of f :X→ Y

then π∗(f ) is surjective if and only if Q(ϕ) is injective.

Proof. (i) As observed above we may assume Y = |∧W, d|. Then, in
view of (1), f ∼ |ϕ| ◦ m where ϕ is a Sullivan representative of f . On
the other hand, it follows from Proposition 1.15 in [5] that any morphism
ψ : (∧W, d)→ (∧V, d) is a Sullivan representative of |ψ | ◦m.

(ii) In this case the commutative diagram

π∗(X)
∼= Hom(V ,Q)

π∗(f ) Hom(Q(ϕ),Q)

π∗(Y )
∼= Hom(W,Q)

shows that π∗(f ) is surjective if and only if Hom(Q(ϕ),Q) is surjective. But
this is equivalent to Q(ϕ) is injective.

Definition 1.5. An F -map f :X → Y from a connected CW complex is
F -surjective if, whenever f factors as the composite

f :X
f ′

Y ′ g
Y
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of an F -map f ′ and a map g, then π∗(g) is surjective.

Proposition 1.6. Let X be a connected CW complex. Then

(i) an F -map f :X→ Y is F -surjective if and only if a Sullivan represent-
ative, ϕ, for f satisfies Q(ϕ) is injective,

(ii) any F -map f :X→ Y factors up to homotopy as

f :X
f ′

Y ′ g
Y

in which f ′ is F -surjective

(iii) if fα, fβ :X→ Yα, Yβ areF -surjective then there is a thirdF -surjection
fγ :X→ Yγ and a homotopy commutative diagram

Yβ

fβ gβ

X
fγ

Yγ

Yα

fα gα

(iv) if

fβ

X

fα

Yβ

gαβ

Yα

is a homotopy commutative diagram in which fα and fβ are F -surject-
ions then π∗(gαβ) is surjective, and independent of the choice of gαβ .

Proof. (i) Suppose ϕ: (∧W, d)→ (∧V, d) is a Sullivan representative for
f , so that we may assume f = |ϕ| ◦m. If f factorizes as

X
f ′

Y ′ g′
Y

and ϕ′ and ψ are Sullivan representatives for f ′ and g, then Q(ϕ) = Q(ϕ′) ◦
Q(ψ). If Q(ϕ) is injective so is Q(ψ) and Proposition 1.4 asserts that π∗(g)
is surjective. Thus f is F -surjective.

Conversely, suppose f is F -surjective. For some finite dimensional sub-
space Z ⊂ V with ∧Z preserved by d we can decompose ϕ as

(∧W, d) ψ
(∧Z, d) χ

(∧V, d).
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Now f ∼ |ψ | ◦ (|χ | ◦ m) and therefore π∗(|ψ |) is surjective, which implies
Q(ψ) is injective. Since Q(χ) is injective by construction, Q(ϕ) must be
injective.

(ii) As in the proof of (i), factor a Sullivan representative of f as ϕ = χ ◦ψ
with χ extending the inclusion of a finite dimensional subspace Z ⊂ V . Thus
|ψ | is an F -map and by (i), |χ | ◦m is F -surjective sinceQ(χ) is injective. But
f ∼ |ψ | ◦ (|χ | ◦ m). Thus we have a decomposition of f as g ◦ f ′ in which
f ′ is F -surjective.

(iii) Because of (ii) the map (fα, fβ):X→ Yα × Yβ factors as

X
fγ−−−−−→ Y

!(gα,gβ )−−−−−−−→ Yα × Yβ
in which fγ is F -surjective.

(iv) This follows because Sullivan representatives ϕα , ϕβ for fα , fβ satisfy
Q(ϕα) andQ(ϕβ) are injective, and because if ϕαβ is a Sullivan representative
of gαβ then Q(ϕαβ) is independent of the choice of ϕαβ .

Proposition 1.7. Suppose f :X→ Y is an F -map.

(i) IfH1(f ;Q) andπk(f )⊗Q, k ≥ 2, are surjective then f isF -surjective.

(ii) If the natural maps

pX ⊗Q:πk(X)⊗Q −→ Hom(V k,Q), k ≥ 2,

are surjective then f isF -surjective if and only ifH1(f ;Q) andπk(f )⊗
Q, k ≥ 2, are surjective.

Proof. Let ϕ: (∧W, d)→ (∧V, d) be a Sullivan representative of f . Then
Q(ϕ) = ϕ:W 1 → V 1. Denote by ψ the restriction of ϕ to (∧W 1, d). Since
dimW <∞ an easy induction shows that ψ is injective if and only if H 1(ψ)

is injective. But
H 1(ψ) = H 1(ϕ) = H 1(f ;Q),

sinceϕ is a Sullivan representative off . ButH 1(f ;Q) is the dual ofH1(f ;Q),
and the dual of a linear map is injective if and only if the linear map is surjective.
This establishes

Q(ϕ)|W 1 is injective ⇐⇒ H1(f ;Q) is surjective.

On the other hand, for k ≥ 2 we have a commutative diagram

πk(X)⊗Q −−−−−→ Hom(V k,Q)

πk(f )⊗Q Hom(Q(ϕ),Q)

πk(Y )
∼=−−−−−−−→ Hom(Wk,Q)
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Thus if πk(f )⊗Q is surjective, then Hom(Q(ϕ),Q) is surjective andQ(ϕ) is
injective. In the reverse direction, if πk(X)⊗Q→ Hom(V k,Q) is surjective
and Q(ϕ) is injective then Hom(Q(ϕ),Q) is surjective and πk(f )⊗Q must
be surjective.

Example 1.8.
1. The F -map f : (S3 × S3) ∨ S5 → S6 defined as the smash product on
S3×S3 and the trivial map on S5 is notF -surjective because it factorizes
through S3 × S3.

2. The conditions of Proposition 1.7 are not the only examples of F -
surjective maps. In fact, let ω ∈ H 6((S3)∞;Q) be an indecomposable
element. Then the associated map f : (S3)∞ → K(Q, 6) is trivial in
homotopy but is F -surjective, since if ϕ is a Sullivan representative of
f then Q(ϕ) is injective.

3. Sullivan spaces. A Sullivan space [5, Chap. 7] is a connected CW com-
plex X such that in particular its minimal Sullivan model (∧V, d) sat-

isfies pX ⊗Q:π≥2(X)⊗Q ∼=−→ Hom(V ≥2,Q). Thus if f :X → Y is
an F -map from a Sullivan space then f is F -surjective if and only if
H1(f ;Q) and π≥2(f )⊗Q are surjective.

4. Spaces with Sullivan minimal models of the form (∧V 1, d). For these
spaces it is trivially true that an F -map f is F -surjective if and only if
H 1(f ;Q) is injective. A number of examples of such spaces are provided
in [5, Chap. 8].

2. Construction of ̂H(�X) and the definition of depth X

Denote by S = {α} the set of homotopy classes ofF -surjective maps fα:X→
Yα from a connected CW complex X. Then set

fβ ≥ fα ⇐⇒ fα ∼ gαβ ◦ fβ
for some map gαβ :Yβ → Yα . It follows from Proposition 1.6 that this makes
this set of homotopy classes into an inverse system. Moreover, sinceπ∗(gαβ) =
ηαβ is independent of the choice of gαβ it follows that

{π∗(Yα), ηαβ}α∈S

is an inverse system of groups.
Recall now the structure of H∗(�X;Q) when X is a CW complex with

fundamental group G = π1(X). Let X̃ be the universal cover of X and for
g ∈ G denote by (�X)g the component of �X of the loops representing g.
Then �X = ∐

g∈G(�X)g and (�X)e = �X̃. Finally let γ :G → �X be a
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choice of representing elements. For ω ∈ (�X)e and g ∈ G we define ωg to
the the composition of loops: ωg = γ (g)−1 · ω · γ (g). Then the morphism

ϕ:G× (�X)e −→ �X

defined by ϕ(g, ω) = γ (g) · ω induces an isomorphism of algebras

Q[G]⊗H∗(�X̃;Q) −→ H∗(�X;Q),
where the multiplication on the left is given by

(g, α) · (g′, α′) = (gg′, αg′ · α′).
This isomorphism is independent of the choice of γ , and the action of G,
α �→ αg

′
, is induced by the conjugation ω �→ ωg

′
.

Therefore,

H∗(�Yα;Q) = Q[π1Yα]⊗H∗(�Ỹα) = Q[π1Yα]⊗ UEα,
where Eα = π∗(Ỹα) with the Samelson Lie bracket ([7]). In particular, the
morphism H∗(�gαβ) is determined by π∗(gαβ) and so is independent of gαβ .
This makes {H∗(�Yα;Q)} into an inverse system.

On the other hand, theH∗(�Yα;Q) are naturally augmented Hopf algebras
with augmentation ideals Iα and, the collection

Ĥ∗(�Yα;Q) := lim←−
n

H∗(�Yα;Q)/I nα

is an inverse system of complete Hopf algebras ([5], [8]). We define

Ĥ (�X) = lim←−
α

Ĥ∗(�Yα;Q).
Now set

Ĥ (�X) ⊗̂ Ĥ (�X) = lim←−
α

Ĥ (�Yα;Q) ⊗̂ Ĥ (�Yα;Q).

Then Ĥ (�X) is a complete Hopf algebra with diagonal 
 = lim←−α 
α .

Lemma 2.1. The primitive sub Lie algebra LX of Ĥ (�X) satisfies

LX = lim←−
α

LYα ,

and the inclusion LX ↪→ Ĥ (�X) extends to an inclusion

j : ULX ↪→ Ĥ (�X)

of graded algebras.
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Proof. The fact that j exists is immediate because LX is a sub Lie algebra
of Ĥ (�X). The fact that the extension is injective follows from the Poincaré-
Birkhoff-Witt Theorem ([4, Theorem 21.1]) and the fact that (j⊗j)◦
ULX =

 ◦ j .

Finally the restriction maps Ĥ (�X) → Ĥ (�Yα;Q) necessarily send LX
toLα and so define a morphism σ :LX → lim←−α LYα . The commutative diagram

Ĥ (�X) =−−−−−→ lim←−
α

Ĥ (�Yα;Q)

LX
σ−−−−−−−−−→ lim←−

α

LYα

shows that σ is injective. The inverse limit of injections is injective, and so
lim←−α LYα ⊂ lim←−α Ĥ (�Yα;Q). But if � ∈ Ĥ (�X) corresponds to an element
of lim←−α LYα , then 
�−�⊗ 1− 1⊗� = 0, and so � ∈ LX.

Definition 2.2. The depth of a connected CW complex X is the least p,
or∞, such that

ExtpULX (Q, Ĥ (�X)) �= 0.

Example 2.3.
1. Let X be the wedge of infinitely many spheres S3,

X =
∨
k≥1

S3
k .

Then π∗(�X)⊗Q is the free Lie algebra on infinitely many variables in
degree 2. The loop space homology H∗(�X;Q) = T (⊕kQak) = UL
is the tensor algebra on the ak . Let αj be the basis of H∗(�X) formed
by the monomials in the ai . Then Ĥ (�X) is the set of series

∑
j λjαj

with λj ∈ Q, with usual multiplication. Remark that in this case the Lie
algebra LX is very big; for instance (LX)2 is the bidual of π3(X)⊗Q.

2. LetX be the wedgeX = S1∨S2. Then π2(X)⊗Q is countably infinite
with a basis ai, i ∈ Z, and Z = π1(X) acts on π2(X)⊗Q by translation:
if t is the generator of Z, then t · ai = ai+1. Not (LX)0 isQ, the Malcev
completion of Z, and (LX)1 = Ĥ1(�X) is the Malcev completion of
π2(X)⊗Q as a module over π1(X)⊗Q,

(LX)1 = lim
p
π2(X)⊗Q/Ip,

where Ip denotes the submodule generated by the (t − id)p(ai).
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3. The loop space homology of an F -space, Y

Here we identify Ĥ∗(�Y ;Q) in terms of a Sullivan minimal model (∧W, d)
forY . For this recall that the homotopy Lie algebra,L, for (∧W, d) is defined [5,
Chap. 2] by Lk = Hom(Wk+1,Q) with Lie bracket determined by the quad-
ratic part of the differential. Recall as well [5, Chap. 3] that (as with any min-
imal Sullivan algebra) (∧W, d) extends to an acyclic closure (∧W ⊗∧UW, d)
with homology justQ, and where the quotient differential in ∧UW = Q⊗∧W
(∧W⊗∧UW) is zero. Moreover, according to [5, §6.1],∧UW is equipped with
a diagonal which makes it into a graded Hopf algebra. Finally, we recall [5,
Chap. 3] the commutative diagram

(∧W, d) −−−−→ (∧W ⊗∧UW, d) −−−−→ (∧UW, 0)


 
 m�

APL(Y )−−−−−−−→ APL(PY) −−−−−−−→ APL(�Y)

Proposition 3.1. With the notation above, if Y is simply connected there is
a natural isomorphism of Hopf algebras

UL
∼=−→ H∗(�Y ;Q)

restricting to an isomorphism

L
∼=−→ LY

of graded Lie algebras.

Proof. SinceH ∗(Y ;Q) has finite type, Theorem 5.1 in [5] asserts thatm�
induces an isomorphism

∧UW ∼=−→ H ∗(�Y ;Q).
Corollary 6.2 in [5] then asserts that the dual isomorphism,

Hom(∧UW,Q) ∼=←− H∗(�Y ;Q)
is an isomorphism of graded Hopf algebras. On the other hand, Theorem 6.2
and Proposition 6.3 in [5] provide a natural isomorphism

UL
∼=−→ Hom(∧UW,Q)
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of graded Hopf algebras. SinceL andLY are respectively the primitive sub Lie
algebras of ULW and H∗(�Y ;Q) it follows that the composite isomorphism

UL ∼= H(�Y ;Q)

restricts to an isomorphism L
∼=−→ LY of graded Lie algebras.

On the other hand, because Y is an F -space, the natural map Y → |∧W, d|
is a homotopy equivalence [5, Theorem 1.4]. We use this to identify π1(Y ) =
π1(|∧W, d|). Thus Theorem 2.4 in [5] produces a natural isomorphism of
groups,

π1(Y )
∼=−→ GL,

where GL is the group of group-like elements in the complete Hopf algebra
ÛL0.

Proposition 3.2. The inclusion ofGL extends uniquely to an isomorphism

̂Q[GL] −→ ÛL0

of complete Hopf algebras.

Proof. Because exp and log are inverse bijections between L and GL, it
follows thatGL is nilpotent and eachGk

L/G
k+1
L is a rational vector space. Thus

it follows from [8] that the completion, ̂Q[GL] satisfies

̂Q[GL] = ÛP,

where P ⊂ ̂Q[GL] is the primitive sub Lie algebra. In fact the inclusion of P
extends uniquely to a morphism

p: ÛP −→ Q̂[G].

By [8, Appendix A, Corollary 3.9], the linear mapP → ÛP is an isomorphism
onto the primitive sub Lie algebra of ÛP. By [8, Appendix A, Corollary 2.18],
p is thus an isomorphism.

On the other hand, the inclusion GL → ÛL0 extends to a morphism̂Q[GL]→ ÛL0 which sendsGL to itself. Moreover, by [8, AppendixA, Corol-
lary 3.7] GL is the group of group-like elements. Thus we obtain a morphism

ÛP −→ ÛL0

which is the identity on the group of group-like elements. Since exp and log

define inverse bijections P
∼=−→ GL and L0

∼=−→ GL and so the morphism
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above restricts to an isomorphism P
∼=−→ L0. Thus altogether we obtain the

natural isomorphism ̂Q[GL]
∼=−→ ÛL0

extending the identity in GL.

We can now prove

Proposition 3.3. Suppose L is the homotopy Lie algebra of the minimal
Sullivan model, (∧W, d), of an F -space Y . Then with the notation above there
is a natural isomorphism of complete Hopf algebras,

ÛL
∼=−→ Ĥ∗(�Y ;Q),

restricting to an isomorphism

L
∼=−→ LY

of graded Lie algebras.

Proof. First recall the isomorphism of Hopf algebras

H∗(�Y ;Q) = Q[π1Y ]⊗H∗(�Ỹ ;Q)
in which the product uses the action of π1(Y ) onH∗(�Ỹ ). Passing to comple-
tions gives

Ĥ∗(�Y ;Q) = ̂Q[π1Y ]⊗H∗(�̃Y ) = ÛL0 ⊗ UL≥1 = ÛL.

It follows from [5, Theorem 2.5] that the middle identification is an isomorph-
ism of graded Hopf algebras, and this is trivially true for the other two. Thus

this isomorphism H∗(�Y ;Q) ∼= ÛL restricts to an isomorphism L
∼=−→ LY ,

because [5, Prop. 2.3] L is the primitive subspace of ÛL.

4. The main theorem

Theorem 4.1. LetX be a connected CW complex with minimal Sullivan model
(∧V, d). Then LX is the homotopy Lie algebra LV of (∧V, d) and

depthX ≤ catX.

First recall that the homotopy classes ofF -mapsfα:X→ Yα are in bijection
with the homotopy classes of morphisms

ϕα: (∧Wα, d) −→ (∧V, d)
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to the minimal Sullivan model of W , where dimWα < ∞. Moreover, fα is
F -surjective if and only ifQ(ϕα) is injective. In particular, the inverse system
of the main theorem is isomorphic to the inverse system of homotopy classes
of such morphisms, with

ϕβ ≥ ϕα ⇐⇒ ϕα ∼ ϕβ ◦ ϕαβ
for some ϕαβ : (∧Wα, d) −→ (∧Wβ, d).

Now any morphism of minimal Sullivan algebras ϕ: (∧W, d)→ (∧V, d)
with dimW <∞ satisfies ϕ(∧W) ⊂ ∧S for some finite dimensional subspace
S ⊂ V with ∧S preserved by d. It follows that the homotopy classes of
inclusions ϕα: (∧Wα, d) → (∧V, d) extending the inclusion of a subspace
Wα ⊂ V form a cofinal set

J = {α}
in our inverse system.

Now observe that in J ,

β ≥ α ⇐⇒ Wα ⊂ Wβ,

since in this case the map Q(ϕαβ) is just the inclusion Wα ↪→ Wβ . (This
follows at once from the fact that Q(ϕα) and Q(ϕβ) are just the inclusions of
Wα and Wβ in V .)

Denote by Lα the homotopy Lie algebra of (∧Wα, d) and by LV the homo-
topy Lie algebra of (∧V, d). Then

sLV = Hom(V ,Q) = lim←−
α∈J

Hom(Wα,Q) = lim←−
α∈J

sLα.

It follows from the definition of the Lie bracket [5, Chap 2] that this defines
an isomorphism

LV
∼=−→ lim←−

α

Lα

of graded Lie algebras. Moreover, the surjectionsLV → Lα induce morphisms
ULV → ÛLα , which define a morphism

ULV −→ lim←−
α

ÛLα.

Proposition 4.2. LetX be a connected CW complex. Then there are natural
isomorphisms

LV
∼=−→ LX and lim←−

α

ÛLα
∼=−→ Ĥ (�X)
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which make the diagram

lim←−
α

ÛLα
∼=−−−−−−→ Ĥ (�X)

ULV
∼=−−−−−−−−→ ULX

commute.

Proof. In view of Lemma 2.1, this is immediate from the isomorphisms

Lα
∼=−→ LYα and ÛLα

∼=−→ Ĥ (�Yα;Q) of Proposition 3.3.

As described in the previous section, we have natural isomorphisms

Hom(∧Uα,Q) ∼=−→ ÛLα.

Moreover, it follows from [5, §6.2] that these isomorphisms convert right
multiplication byLα to the dual of the holonomy representation ofLα in∧Uα .
Thus we obtain

ExtULX (Q, Ĥ (�X)) ∼= ExtULV (Q, lim←−
α∈J

ÛLα)

∼= ExtULV (Q,Hom(lim−→
α∈J

∧Uα,Q))

= Hom(TorULV (Q, lim−→
α

∧Uα),Q).

But if (∧V ⊗∧U, d) is the acyclic closure of (∧V, d) then

∧U = lim−→
α∈J

∧Uα

as LV -modules, because V = lim−→α∈J
Wα . This yields

ExtpULX (Q, Ĥ (�X)) = Hom(TorULV
p (Q,∧U),Q).

Now by definition ([2]),

SdepthLV = least p (or∞) such that TorULV
p (Q,∧U) �= 0.

This establishes
depthX = SdepthLV .

By [2, Theorem C], SdepthLV ≤ cat(∧V, d) ≤ catX, and the main theorem
is proved.
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5. The morphism π∗(�X) ⊗Q → LX: examples

We begin with the Eilenberg-MacLane space X = K(V, 3), where V is a ra-
tional vector space whose dimension is countably infinite. Denote by x1, x2, . . .

a basis of V and by (∧W, d) a minimal Sullivan model for X. Denote by
yi ∈ Hom(V ,Q) the elements defined by 〈yi, xj 〉 = δij . The series

ω =
∑
i≥1

y2i−1∧y2i

is then a well-defined element in Hom(∧2V,Q).

Lemma 5.1. ω /∈ ∧2(Hom(V ,Q)).

Proof. Denote by Vm ⊂ V the subspace generated by x1, . . . , xm. Then
the restriction of ωm to V2m is

m! y1 ∧ y2 ∧ . . . ∧ y2m.

Therefore ωm �= 0 for all m. This implies that ω /∈ ∧2(Hom(V ,Q)) because
if ω =∑r

i=1 fi∧gi then ωr+1 = 0.

Proposition 5.2. The minimal Sullivan model (∧W, d) for X satisfies the
following properties:

H ∗(X;Q) = Hom(∧V,Q), W 3 = Hom(V ,Q),

W 4 = W 5 = 0, and W 6 �= 0.

Proof. Let e be a base point in S3 and let ϕe: (S3)r → (S3)r+1 be the map
defined by ϕx(u1, . . . , ur) = (u1, . . . , ur , e). We form the space (S3)∞ =
lim−→r

(S3)r . Since homology commutes with direct limits, H∗((S3)∞;Q) =
∧V , and H ∗((S3)∞;Q) = Hom(∧V,Q). On the other hand, since each map
Sq → (S3)∞ factors through some (S3)r , we have (S3)∞ = X. By construc-
tion W 3 = Hom(V ,Q), and by Lemma 5.1, W 6 �= 0.

Denote by z an element of W 6 corresponding to the class ω. The rational
homotopy Lie algebra π∗(�X) ⊗ Q is isomorphic to s−1V and LX is the
dual of sW . Therefore the morphism π∗(�X)⊗Q→ LX is injective but not
surjective.

Now consider the map g:X→ K(Q, 6) associated to ω, and let

K(Q, 5) −→ Y −→ X
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be the pullback along g of the path space fibration onK(Q, 6). Since πq(X) �=
0 for q �= 3, π5(Y ) = Q, and π∗(Y ) = π5(Y )⊕ π∗(X) = π5(Y )⊕ π3(X) =
π5(Y )⊕ V .

Proposition 5.3. The map π∗(�Y) ⊗ Q → LY is neither injective or
surjective.

Proof. The relative Sullivan model for the path fibration has the form
(∧(c, u), d) with du = c and a basis element v ∈ π4(�K(Q, 5)) satisfies

〈u, sv〉 = 1.

The map c �→ z gives a (non-minimal) Sullivan model (∧W ⊗ ∧u, d) for Y ,
with du = z. Since z is a generator in∧W , the minimal Sullivan model of Y is
(∧W/(z), d). Thus (LY )2 = Hom(W 3,Q) and the map V → Hom(W 3,Q)
is not surjective.

On the other hand π4(�Y) ∼= π5(Y ) = Q and the image of this element is
zero inLY , sinceW 5 = 0. This shows that π4(�Y)⊗Q→ LY is not injective.

Proposition 5.4. The Lie algebra L = π∗(�Y)⊗Q is the quotient of the
free Lie algebra L on the elements ai = s−1xi by the ideal I generated by L3,
the brackets [ai, aj ] for |i − j | > 2, and the elements [a2i−1, a2i]− [a1, a2].

Proof. Note first that L3 = 0 for degree reasons. Then fix integers j and
k and let h:Q2 → V be the injection of the sub vector space generated by xj
and xk . The morphism h induces a map h:K(Q2, 3)→ X and we denote by
Z the pullback of Y over h:

K(Q, 5) =−−−−−−→ K(Q, 5)

Z �−−−−−−−−−−−→ Y

K(Q2, 3) h−−−−−−−−→ X.

In the case (j, k) = (2i − 1, 2i), the minimal Sullivan model of Z is given
by (∧(y2i−1, y2i , u), d) with du = y2i−1y2i . Then the relation between the
quadratic part of the differential and the Lie bracket of LY [4, Prop. 23.2]
gives

〈du, sa2i−1, sa2i〉 = −〈u, s[a2i−1, a2i]〉.
Since Z is a nilpotent space with finite Betti numbers, in π∗(�Z) we have
v = −[a2i−1, a2i]. By naturality, this is also true in π∗(�Y). Since the left
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hand side is independent of i, in π∗(Y ), we have [a2i−1, a2i] = [a1, a2] for all
i.

When |j − k| > 2, then H ∗(h)ω = 0 and therefore the minimal Sullivan
model of Z is (∧(yj , yk, u), d = 0). It follows in the same way that [aj , ak] =
0. This gives a surjection L/I → π∗(�Y)⊗Q, and since s−1V ⊕v maps onto
L/I , this surjection is an isomorphism.

Finally consider the space T obtained from the cohomology class ω · [y1] ∈
H 9(X;Q),

K(Q, 8) −→ T −→ X.

The minimal Sullivan model of T is (∧W ⊗ ∧t, d) with dt = zy1, so LT is
non abelian. On the other hand, for degree reasons, π∗(�T )⊗Q is an abelian
Lie algebra.
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