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AN ELEMENTARY INEQUALITY BETWEEN
THE PROBABILITIES OF EVENTS

P. ERDOS, J. NEVEU, A. RENYI

Introduction and summary.

For every positive integer » and any real number « in the open interval
(0,1), let ¢,(x) be the least real number ¢ with the following property.

ProperTY (P,): For any sequence {A;, 1<i=<n} of n evenls in an
arbitrary probability space (2,57, P) such that P(A;A4;) < «? for all 4, j (i +7),
the following inequality holds:

n

(1) S [P(A))—a] £ ¢

The exact value of the constant ¢,(«x) is given in Section 2; however,
the essential fact is that it tends to a finite limit as » goes to infinity.
More precisely, it is found that e,(«)=3(1 —«) provided nx or (n—1)x
is an integer (hence ¢, (3) =} for every n) and that ¢,(x) = }(1 — &) + O(n1)
for fixed «. It is also shown that it is possible to find, for every n and «,
a sequence {A;*,1<¢=n} such that

P(A*) = a+e,(x)/n, PAF*A¥) = o (0%]);

for this sequence (1) is an equality. Such an extremal sequence is con-
structed in [0, 1], for the case x =1, n=3 (mod4) by use of the method of
quadratic residues; this example originated the present study.

After having completed this work, we became aware of a paper by
S. Zubrzycki [2] which deals with the same problem in the special case
when P(4,)=w, fori=1,...,n and P(4;A4;)=w, for i +j; the inequality
which he obtains between w, and w, is essentially equivalent with our
Corollary 1. Among the extremal cases where the inequality becomes
an equality are those in which the P(4,) and the P(4;4;) have the
constant values mentioned above and already found by Zubrzycki. De-
spite the overlapping of the results and the similarity of the methods we
have considered the publication of the present paper worth while not
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only because of the somewhat greater generality of our results but also
because of the difference in point of view.

1.

In order to be able to calculate ¢,(«) easily, we shall first establish
the following results.

THEOREM 1. For every n and «, the constant ¢,(x) is also the least real
number & having the following property:

ProrErTY (P,): For any random variable N defined on an arbitrary
probability space (2,54,P) and with values in the interval {0,1,...,n} of
integers, such that E[N(N —1)] = n(n— 1)x2, the following inequality holds

E(N) £ nax+e.

Proor. Suppose first that ¢ is a real number having property (P,).
Given a sequence {4;, 1<i=n} of n events, let N=37"_,1,, where 1,
denotes the indicator of A4; then N is a random variable taking its
values in {0,1,...,n} and satisfying the relations

BIN] = S P(4), EN(N-1)]=33P4,4,).

ikg
Hence if the sequence {4;} is such that

22 P(4;4) £ n(n—1)a2,
Y
and a fortiori, if P(4;4;) <« for every ¢, j (¢ +J), then by property (P,)
n
S [P(A;)—a] = E[N]—nx < €.
1
This shows that ¢ has property (P;).

Conversely, suppose that ¢ is a real number having property (P,) and
let {p;, 0=1<n} be a probability law on the set {0,1,...,n}. Then it is
possible to construct a sequence {4, 1<i<n} of n events in a suitable
probability space (22,, P) such that a) the random variable N =37 ;1 .
has {p;, 0= <n} for probability law; b) the sequence {4} is symmetri-
cally dependent, that is, P(4, ...4,) depends only on the number e of
different indices %,,...,47,. In order to construct such a sequence, let
{A;,1=i=n} be a sequence of independent equiprobable events in a
suitably choosen probability space (£2,.2/,Q) and define a new probability
P on (2,4) by
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P(4) = 3 Q14 | N =]

it is then obvious that P[N =k]=p,; moreover P[4, ...4; |N=k]
depends only on the number of different indices i,,...,7,, because
Q[A4;,...4; | N=k] has this property for every k.

If the given law {p;} is such that X, k(k—1)p, <n(n—1)a%, then the
sequence {4;} constructed above is such that for every iy, jo (¢9%J,)

P(4,4;) = —— 3 3 P(4,4

'_1) ey

zk —1)p, £ a2.

n(n— 1)
Hence, by the property (P,) of ¢,
D kpr = 2 P(A;) < nxte,(x) .
x B

This shows that ¢ has property (P,) and finishes the proof of the theorem.

CoroLLARY 1. For every n and o, the constant e,(x) is the least real
number ¢ having the following property:

ProPERTY (P,'): For any sequence {A;,1<i<n} of n events in an ar-
bitrary probability space (.Q &/, P) such that

P(A4;4;) =

n(n 1) %;JZ

the following inequality holds:

(1) 2[P(A)-a] s
i=1

Proor. If a real number ¢ satisfies property (P,'), it clearly satisfies
(Py). The first part of the proof of the preceding theorem also shows
that if an ¢ satisfies (P,), it satisfies (P,’). The corollary then follows
from the equivalence of (P,) and (P,).

2.

In this section, we compute the supremum S of E(N) when N varies
in the class of random variables taking their values in the set {0,1,...,n}
and such that E[N(N-—1)]<C for a given constant C. In virtue of
Theorem 1 this will give us the constant ¢,(«x) by letting C=n(n—1)a?
and S=n+e¢,(«).
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Let v be the unique positive integer and 0 the unique real number in the
semi-closed interval [—1,1[ such that C=v(v+0). Then S=v+3(1+86).
Moreover the random variable N* with probability law given by

pf = 31-0), pk, = 31+0), py = 0 otherwise
s such that E(N*)=8, E[N*(N*-1)]=C.

To prove this result, first let » be the largest integer inferior or equal
to § and let 0=8—». Then notice that the supremum S of E(N) when
E[N(N —1)] = C may only be attained by random variables N with law
concentrated on the two point set {»,» + 1}; for suppose that N gives this
extremum and let A (resp. u) be the smallest (resp. largest) integral value
taken by N with positive probability, then, if A were strictly less than »
it would be possible to modify the law of N making p, and p, decrease
and p, increase keeping E[N (NN —1)] constant and thus, by the convex-
ity of the function wx(xr—1), causing E(N) to increase; since this is
impossible, one has 1=» and for a similar reason u=»+1 (except if
=0, in which case y=v). Obviously a variable N attaining the supre-
mum S is such that E[N(N —1)]=C (this could be proved, if necessary,
by slightly modifying the preceding argument).

By what precedes, the supremum § is attained by the variable N*
concentrated on {»,»+1} and with expectation E(N*)=v+o; this vari-
able is unique and its law is given by

pf =1-0, pk, =0, py =0 otherwise;

moreover C'=E[N*(N*—1)]=»(v+ 20 —1).

Finally, let 6=2¢—1 to obtain the result indicated above. The
representation of the constant C' as »(v+ 0) is unique for it follows from
—1=20<1 that » is the largest integer such that »(v—1)=C; equiva-
lently v is the largest integer such that » < }+(C+ %)!. It may also be
remarked that

8 = 3+(+40) = 1+(C+16%}
so that for large C, one has
S =Ct+4+0(CH).

The following final result will be obtained by letting C=mn(n—1)a?
and ¢, (x)=8 —na.

Let v be the largest integer such that v(v—1)<n(n—1)a2. Then

+ [nx —v][(n—1)x —] .

en(x) = ¥(1—w) %
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The second term vanishes when nox or (n—1)x is an integer (for then v
equals nx or (n— 1)x, respectively); for n — oo, it is of the order of 1/n.

The value of ¢,(x) given above is obtained by elementary computations
from the equations

ep(a) = S—nx; S =v+31+40); 0= (C—-1?)r; C=nn—1)2.

When nx is an integer, it follows from C=nx(nx—«) that v=na and
that 0= —«; similarly if (n—1)x is an integer, then »=(n—1)x and
O0=o; in both cases ¢,(x) reduces to 3(1 —«). When = increases to in-
finity, [n(n— 1)a?]} =nx — &+ O(1/n); hence

ep(x) = [m(n—1)a2P + 3 —nx+0(1/n) = }(1—«)+0(1/n) .

3. An example.

Using well known properties of quadratic residues we can construct
explicit examples which are extremal in the sense of the preceding
paragraph, for x=%. We shall need the following

THEOREM 2. Let p be a prime number such that p=3 (mod4). Put
p=4k—1. Let 74,7y, ...,7y,_, be all the quadratic residues mod p. Then
if d s any of the numbers 1,2,...,p—1, there are among the numbers
ri+d, j=1,2,...,2k—1, exactly k—1 which are congruent to some ry,
1<h=2k—1 (and k which are not).

Let us now define a sequence of subsets of the interval [0, 1) as follows.
Let A, be the union of the intervals

[0, —3—] and l:&, Qj})a j = 1a27 . "2k—1 .
4p Y

Let further 4, be obtained from A, by shifting it mod1 by the distance
dlp, d=1,2,...,p—1. For p="1, the sets Ay A4,,...,4, are shown in
Fig. 1. Denoting by P(A) the Lebesgue measure of the set 4 we have

@) pay=""1 2 1 L

On the other hand, according to the theorem on quadratic residues
mentioned above we have
3) P4,4,,,) = Pd,d) =231

jerj+dl — Od“4p 4p—4
ford=1,2,...,p—1-4;5=0,1,...,p—2. As a matter of fact the inter-
val [(r;+d)/p, (r;+d+1)[p) belonging to A, coincides (mod1) with an
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0 3 % 3 % % § 1

Fig. 1.

interval of A4, if and only if 7,4+ d is a quadratic residue, and thus for
k—1=(p—3)/4 values of j; further, if d is a quadratic residue then the
interval [d/p, (d+ })/p) belonging to A, coincides with  of an interval
belonging to A,, while if d is not a quadratic residue then p—d is a
quadratic residue mod p (p being of the form 4k — 1) and thus the interval
(o, 3/(4p)) belonging to A, coincides with § of an interval belonging
to 4, (namely of that obtained from the interval

[(p—d)/p, (p—d+1)/p)

by shifting it by d/p). Thus our system of sets 4,,4,,...,4,_, satisfies
the conditions P(4;4;)=1% for j+hA and
1 1 ,
P(AJ)=§+Z§ for j=0,1,...,p—1.

Hence if we consider the sets 4,,...,4,_; as events in the probability
space (2,7, P) where 2 is the interval [0,1), &/ the set of all measurable
subsets of .27, and P the Lebesgue measure, then {4,,...,4,_,} is an
extremal system of events (for « =4, n=p) of the required type.
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