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UNBOUNDED SOBOLEFF REGIONS

ROLF ANDERSSON

1. Introduction.

Let A be an open set in R", n>1, and let
1/q
uly = ( [u@pdn) ™, 1545+,
A

be the norm in L%(A4) with respect to Lebesgue measure de. A distribu-
tion % in 4, such that its gradient Vu belongs to L?(4), is called a Beppo
Levi function of type p. The space of all such functions equipped with
the seminorm

n
\Vaul, = 3 |oufox,,

=1

will be denoted by BLP(A4). If A is connected and A is the space of
constant functions in 4, the quotient BL?(4)=BL?(A4)/A is a Banach
space (Deny et Lions [4]).

We say that an open connected region A4 is a Soboleff region of type
(p9) if
(1) u e BLP(A) = (u+c)e LyA4)

for some constant ¢. The class of such regions will be denoted by Srq.
If 4 has finite measure, (1) is equivalent to

uwe BLP(4) = we Ly4).

Hence, if one of the regions 4 and B has finite measure and if both 4
and B belong to SP? and the intersection ANB is not empty then
AuB e 8P1. According to a classical result of Soboleff, SP¢ contains all
bounded regions with a sufficiently regular boundary, provided

/p = lg+1[n,  (1/p,1/q) * (1/n,0).

If this condition does not hold, S?¢ is empty.

We shall prove that S?2 contains unbounded regions with finite measure
only if
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76 ROLF ANDERSSON

(2) I/p = 1fg,  (1fp,1/g) + (0,0).

(Theorem 4). When it exists an unbounded region in S?? this region has
to be rather small at infinity. (Theorem 5).
In section 5 we construct unbounded regions with finite measure con-
tained in S?¢ for any (p,q) satisfying (2).
We show in section 6 that 8?2 contains regions with infinite measure
if and only if
p = 1jg+1/n,  (1/p,1/g) * (1/n,0).

The entire space is an example of a region in this class.
Finally we give a inclusion property for the Soboleff spaces Sre,
The subject of this paper was suggested to me by professor Lars Gar-
ding. I wish to thank him for his continuing interest and valuable advice.

2. General conditions.

Our first theorem gives a necessary and sufficient condition for
A € 874, if A is an open connected region of finite measure. This theorem
has been established and proved by Deny and Lions [4], but we state
it again here for completeness and reference. To formulate the theorem
we introduce a new class of functions,

Tr9A) = BLP(A) n LYA) .
This is a Banach space in the norm

[ulpg = [Vul,+ |ulg, ueTrPyA).

THEOREM 1. If A is an open connected region of finite measure, then
A € 872 if and only if there exists a constant K such that
(3) inf |u+4c|, = K|Vu|, for all ueTri4).

c=const.

Proor. (i) The condition is necessary. Denote by A the constant
functions on A. Consider the quotient space 77%(A)=T?9(A4)/A. This is
a Banach space in the quotient norm

lu|,g = inf |u+c|,, = inf [u+c|,+|Vul, .
c=const. c
Let I" be the identical mapping
-~ from 7T%9(A4) into BLr(A).
This mapping is linear, continuous, one-one and, if 4 € 879, it is also

onto. From a theorem by Banach (see Bourbaki [2, p. 34]) it then fol-
lows that I"is an isomorphism and hence we have the desired inequality.
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(ii) The condition is sufficient. Suppose that the inequality (3) is valid
and consider the identical mapping I" from 774(4) into BL?(4). We have
to prove that I" is onto. As the inequality (3) is valid, the image of
TP9(4) is closed in BLP(A). Thus it is sufficient to show that 7'72(4),
considered as a subspace of BL?(4), is dense in BL?(A). Let u € BL?(A).
It is then sufficient to prove there exist u;, € 77%(A) such that

[V(u—ug)|, >0 when kb - +oco.

It is no restriction to assume that » is real. Set

k when u(x) > k,
up(x) = { u(x) - |u@)| < K,
-k - ulx) < —k.

Since m(A4)< + oo, u, € T?YA). Further by construction %, - u in
BL?(A) and this completes the proof.

ReEMARK 1. We can replace the inequality (3) by
(4) luly = K(IVulp+[L(w)]) ,

where L is a continuous, linear functional on the space 772(A) with
L(1)+0. That (4) implies (3) is obvious. For the proof that (4) is neces-
sary for 4 € 8?2 we refer to Bjorup [1]. His proof is for the case (p,q)=
(2,2), but the general case can be proved using the same reasoning.

REMARK 2. Let 4’ be an open subset of 4 with the following property:
there exists a function f with bounded gradient which is equal 1 on A4’
and vanishes outside some open set 4’’ belonging both to SP? and to S??
such that A’ 4" < A. Then A € 8¢, if and only if

(4) luly = K|Vul,
for all u € T?2(A) which vanish in 4’. In fact, if v € BL?(4) then
V(fu) = (Vfu+fVu) e Lr(4")

(weLr(4") as Vu e L?(A")), and hence fue L2(A"). But then we
also have fu € L2(A4). Now (u—fu) vanishes in 4’ and it follows from
(4'), as in the proof of the theorem, that (u—fu) e L%(4). Thus

u = (fu+ (u—fu)) € LI(A4)

and we have shown the sufficiency of the condition. The proof of neces-
sity is trivial.

Remark 3. The property A € S?¢ is invariant under Lipschitz trans-
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formations, i.e. one—one mappings F such that F and F-! have bounded
gradients.

Some of the classes SP¢ are empty. We have the following theorem due
to Soboleff [7].

THEOREM 2. If SP? is not empty, then
(5) Yp = lg+1/n,  (1/p,1/g) # (1/n,0).
Proor. Let 4 € 872 and assume that A contains the origin. Put
w(@) = |o|~HP+h(x) ,

where £ is infinitely differentiable with compact support and equal to 1
in a neighbourhood of the origin. If 0 <A<n, then Vu € L?P(4). Since
A € 879, y € LYA) by definition. But then it is necessary that

(Ap-1)g <n for O<i<n.
Thus
(nfp—1)g £ m,
and the first part of the theorem is established.
To prove the second part we observe that Vv € L*(4) where (with A

as above)
v(x) = |log|z|* h(x), O<i<l—1/n.

But v ¢ L*(4) and hence S** is empty. We shall see in next section that
for bounded regions 4 with sufficiently regular boundary the conditions
(5) are also sufficient for 4 € Spe,

3. Bounded regions.

We say that a region 4 has a regular boundary (in the sense of Sobo-
leff) if every boundary point of 4 is the vertex of a cone C contained in
A which is the image of some circular cone

Co: zl4x2+ ... 42,2 < bry?, O<z,<a

under an orthogonal transformation.
The following theorem is due to Soboleff; for the proof we refer to
Deny et Lions [4] and Soboleff [7].

THEOREM 3. Any bounded open connected region with a regular boundary
belongs to SP? provided

l/p £ 1/g+1/n  and (1/p,1/g) + (1/n,0).
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Remark. The study of bounded regions in 8P? with a non-regular
boundary seems to be an open field. It is a well-known fact that not all
bounded regions have the property stated in theorem 3. An example
of a bounded region which does not belong to S22 is given in Courant—
Hilbert [3, p. 521].

4. Unbounded regions of finite measure. Necessary conditions.

If we require S¥? to contain unbounded regions theorem 3 has to be
sharpened.

THEOREM 4. If SP? contains an unbounded region A of finite measure,
then
1/p = 1jg and (1/p,1/g) % (0,0).

Proov. The last statement is trivial. In fact, |x| has a bounded gradient
in R” but tends to + oo at infinity. Let ¢(x)>0, x40, be a continuously
differentiable function, homogeneous of degree one. Further, let

u(x) = y(p(x))

where (s) =1, 4(s) vanishes for s<#—9, §>0, is equal one for s>¢ and
increases linearly from ¢—¢6 to ¢. Since u is bounded, w € L?(4), and
since Vu has compact support, Vu € L?(4). Hence u € T?4A). Since
A € 8?2, remark 1 of theorem 1 now gives

luly < K(]Vu]p+|L(u)[).

Choose an L with compact support. Then L(u)=0, if t— ¢ is sufficiently
large. Thus the above inequality gives

(Afdx)l/q K6-1< [ da

4
t—d<p(r)<t
Put (for the notation see e.g. [5, p. 35])

(6) palt) = [ 8t —p@)de,

A

1/p

IIA

where ¢ is the Dirac function. In this notation we can write the above
inequality as

0 1/q
(7) < @ (s)ds)
,f y

Choose s; such that

t

1/p
K-6-1 ( f (pA(s)ds> .
)

A
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f¢A(8)ds =27

8

and set d;=s;—s;_;. If we choose ¢=s; and §=4; in inequality (7) we get

2-te < K.(}i—l.g—lm .
Thus
J;

1

IIA

K- (2up-l/9)=i

If p<q the series 34, is convergent, which contradicts the assumption
that A4 is unbounded. Hence ¢ <p and the theorem is proved.

We shall need the following lemma.

Lemma 1. If ge L7(1, + ), 1<r< + oo, then
ft) = f (g(s)/s) ds € Lr(1, + o) .
12

Proor. It is no restriction to suppose that g(s) = 0. It is then sufficient
to show that the function

a

Fla) = f(f(t))rdt, l<a< +oo,

1

is bounded. Holder’s inequality gives

N Y r ;o 1-1/r
f@) = f(g(S)/s)ds < (f (g(s))"ds) < f s—r/(r—l)ds)
: ; ;
%® r

IIA

Kit-vr (f 9(8)" d&)
1

Hence f(t)'t is bounded. Applying Hélder’s inequality once again, we
obtain by partial integration

[y = wrars + »- [ ror-rowar
1 1

oo a 1-1/r , r
< K!g(s)'ds +r- (J.f(s)'ds) (If g(s)’ds) .

It follows from this inequality that F(a) is bounded which completes
the proof.
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Let ¢ and ¢4 be as in the proof of theorem 4. If we assume that ¢,
is decreasing, we get the following necessary condition for 4 to be of

type (»,9).

TaEOREM 5. If A is an unbounded region of finite measure, if @ 4(t)
18 decreasing (for large t), and if A € 8P4, (p,q) =+ (+ 0,1), then

®) w07 [ pule)ds e Lr(, +o),

where
1/r = 1jq—1[p; 1fr+1[r' =1.

Proor. Assume g<p and (p,q)+(+oc,1). We first prove

ftrqu(t)dt < +oo.
1

Let l,=0 and I;= 377 (¢/p)* fori=1,2,... . Then gl, > r, wheni — + oo.
Put
u(x) = |z, ¢ =0,1,2,....
Then
(9) Vg alp S nlpq @™, £ nrgt(jug)ee .
In fact,

lin=1=(@UWp, ¢lasr.
Now by hypothesis, m(4)< + oo and 4 € S72. Hence by (9)
u; € LY(A) = Vu,,, € LP(4) = u;,€LY4).

Since u, € L(A), this shows that

u, € LI(A), Vu, e Lr(4),
that is u; € TP94)  foralli.
Remark 1 of theorem 1 now gives

[uslg = K'(Ivui|p+|L(ui)|)'

Since |Vu,|,= K, >0 for some constant K; and all ¢>0, and as we can
choose an L such that the sequence {L(w;)}, is bounded, we have for

some K .
[ugly < K-|Vuyl, foralle > 0.

It now follows from inequality (9) that

luilq p-S K(lui-llq)q/p .

Math. 8cand. 13 — 6
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We get by induction

fuily < Klug @ .

Hence the sequence {|u,| };~, is bounded and as u,(x)? — |z|” at every

point it follows that |z|"€L(A4). As ¢(x) is continuous and homogeneous
of degree one, there exists a constant ¢ such that ¢(z)=<c|z|. From this
we conclude that

(10) fy%mmt<+m.
0
Since ¢, is decreasing we have

[04)ds < gy [ purrds.
12 t

From (10) we obtain that

f%@“®=f@@mw,
t 12

where g€ L"(,+ o). The theorem now follows from lemma 1 when
l<r< +o0.

It remains to prove the theorem when p=g¢= +oc. If we choose
6=1 in the inequality (7) we get

o0 t41
f Ppa(s)ds = KJ p(8)ds .
12

t+1

Thus, if 41
f p4(8)ds = Ko 4(t) for some K,
12

which of course is the case if ¢ ,(¢) is decreasing, we obtain
f(p 4(s)ds = Ko(t)  for sufficiently large ¢ .
14

Hence the theorem is also proved for the case p=gq+ + oo, that is, when
r= + oo.

REMARK 1. In the case p=gq we need not assume that ¢, is decreasing.
It follows from the proof that it is sufficient to suppose that there exists
a constant K such that
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t+1

f p4(8)ds = K-¢lt) for sufficiently large ¢ .
t

REMARK 2. It is obvious that if 4 € §*! we have

flx]dx < 400,
A

5. Unbounded regions of finite measure. A sufficient condition.

In this section we prove that the necessary condition of theorem 5
for A € 879 is also sufficient if we restrict ourselves to a special type of
unbounded regions of finite measure. For the proof we need three lem-
mas.

We assume in this section that ¢<p and ¢ < + . If p=¢g= + co there
exists of course no unbounded region in S?4. We define r and ' by

1/r = 1jqg—1/p; r+1fr' = 1.
Let g be a positive, summable function. Further, let L,2(4) be all func-
tions w in A4 such that ug'/? e LY(A4). We denote by T ,#9(4) all functions
u such that v € L,2(4) and Vu € L,*(4). We now have

LeMMA 2. Let g be a positive function such that

1@ = g0 [ glo)ds € L0, +e0).

Then

[ 1/q o 1/p
( | Iulqg(t)dt) <K ( | (du/dt)ﬂg(t)dt)
0 0

for some constant K and all functions u € T 290, + co) which vanish in
a neighbourhood of the origin.

Proor. It is sufficient to prove the lemma for functions v with compact
supports in (0, + o). In fact, these functions constitute a dense subspace
of the functions in 7',P%(0, 4 co) which vanish in a neighbourhood of the
origin.

Further, it is no restriction to suppose that w is real. Since u has
compact support we obtain by partial integration

f lujtg(s) ds < q f (|u|‘1-lidu/dt[ f g(s)ds)dt
0 0 t

<q [ ulo-tg(eya-re dufdilg(t)»f @) dt
0
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The last inequality follows from the hypothesis on g. If we apply Hol-
der’s inequality we get

oo

0o oo 1-1/q /p , > 1r
[ s o [1wegwrae) (o) ~([rera)
0 0 0

0

il 1/q ]
(f !ulqg(t)dt> <K ( f |du/dt|Pg(t)dt>
0 0

and the lemma is proved.

We say that 4 € S;P? if Vu e L,»(4) implies that (u+c)e L,%(A4) for
some constant ¢. In this notation we can write lemma 3 as follows.

Hence,
1/p

Lemma 3. Let g(x,) be a positive, summable function and

B={r|x,>0,22+...+x,2<1}.
Then B e 87 if

g(t)-vr f g(s)ds € L7(0, + o) .
t

Proor. Theorem 1 with its remarks is valid for these generalised Sobo-
leff regions. It follows from remark 2 that it is sufficient to show that
there exists a constant K such that
(11) lg*/2ul, = Klg'"Vul,
for all v € T,#%B) which vanish for e.g. 0 <z, <1. For these functions
we obtain by lemma 2

1/p

oo 1/q =)
(f lu(xl)lqg(xl)dxl) =K (f ](3%/3xl)x1]1’g(xl)dxl)
0 0

almost everywhere in S={z |z;=0,2,2+ ... +x,2<1}. If we integrate
this inequality over S we get

00

*® a/p
[ [ luitg@ydz, < K [ da ( | |(au/axl)x1|pg<xl)dx1)
S 0 S 0

L a/p
S K||de ( |0/ 0z, |P g (2, ) da )) .
[ (] o

Hence (11) is valid, which proves the lemma.
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Let f be the one—one mapping from A4 onto 4’ which is given by
' = filxy, ..., 2,), 1=12...,n,
where the f; are continuously differentiable. Put
foo = fifé,, k=12 .n.
We write |V|2|V’| if

n

2 4fu

i=1

1\

n
2
k=1

for all complex numbers a,.

Let g and ¢’ be two positive, summable functions in 4 and A4’ respec-
tively. We denote by dx/dx’ the Jacobian of the mapping f and write
|dx/dx'|g~g’ if there exist two constants 0<c; <c, such that

19’ (%) < |dafdx’|g(x) < cp9'(x) .

In this notation we have the following lemma.

n
Z ||
=1

LeEmMMA 4. If there exists a continuously differentiable one—one mapping
from A onto A' such that c|V|=|V'| for some constant ¢ and such that
|dxfdx'|g ~ ', where g and ¢’ are two positive swmmable functions, then

A" e8Pt => AeSpe.

Proor. The proof is obvious. In fact, the inequality

inf|(u+e)glel, < KlgUoVul,,  we T,9(A’),

follows immediately from

inf|(u+c)g'V9|, = K|g'VPVu|,, ueTPA),
c

and the lemma now follows from theorem 1.

We can now state our main theorem, which follows imediately from
lemmas 3 and 4.

THEOREM 6. Let A be an unbounded open comnected region of finite
measure and assume that there exists a one—one, continuously differenti-
able mapping f from A onto

B={x|x,>0,2%+ ... +x,2<1}

such that c|V|2|V'| for some constant c. Further, assume that there exists
a continuously differentiable function @4(x)>0, x+0, homogeneous of
degree one, such that |dx/dx’| ~ @ 4(x) and
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fz|zed, px)=t}) = Bn {x|x,=t}.
Then A € SPe if

9007 [ pa(e)ds € Lr(,+o0).

t

THEOREM 7. Let A={x|2,>0, 2,2+ ... +x,2<g(x,)}, where g is a
positive, decreasing and continuously differentiable function. Then A € SP-4if

oo

g(t)—(n—l)/r'fg(s)n_lds e Lr(, +oo).

t

Proor. Denote by A’ the image of 4 under the transformation

!
) = 2 — (X2 + ... +2,)2,
x = x;, t=23...,n.

Let A*=A4'n{x|x,>0}. Then A* is of the same type as 4 and the
corresponding g* is a positive, decreasing and continuously differentiable
function which satisfies the condition of the theorem. Further, the deriv-
ative of g* is bounded by 1. It is easy to see that A € 8?2 if and only if
A* e Sre. In fact, the transformation is a Lipschitz mapping. Hence,
it is no restriction to assume that the derivative of g is bounded.
Consider now the mapping from 4 onto B which is given by

x) =2
z = (1gx))z;, 1=23...,n.

It is possible to choose a continuously differentiable function ¢(x)>0,
x+0, homogeneous of degree one, such that for ¢>1

An{x|x,=t} = An {x| px)=t}.

To prove that 4 € Sr? it is sufficient to show that f and ¢ have the
properties in theorem 6. From the condition imposed on ¢ in the hypo-
thesis, the nature of ¢ and the fact that

defdx’ = g(x)" ' = gu(x) for 2, > 1

we see that it only remains to show that there exists a constant ¢ such
that ¢|V|=|V’|, that is,

o

n

¢

k=1

n

2 ife

=1

a— (¢ @) g(y) §2 204

+ f lailg(xl)l) 2 ﬁ la,] .
1=2 i=1
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for all complex numbers a;. This is obvious, sinceg’,gand ;,9=2,3...,n,
are bounded. Thus f and ¢ satisfy all the conditions of theorem 6, and
hence we have A € Sre,

Remark. The proof is also valid if g is continuously differentiable
except at a countable set of points having no finite point of accumulation.

CoroLLARY. Let g(t)=t-2 Then A € 8?2 if and only if
(n—1)a > r.

This follows from theorem 5 and 7 after some calculation. Further,
if g(t)=e~! then the corresponding A € 877 provided ¢<p and ¢ < + .

6. Regions of infinite measure.

Let 4 be an open connected region of infinite measure. In this case
theorem 2 can be sharpened.

THEOREM 8. If A is of infinite measure and A € SP2, then

1/p = 1/g+1/n and (p,q) + (n, +o0).

Proor. It follows from theorem 2 that it is sufficient to prove

1/p 2 1/g+1/n.
Put

f|x["‘h(x)dx < 400

k= suplzx
4

where £ is infinitely differentiable, equal to 0 in a neighbourhood of the
origin and equal to 1 for || >1. We have that

V(jx#?+1h(x)) € Lr(A)  for A<k.
Hence
|lx|¥P+1h(x) € Lo(4),

since 4 € 8P4, But then we must have

Ap+1l)g £k for A<k.

Hence
(klp+1)g < k.

We see from this that k+ 0, thus k<0 by the definition of k, as m(4)=
+oo. The inequality now becomes

l/p 2 1/g—1/k .
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But since 0>k > —n, we finally obtain

1/p z 1/g+1/n,

which completes the proof.
From the proof we get k= —n. One can also derive that

f|x|—nh(x)dx = 4oo.
A

If p and g are as stated, then there exist regions of infinite measure
which belong to S?2. The whole space R is such a space (see Schwartz

[6, p. 40]).

7. Inclusion properties.
ProrosiTiON. If

1/g—1/p 2 1go—1/py > —1/n, g%+ and p2p, or g2 4,
then SPito = SPa

Proor. If 4 € 877 we get from theorem 8 and the above inequality
that m(A4) < + 0. Hence, L2(A4)<=L"(4) if r £ q (use Holder’s inequality).
Now it follows from the definition of S7¢ that S»r <872 if ¢ <r and that
Srec 872 if r<p. We see from this that it is sufficient to prove the
proposition for

PZPo 290 ¢<+oo and 1/g—1/p = 1/go—1/p, .
Let now 4 € 8P, Consider all u € 7%9(A) which vanish in
A" = {x||x—x<d, 6>0, ¢y d}.

If § is sufficiently small we get that A fullfills the conditions in remark 2
of theorem 1. We assume that u is real. Then v=|u|?% ¢ L%(4). Fur-
ther, Vo € LP(A4) since

IVo| < g/qo|ul 97D |Vu| e LP(A)
and
1/po = 1/p—1/g+1/g, .

Since A € 8P*% and all v € TP*%(4) and vanish in 4’ we obtain from (4')
that

[vlgy S Kle]po .
By Holder’s inequality we get from this

(lulg)?® < K|u| 27| Vul, .
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Hence,
[uly = K|Vul,

for all v € T7%(4) which vanish in 4" and the proposition now follows
from remark 2 of theorem 1.
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