UNBOUNDED SOBOLEFF REGIONS

ROLF ANDERSSON

1. Introduction.

Let A be an open set in \mathbb{R}^n , n>1, and let

$$|u|_q = \left(\int\limits_A |u(x)|^q dx\right)^{1/q}, \qquad 1 \leq q \leq +\infty,$$

be the norm in $L^q(A)$ with respect to Lebesgue measure dx. A distribution u in A, such that its gradient ∇u belongs to $L^p(A)$, is called a Beppo Levi function of type p. The space of all such functions equipped with the seminorm

$$|\nabla u|_p = \sum_{i=1}^n |\partial u/\partial x_i|_p$$

will be denoted by $BL^p(A)$. If A is connected and Λ is the space of constant functions in A, the quotient $\dot{B}L^p(A) = BL^p(A)/\Lambda$ is a Banach space (Deny et Lions [4]).

We say that an open connected region A is a Soboleff region of type (p,q) if

(1)
$$u \in BL^p(A) \Rightarrow (u+c) \in L^q(A)$$

for some constant c. The class of such regions will be denoted by S^{pq} . If A has finite measure, (1) is equivalent to

$$u \in BL^p(A) \implies u \in L^q(A)$$
.

Hence, if one of the regions A and B has finite measure and if both A and B belong to S^{pq} and the intersection $A \cap B$ is not empty then $A \cup B \in S^{pq}$. According to a classical result of Soboleff, S^{pq} contains all bounded regions with a sufficiently regular boundary, provided

$$1/p \le 1/q + 1/n, \qquad (1/p, 1/q) \ne (1/n, 0).$$

If this condition does not hold, S^{pq} is empty.

We shall prove that S^{pq} contains unbounded regions with finite measure only if

Received November 6, 1962.

(2)
$$1/p \le 1/q$$
, $(1/p, 1/q) \ne (0, 0)$.

(Theorem 4). When it exists an unbounded region in S^{pq} this region has to be rather small at infinity. (Theorem 5).

In section 5 we construct unbounded regions with finite measure contained in S^{pq} for any (p,q) satisfying (2).

We show in section 6 that S^{pq} contains regions with infinite measure if and only if

$$1/p = 1/q + 1/n, \qquad (1/p, 1/q) \neq (1/n, 0).$$

The entire space is an example of a region in this class.

Finally we give a inclusion property for the Soboleff spaces S^{pq} .

The subject of this paper was suggested to me by professor Lars Gårding. I wish to thank him for his continuing interest and valuable advice.

2. General conditions.

Our first theorem gives a necessary and sufficient condition for $A \in S^{pq}$, if A is an open connected region of finite measure. This theorem has been established and proved by Deny and Lions [4], but we state it again here for completeness and reference. To formulate the theorem we introduce a new class of functions,

$$T^{pq}(A) = BL^p(A) \cap L^q(A) .$$

This is a Banach space in the norm

$$|u|_{pq} = |\nabla u|_p + |u|_q, \qquad u \in T^{pq}(A)$$
.

Theorem 1. If A is an open connected region of finite measure, then $A \in S^{pq}$ if and only if there exists a constant K such that

(3)
$$\inf_{c={\rm const.}} |u+c|_q \leq K |\nabla u|_p \quad \textit{for all} \quad u \in T^{pq}(A) \; .$$

PROOF. (i) The condition is necessary. Denote by Λ the constant functions on A. Consider the quotient space $\dot{T}^{pq}(A) = T^{pq}(A)/\Lambda$. This is a Banach space in the quotient norm

$$|\dot{u}|_{pq} = \inf_{\substack{c = \text{const.}}} |u+c|_{pq} = \inf_{\substack{c}} |u+c|_q + |\nabla u|_p \ .$$

Let Γ be the identical mapping

$$\dot{u} \rightarrow \dot{u}$$
 from $\dot{T}^{pq}(A)$ into $\dot{B}L^p(A)$.

This mapping is linear, continuous, one—one and, if $A \in S^{pq}$, it is also onto. From a theorem by Banach (see Bourbaki [2, p. 34]) it then follows that Γ is an isomorphism and hence we have the desired inequality.

(ii) The condition is sufficient. Suppose that the inequality (3) is valid and consider the identical mapping Γ from $\dot{T}^{pq}(A)$ into $\dot{B}L^p(A)$. We have to prove that Γ is onto. As the inequality (3) is valid, the image of $\dot{T}^{pq}(A)$ is closed in $\dot{B}L^p(A)$. Thus it is sufficient to show that $\dot{T}^{pq}(A)$, considered as a subspace of $\dot{B}L^p(A)$, is dense in $BL^p(A)$. Let $u \in \dot{B}L^p(A)$. It is then sufficient to prove there exist $u_k \in T^{pq}(A)$ such that

$$|\nabla (u - u_k)|_n \to 0$$
 when $k \to +\infty$.

It is no restriction to assume that u is real. Set

$$u_k(x) \, = \, \left\{ \begin{array}{lll} k & \text{when} & u(x) \, > \, k \; , \\ u(x) & - & |u(x)| \, < \, k \; , \\ - \, k & - & u(x) \, < \, - \, k \; . \end{array} \right.$$

Since $m(A) < +\infty$, $u_k \in T^{pq}(A)$. Further by construction $u_k \to u$ in $BL^p(A)$ and this completes the proof.

Remark 1. We can replace the inequality (3) by

$$|u|_{q} \leq K(|\nabla u|_{p} + |L(u)|),$$

where L is a continuous, linear functional on the space $T^{pq}(A)$ with $L(1) \neq 0$. That (4) implies (3) is obvious. For the proof that (4) is necessary for $A \in S^{pq}$ we refer to Björup [1]. His proof is for the case (p,q) = (2,2), but the general case can be proved using the same reasoning.

REMARK 2. Let A' be an open subset of A with the following property: there exists a function f with bounded gradient which is equal 1 on A' and vanishes outside some open set A'' belonging both to S^{pq} and to S^{pp} such that $A' \subset A'' \subset A$. Then $A \in S^{pq}$, if and only if

$$|u|_{q} \leq K|\nabla u|_{p}$$

for all $u \in T^{pq}(A)$ which vanish in A'. In fact, if $u \in BL^p(A)$ then

$$\nabla(fu)\,=\,(\nabla fu+f\nabla u)\in L^p(A^{\prime\prime})$$

 $(u \in L^p(A^{\prime\prime}))$ as $\nabla u \in L^p(A^{\prime\prime})$, and hence $fu \in L^q(A^{\prime\prime})$. But then we also have $fu \in L^q(A)$. Now (u-fu) vanishes in A^{\prime} and it follows from (4^{\prime}) , as in the proof of the theorem, that $(u-fu) \in L^q(A)$. Thus

$$u = (fu + (u - fu)) \in L^q(A)$$

and we have shown the sufficiency of the condition. The proof of necessity is trivial.

Remark 3. The property $A \in S^{pq}$ is invariant under Lipschitz trans-

formations, i.e. one—one mappings F such that F and F^{-1} have bounded gradients.

Some of the classes S^{pq} are empty. We have the following theorem due to Soboleff [7].

Theorem 2. If S^{pq} is not empty, then

(5)
$$1/p \le 1/q + 1/n, \qquad (1/p, 1/q) \ne (1/n, 0).$$

PROOF. Let $A \in S^{pq}$ and assume that A contains the origin. Put

$$u(x) = |x|^{-\lambda/p+1}h(x) ,$$

where h is infinitely differentiable with compact support and equal to 1 in a neighbourhood of the origin. If $0 < \lambda < n$, then $\nabla u \in L^p(A)$. Since $A \in S^{pq}$, $u \in L^q(A)$ by definition. But then it is necessary that

$$(\lambda/p-1)q < n$$
 for $0 < \lambda < n$.

Thus

$$(n/p-1)q \leq n$$
,

and the first part of the theorem is established.

To prove the second part we observe that $\nabla v \in L^n(A)$ where (with h as above)

$$v(x) = |\log |x||^{\lambda} h(x), \quad 0 < \lambda < 1 - 1/n.$$

But $v \notin L^{\infty}(A)$ and hence $S^{n\infty}$ is empty. We shall see in next section that for bounded regions A with sufficiently regular boundary the conditions (5) are also sufficient for $A \in S^{pq}$.

3. Bounded regions.

We say that a region A has a regular boundary (in the sense of Soboleff) if every boundary point of A is the vertex of a cone C contained in A which is the image of some circular cone

$$C_0: x_2^2 + x_3^2 + \ldots + x_n^2 < bx_1^2, \qquad 0 < x_1 < a$$

under an orthogonal transformation.

The following theorem is due to Soboleff; for the proof we refer to Deny et Lions [4] and Soboleff [7].

Theorem 3. Any bounded open connected region with a regular boundary belongs to S^{pq} provided

$$1/p \leq 1/q + 1/n$$
 and $(1/p, 1/q) \neq (1/n, 0)$.

Remark. The study of bounded regions in S^{pq} with a non-regular boundary seems to be an open field. It is a well-known fact that not all bounded regions have the property stated in theorem 3. An example of a bounded region which does not belong to S^{22} is given in Courant–Hilbert [3, p. 521].

4. Unbounded regions of finite measure. Necessary conditions.

If we require S^{pq} to contain unbounded regions theorem 3 has to be sharpened.

Theorem 4. If S^{pq} contains an unbounded region A of finite measure, then

$$1/p \le 1/q$$
 and $(1/p, 1/q) \ne (0, 0)$.

PROOF. The last statement is trivial. In fact, |x| has a bounded gradient in \mathbb{R}^n but tends to $+\infty$ at infinity. Let $\varphi(x) > 0$, $x \neq 0$, be a continuously differentiable function, homogeneous of degree one. Further, let

$$u(x) = \psi(\varphi(x))$$

where $\psi(s) = \psi_{t,\delta}(s)$ vanishes for $s < t - \delta$, $\delta > 0$, is equal one for s > t and increases linearly from $t - \delta$ to t. Since u is bounded, $u \in L^q(A)$, and since ∇u has compact support, $\nabla u \in L^p(A)$. Hence $u \in T^{pq}(A)$. Since $A \in S^{pq}$, remark 1 of theorem 1 now gives

$$|u|_q \leq K(|\nabla u|_p + |L(u)|)$$
.

Choose an L with compact support. Then L(u) = 0, if $t - \delta$ is sufficiently large. Thus the above inequality gives

$$\left(\int\limits_A dx\right)^{1/q} \leq K \delta^{-1} \left(\int\limits_{A\atop t=\delta(x) \leq t} dx\right)^{1/p}.$$

Put (for the notation see e.g. [5, p. 35])

(6)
$$\varphi_A(t) = \int_A \delta(t - \varphi(x)) dx,$$

where δ is the Dirac function. In this notation we can write the above inequality as

(7)
$$\left(\int\limits_t^\infty \varphi_A(s)\,ds\right)^{1/q} \, \leq \, \, K \cdot \delta^{-1} \left(\int\limits_{t-\delta}^t \varphi_A(s)\,ds\right)^{1/p}.$$

Choose s_i such that

$$\int_{s_i}^{\infty} \varphi_A(s) \, ds \, = \, 2^{-i}$$

and set $\delta_i = s_i - s_{i-1}$. If we choose $t = s_i$ and $\delta = \delta_i$ in inequality (7) we get

$$2^{-i/q} \, \leqq \, K \cdot \delta_i^{\,-1} \cdot 2^{-1/p} \ .$$

Thus

$$\delta_i \leq K \cdot (2^{1/p-1/q})^{-i} .$$

If p < q the series $\sum_{i=0}^{\infty} \delta_i$ is convergent, which contradicts the assumption that A is unbounded. Hence $q \le p$ and the theorem is proved.

We shall need the following lemma.

Lemma 1. If $g \in L^r(1, +\infty)$, $1 < r < +\infty$, then

$$f(t) = \int_{t}^{\infty} (g(s)/s) ds \in L^{r}(1, +\infty).$$

PROOF. It is no restriction to suppose that $g(s) \ge 0$. It is then sufficient to show that the function

$$F(a) = \int_{1}^{a} (f(t))^{r} dt, \qquad 1 < a < +\infty,$$

is bounded. Hölder's inequality gives

$$f(t) = \int_{t}^{\infty} (g(s)/s) ds \le \left(\int_{t}^{\infty} (g(s))^{r} ds \right)^{1/r} \left(\int_{t}^{\infty} s^{-r/(r-1)} ds \right)^{1-1/r}$$
$$\le Kt^{-1/r} \left(\int_{1}^{\infty} g(s)^{r} ds \right)^{1/r}.$$

Hence $f(t)^r t$ is bounded. Applying Hölder's inequality once again, we obtain by partial integration

$$\int_{1}^{a} f(t)^{r} dt = \left[tf(t)^{r} \right]_{1}^{a} + r \cdot \int_{1}^{a} f(t)^{r-1} g(t) dt$$

$$\leq K \int_{1}^{\infty} g(s)^{r} ds + r \cdot \left(\int_{1}^{a} f(s)^{r} ds \right)^{1-1/r} \left(\int_{1}^{\infty} g(s)^{r} ds \right)^{1/r}.$$

It follows from this inequality that F(a) is bounded which completes the proof.

Let φ and φ_A be as in the proof of theorem 4. If we assume that φ_A is decreasing, we get the following necessary condition for A to be of type (p,q).

THEOREM 5. If A is an unbounded region of finite measure, if $\varphi_A(t)$ is decreasing (for large t), and if $A \in S^{pq}$, $(p,q) \neq (+\infty,1)$, then

$$\varphi_A(t)^{-1/r'}\int\limits_t^\infty \varphi_A(s)\,ds\in L^r(\ ,+\infty)\ ,$$

where

$$1/r = 1/q - 1/p$$
; $1/r + 1/r' = 1$.

PROOF. Assume q < p and $(p,q) \neq (+\infty,1)$. We first prove

$$\int_{1}^{\infty} t^{r} \varphi_{A}(t) dt < + \infty .$$

Let $l_0=0$ and $l_i=\sum_{k=0}^{i-1}(q/p)^k$ for $i=1,2,\ldots$. Then $ql_i\to r,$ when $i\to +\infty.$ Put

$$u_i(x) = |x|^{l_i}, \quad i = 0, 1, 2, \dots$$

Then

$$(9) \qquad |\nabla u_{i+1}|_p \, \leq \, n \, l_{i+1} \, ||x|^{l_{i+1}-1}|_p \, \leq \, n \, r \, q^{-1} (|u_i|_q)^{q/p} \, \, .$$

In fact,

$$l_{i+1} - 1 = (q \cdot l_i)/p, \qquad q \cdot l_{i+1} \le r.$$

Now by hypothesis, $m(A) < +\infty$ and $A \in S^{pq}$. Hence by (9)

$$u_i \in L^q(A) \Rightarrow \nabla u_{i+1} \in L^p(A) \Rightarrow u_{i+1} \in L^q(A)$$
.

Since $u_0 \in L^q(A)$, this shows that

$$u_i \in L^q(A), \qquad \nabla u_i \in L^p(A)$$
 ,

that is

$$u_i \in T^{pq}(A)$$
 for all i .

Remark 1 of theorem 1 now gives

$$|u_i|_q \leq K \cdot (|\nabla u_i|_p + |L(u_i)|)$$
.

Since $|\nabla u_i|_p \ge K_1 > 0$ for some constant K_1 and all i > 0, and as we can choose an L such that the sequence $\{L(u_i)\}_{i=1}^{\infty}$ is bounded, we have for some K

$$|u_i|_q \leq K \cdot |\nabla u_i|_p$$
 for all $i > 0$.

It now follows from inequality (9) that

$$|u_i|_q \leq K(|u_{i-1}|_q)^{q/p}$$
.

We get by induction

$$|u_i|_q \leq K^{l_i}|u_0|^{(q/p)^i}$$
.

Hence the sequence $\{|u_i|_q\}_{i=1}^{\infty}$ is bounded and as $u_i(x)^q \to |x|^r$ at every point it follows that $|x|^r \in L(A)$. As $\varphi(x)$ is continuous and homogeneous of degree one, there exists a constant c such that $\varphi(x) \leq c|x|$. From this we conclude that

(10)
$$\int_{0}^{\infty} t^{r} \varphi_{A}(t) dt < +\infty.$$

Since φ_A is decreasing we have

$$\int_{t}^{\infty} \varphi_{A}(s) ds \leq \varphi_{A}(t)^{1/r'} \int_{t}^{\infty} \varphi_{A}(s)^{1/r} ds.$$

From (10) we obtain that

$$\int_{t}^{\infty} \varphi_{A}(s)^{1/r} ds = \int_{t} (g(s)/s) ds ,$$

where $g \in L^r(\ , +\infty)$. The theorem now follows from lemma 1 when $1 < r < +\infty$.

It remains to prove the theorem when $p=q=+\infty$. If we choose $\delta=1$ in the inequality (7) we get

$$\int_{t+1}^{\infty} \varphi_{A}(s) ds \leq K \int_{t}^{t+1} \varphi_{A}(s) ds.$$

Thus, if

$$\int\limits_{t}^{t+1} \varphi_{A}(s) \, ds \, \leqq \, K \varphi_{A}(t) \quad \text{ for some } K \; ,$$

which of course is the case if $\varphi_A(t)$ is decreasing, we obtain

$$\int\limits_t^\infty \varphi_A(s)\,ds \, \leqq \, K\,\varphi(t) \qquad \text{for sufficiently large t .}$$

Hence the theorem is also proved for the case $p=q + \infty$, that is, when $r=+\infty$.

Remark 1. In the case p=q we need not assume that φ_A is decreasing. It follows from the proof that it is sufficient to suppose that there exists a constant K such that

$$\int\limits_t^{t+1} \varphi_A(s) ds \, \leqq \, K \cdot \varphi(t) \qquad \text{for sufficiently large t} \, \, .$$

Remark 2. It is obvious that if $A \in S^{\infty 1}$ we have

$$\int_{A} |x| \, dx \, < \, +\infty \, .$$

5. Unbounded regions of finite measure. A sufficient condition.

In this section we prove that the necessary condition of theorem 5 for $A \in S^{pq}$ is also sufficient if we restrict ourselves to a special type of unbounded regions of finite measure. For the proof we need three lemmas.

We assume in this section that $q \le p$ and $q < +\infty$. If $p = q = +\infty$ there exists of course no unbounded region in S^{pq} . We define r and r' by

$$1/r = 1/q - 1/p;$$
 $1/r + 1/r' = 1.$

Let g be a positive, summable function. Further, let $L_g^q(A)$ be all functions u in A such that $ug^{1/q} \in L^q(A)$. We denote by $T_g^{pq}(A)$ all functions u such that $u \in L_q^q(A)$ and $\nabla u \in L_q^{p}(A)$. We now have

Lemma 2. Let g be a positive function such that

$$f(t) = g(t)^{-1/r'} \int_t^\infty g(s) ds \in L^r(0, +\infty).$$

Then

$$\left(\int\limits_0^\infty |u|^q g(t)\,dt\right)^{1/q} \leqq K\left(\int\limits_0^\infty (du/dt)^p g(t)\,dt\right)^{1/p}$$

for some constant K and all functions $u \in T_g^{pq}(0, +\infty)$ which vanish in a neighbourhood of the origin.

PROOF. It is sufficient to prove the lemma for functions u with compact supports in $(0, +\infty)$. In fact, these functions constitute a dense subspace of the functions in $T_g^{pq}(0, +\infty)$ which vanish in a neighbourhood of the origin.

Further, it is no restriction to suppose that u is real. Since u has compact support we obtain by partial integration

$$\int_{0}^{\infty} |u|^{q} g(s) ds \leq q \int_{0}^{\infty} \left(|u|^{q-1} |du/dt| \int_{t}^{\infty} g(s) ds \right) dt
\leq q \int_{0}^{\infty} |u|^{q-1} g(t)^{(q-1)/q} |du/dt| g(t)^{1/p} f(t) dt .$$

The last inequality follows from the hypothesis on g. If we apply Hölder's inequality we get

$$\int\limits_0^\infty |u|^q g(t)\,dt \, \leqq \, q \left(\int\limits_0^\infty |u|^q g(t)\,dt\right)^{1-1/q} \left(\int\limits_0^\infty |du/dt|^p g(t)\,dt\right)^{1/p} \left(\int\limits_0^\infty f(t)^r dt\right)^{1/r}.$$

Hence,

$$\left(\int\limits_0^\infty |u|^q g(t)\,dt\right)^{1/q} \leqq K\left(\int\limits_0^\infty |du/dt|^p g(t)\,dt\right)^{1/p}$$

and the lemma is proved.

We say that $A \in S_g^{pq}$ if $\nabla u \in L_g^p(A)$ implies that $(u+c) \in L_g^q(A)$ for some constant c. In this notation we can write lemma 3 as follows.

LEMMA 3. Let $g(x_1)$ be a positive, summable function and

$$B = \{x \mid x_1 > 0, x_2^2 + \ldots + x_n^2 < 1\}.$$

Then $B \in S_q^{pq}$ if

$$g(t)^{-1/r'}\int\limits_{-1}^{\infty}g(s)\,ds\;\in\;L^{r}(0,+\infty)\;.$$

PROOF. Theorem 1 with its remarks is valid for these generalised Soboleff regions. It follows from remark 2 that it is sufficient to show that there exists a constant K such that

$$(11) |g^{1/q}u|_q \le K|g^{1/p}\nabla u|_q$$

for all $u \in T_g^{pq}(B)$ which vanish for e.g. $0 < x_1 < 1$. For these functions we obtain by lemma 2

$$\left(\int\limits_0^\infty |u(x_1)|^q g(x_1) dx_1\right)^{1/q} \leq K \left(\int\limits_0^\infty |(\partial u/\partial x_1) x_1|^p g(x_1) dx_1\right)^{1/p}$$

almost everywhere in $S = \{x \mid x_1 = 0, x_2^2 + \ldots + x_n^2 < 1\}$. If we integrate this inequality over S we get

$$\begin{split} \int\limits_{S} dx \int\limits_{0}^{\infty} |u|^{q} g(x_{1}) \, dx_{1} \, & \leq \, K \int\limits_{S} dx \left(\int\limits_{0}^{\infty} |(\partial u/\partial x_{1}) x_{1}|^{p} \, g(x_{1}) \, dx_{1} \right)^{q/p} \\ & \leq \, K \left(\int\limits_{S} dx \left(\int\limits_{0}^{\infty} |\partial u/\partial x_{1}|^{p} \, g(x_{1}) \, dx_{1} \right) \right)^{q/p}. \end{split}$$

Hence (11) is valid, which proves the lemma.

Let f be the one-one mapping from A onto A' which is given by

$$x_{i}' = f_{i}(x_{1}, \ldots, x_{n}), \qquad i = 1, 2 \ldots, n,$$

where the f_i are continuously differentiable. Put

$$f_{ik} = \partial f_i / \partial x_k, \qquad k = 1, 2, \dots, n.$$

We write $|\nabla| \ge |\nabla'|$ if

$$\left|\sum_{k=1}^{n} \left| \sum_{i=1}^{n} a_i f_{ik} \right| \ge \sum_{i=1}^{n} |a_i|$$

for all complex numbers a_i .

Let g and g' be two positive, summable functions in A and A' respectively. We denote by dx/dx' the Jacobian of the mapping f and write $|dx/dx'|g \sim g'$ if there exist two constants $0 < c_1 \le c_2$ such that

$$c_1g'(x) \leq |dx/dx'|g(x) \leq c_2g'(x)$$
.

In this notation we have the following lemma.

LEMMA 4. If there exists a continuously differentiable one—one mapping from A onto A' such that $c|\nabla| \ge |\nabla'|$ for some constant c and such that $|dx/dx'|g \sim g'$, where g and g' are two positive summable functions, then

$$A' \in S_{q'}^{pq} \Rightarrow A \in S_{q}^{pq}$$
.

Proof. The proof is obvious. In fact, the inequality

$$\inf_{a} |(u+c)g^{1/q}|_q \le K|g^{1/p}\nabla u|_p, \qquad u \in T_{g'}^{pq}(A'),$$

follows immediately from

$$\inf_c \left| (u+c)g'^{1/q} \right|_q \, \leqq \, K|g'^{1/p} \nabla u|_p, \qquad u \in T_g^{\ pq}(A) \ ,$$

and the lemma now follows from theorem 1.

We can now state our main theorem, which follows imediately from lemmas 3 and 4.

THEOREM 6. Let A be an unbounded open connected region of finite measure and assume that there exists a one-one, continuously differentiable mapping f from A onto

$$B = \{x \mid x_1 > 0, x_2^2 + \ldots + x_n^2 < 1\}$$

such that $c|\nabla| \ge |\nabla'|$ for some constant c. Further, assume that there exists a continuously differentiable function $\varphi_A(x) > 0$, $x \neq 0$, homogeneous of degree one, such that $|dx/dx'| \sim \varphi_A(x)$ and

$$f(\{x \mid x \in A, \varphi(x) = t\}) = B \cap \{x \mid x_1 = t\}.$$

Then $A \in S^{pq}$ if

$$\varphi_A(t)^{-1/r'}\int\limits_t^\infty \varphi_A(s)\,ds \in L^r(\ ,+\infty) \ .$$

THEOREM 7. Let $A = \{x \mid x_1 > 0, x_2^2 + \ldots + x_n^2 < g(x_1)\}$, where g is a positive, decreasing and continuously differentiable function. Then $A \in S^{p,q}$ if

$$g(t)^{-(n-1)/r'} \int_{t}^{\infty} g(s)^{n-1} ds \in L^{r}(\ , +\infty) \ .$$

Proof. Denote by A' the image of A under the transformation

$$\begin{cases} x_1' = x_1 - (x_2^2 + \dots + x_n^2)^{1/2}, \\ x_i' = x_i, & i = 2, 3 \dots, n. \end{cases}$$

Let $A^* = A' \cap \{x \mid x_1 > 0\}$. Then A^* is of the same type as A and the corresponding g^* is a positive, decreasing and continuously differentiable function which satisfies the condition of the theorem. Further, the derivative of g^* is bounded by 1. It is easy to see that $A \in S^{pq}$ if and only if $A^* \in S^{pq}$. In fact, the transformation is a Lipschitz mapping. Hence, it is no restriction to assume that the derivative of g is bounded.

Consider now the mapping from A onto B which is given by

$$\begin{cases} x_1' = x_1 \\ x_i' = (1/g(x_1))x_i, & i = 2, 3 \dots, n \end{cases}.$$

It is possible to choose a continuously differentiable function $\varphi(x) > 0$, $x \neq 0$, homogeneous of degree one, such that for t > 1

$$A \cap \{x \mid x_1 = t\} = A \cap \{x \mid \varphi(x) = t\}.$$

To prove that $A \in S^{pq}$ it is sufficient to show that f and φ have the properties in theorem 6. From the condition imposed on g in the hypothesis, the nature of φ and the fact that

$$dx/dx' = g(x_1)^{n-1} = \varphi_A(x)$$
 for $x_1 > 1$

we see that it only remains to show that there exists a constant c such that $c|\nabla| \ge |\nabla'|$, that is,

$$\left| c \sum_{k=1}^{n} \left| \sum_{i=1}^{n} a_{i} f_{ik} \right| = \left| c \left(\left| a_{1} - \left(g'(x_{1}) / g(x_{1}) \right) \sum_{i=2}^{n} x_{i} a_{i} \right| + \sum_{i=2}^{n} |a_{i} / g(x_{1})| \right) \right| \ge \sum_{i=1}^{n} |a_{i}|.$$

for all complex numbers a_i . This is obvious, since g', g and $x_i, i = 2, 3, ..., n$, are bounded. Thus f and φ satisfy all the conditions of theorem 6, and hence we have $A \in S^{pq}$.

Remark. The proof is also valid if g is continuously differentiable except at a countable set of points having no finite point of accumulation.

Corollary. Let
$$g(t) = t^{-a}$$
. Then $A \in S^{pq}$ if and only if $(n-1) \cdot a > r$.

This follows from theorem 5 and 7 after some calculation. Further, if $g(t) = e^{-t}$ then the corresponding $A \in S^{pq}$ provided $q \leq p$ and $q < +\infty$.

6. Regions of infinite measure.

Let A be an open connected region of infinite measure. In this case theorem 2 can be sharpened.

Theorem 8. If A is of infinite measure and $A \in S^{pq}$, then

$$1/p = 1/q + 1/n$$
 and $(p,q) \neq (n, +\infty)$.

Proof. It follows from theorem 2 that it is sufficient to prove

$$1/p \geq 1/q + 1/n.$$

Put

$$k = \sup \left\{ \alpha \left| \int_A |x|^{\alpha} h(x) dx < +\infty \right\}.$$

where h is infinitely differentiable, equal to 0 in a neighbourhood of the origin and equal to 1 for |x| > 1. We have that

$$\nabla(|x|^{\lambda/p+1}h(x)) \in L^p(A)$$
 for $\lambda < k$.

Hence

$$|x|^{\lambda/p+1}h(x) \in L^q(A)$$
,

since $A \in S^{pq}$. But then we must have

$$(\lambda/p+1)q \leq k$$
 for $\lambda < k$.

Hence

$$(k/p+1)q \leq k$$
.

We see from this that $k \neq 0$, thus k < 0 by the definition of k, as $m(A) = +\infty$. The inequality now becomes

$$1/p \ge 1/q - 1/k .$$

But since $0 > k \ge -n$, we finally obtain

$$1/p \geq 1/q + 1/n ,$$

which completes the proof.

From the proof we get k = -n. One can also derive that

$$\int_A |x|^{-n}h(x)dx = +\infty.$$

If p and q are as stated, then there exist regions of infinite measure which belong to S^{pq} . The whole space R^n is such a space (see Schwartz [6, p. 40]).

7. Inclusion properties.

Proposition. If

$$1/q-1/p \ge 1/q_0-1/p_0 > -1/n, \qquad q \ne +\infty \qquad and \quad p \ge p_0 \quad or \quad q \ge q_0$$
 then
$$S^{p_0q_0} \subset S^{pq}.$$

PROOF. If $A \in S^{pq}$ we get from theorem 8 and the above inequality that $m(A) < +\infty$. Hence, $L^q(A) \subset L^r(A)$ if $r \leq q$ (use Hölder's inequality). Now it follows from the definition of S^{pq} that $S^{pr} \subset S^{pq}$ if $q \leq r$ and that $S^{rq} \subset S^{pq}$ if $r \leq p$. We see from this that it is sufficient to prove the proposition for

$$p \ge p_0$$
, $q \ge q_0$, $q < +\infty$ and $1/q - 1/p = 1/q_0 - 1/p_0$.

Let now $A \in S^{p_0q_0}$. Consider all $u \in T^{pq}(A)$ which vanish in

$$A' \ = \ \left\{ x \ \middle| \ |x - x_0| < \delta, \ \delta > 0, \ x_0 \in A \right\}.$$

If δ is sufficiently small we get that A fullfills the conditions in remark 2 of theorem 1. We assume that u is real. Then $v=|u|^{q/q_0}\in L^{q_0}(A)$. Further, $\nabla v\in L^{p_0}(A)$ since

$$|\nabla v| \le q/q_0 |u|^{(q/q_0-1)} |\nabla u| \in L^{p_0}(A)$$

$$1/p_0 = 1/p - 1/q + 1/q_0.$$

and

Since $A \in S^{p_0q_0}$ and all $v \in T^{p_0q_0}(A)$ and vanish in A' we obtain from (4') that

$$|v|_{q_0} \leq K|\nabla v|_{p_0}.$$

By Hölder's inequality we get from this

$$(|u|_q)^{q/q_0} \leq K|u|_q^{q|q_0-1}|\nabla u|_p$$
.

Hence,

$$|u|_q \leq K |\nabla u|_p$$

for all $u \in T^{pq}(A)$ which vanish in A' and the proposition now follows from remark 2 of theorem 1.

REFERENCES

- 1. K. Björup, On inequalities of Poincaré's type, Math. Scand. 8 (1960), 157-160.
- 2. N. Bourbaki, Espaces vectoriels topologiques, Ch. I (Act. Sci. Ind. 1189), Paris, 1953.
- 3. R. Courant und D. Hilbert, Methoden der mathematischen Physik II, Berlin 1937.
- J. Deny et J. L. Lions, Les espace du type de Beppo Levi, Ann. Inst. Fourier Grenoble 5 (1955), 305-370.
- L. Gårding and J. L. Lions, Functional analysis, Nuovo Cimento, Supplemento a (10) 14 (1959), 9-66.
- 6. L. Schwartz, Théorie des distributions II (Act. Sci. Ind. 1122), Paris, 1950.
- 7. S. Soboleff, Sur un théorème d'analyse fonctionnelle, Mat. Sbornik (46) 4 (1938), 471-496.

UNIVERSITY OF LUND, SWEDEN