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ON L” ESTIMATES AND REGULARITY II

MARTIN SCHECHTER

1. Introduction.

In Part I of this work (cf. [15]) we employed abstract interpolation
theorems to obtain estimates for boundary problems. We considered the
spaces H%?, 1<p<oo. For a domain G in Euclidean n-space and s a
non-negative integer, H%?(@) is the set of functions which are in L?(G)
together with all derivatives up to order s. For positive real s, H$?(®)
is defined by complex interpolation between consecutive integers (cf.
Part I). For s <0 we define H%?(() as the dual of H-%7(G), p'=p/(p—1).

The estimate obtained in Part I implied that for each real s

(L.1) llells,p = const. (|Aulls—p, p + [1lls—m, p)

holds for all functions u satisfying given homogeneous boundary condi-
tions, where A4 is an elliptic operator of order m and |- || , is the norm
in H%?(@) (for precise hypotheses cf. [15]). In this part we extend the
inequality to include boundary terms. If B,,...,B, are the given differ-
ential boundary operators, we show that for each s

(1.2) s,y = const. (| Avlls—m, p + Z B s-mi-1/p,p + [¥lls-m, )

holds for all functions u, where m; is the order of B;. The expressions
{*) p are appropriate boundary norms. For {=1—1/p they are defined
by

(1'3) <‘p>t,p = g'l'b'”u”Hl/p,p ’

where the g.1.b. is taken over all functions » which equal ¢ on the bound-
ary. (The reason for the particular choice of the index will be clear
presently. For precise hypotheses used in proving (1.2) and the complete
definition of the norm (-}, , see Section 2.)

For s an integer =m, inequality (1.2) was proved by Agmon-Douglis-
Nirenberg [3], Browder [5], and Slobodeckii [17]. For other integers it was
proved by Lions-Magenes [10] and Schechter [16].

In addition to the norms (1.3) one can define H*? norms on the bound-
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ary. If 0G denotes the boundary of G, the space H*?(0@®) can be defined
by mapping oG locally into the unit ball S»-1 in n—1 space and con-
sidering the pre-images of elements in H3?(S"-1) (for details of the con-
struction cf. Section 2). The norm in H*?(3@) is denoted by |||,

We prove the following relationship between the norms ( ), , and
|16, s an arbitrary real number.

(a) For 1<p=2, |lgll7, < const. (p),,,

8, p =

(b) For 2<p<oo, (), , < const.|g| i'ap.
Combining (b) with (1.2) we obtain for 2<p<oo

”u”s,p é const. (”AuHs—m,p + Z ”Bju”ggmi—llp, D + ”u”s—m,p)

holding for all functions ». Some local variations are also given.

We also prove a related regularity theorem similar to a result of
Peetre [12]. Let W*?(0@) denote the closure of C*(0G) with respect to
the norm (-}, , and let (-, ) and (-, -) denote the scalar products on G
and oG, respectively. Then if f and g are distributions and

[(f, Au) +<g, Byup| = o |[wln—s, p

for all w satisfying the remaining boundary conditions (that is, B;u=0
on 9@ for j=+1), then fe H>?(@), g e We—™mH+1-1/P-P(3Q) and

”f“s,p + <g>s—m+m1+1—l/p,p é COIlSt.(Co+ ”f”s—-l,p) .

From this we obtain the estimate

m—1

zo<aju/anj>s—j—1/p,p = conSt‘-(”Au”s—m,p + Z <B:iu>s—m7‘—1/p,p + ”u”s—m,p)
Jj=

holding for all » where 9/u/on’ denotes the normal derivative of order j.

We also note the effect of inequality (1.2) on our coerciveness results
of [16]. Since we had previously been able to prove (1.2) only for s an
integer, our estimates in [16] involving boundary terms were stated only
for such s. Now that (1.2) has been proved in general, we may remove
this restriction on the results of [16] (cf. the end of Section 2).

In proving the inclusions (a) and (b) above, we obtained certain
results for the whole space £». We have recently learned that some of
them overlap with work of Calderén and Stein (cf. the discussion at the
end af Section 4).

2. Estimates for boundary problems.

We assume that the reader is familiar with the notation of [15], to
which we refer as Part I. Let G be a bounded domain in Euclidean
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n-space E™ with boundary oG of class C*, and let p be a fixed real num-
ber greater than one. For ¢ € C°(9G) and s real and 2 1—1/p we define
(2.1) <(p>s,p = g'l'b'”u”s+1/p,p ’

where the g.Lb. is taken over all w € C*°(G) which equal ¢ on 9G. For s
real and < —1/p we set

{p,p)
(2.2) (PYs,p = Lub, ~21L
P <w>—s,p'
where
{p,y) = fw") do,
aq

p'=p/(p—1), and the Lu.b. is taken over all y € C®(0G@). Note that we
have not yet defined (), , for s in the open interval I=(—1/p,1-1/p).

Lemma 2.1. For s real and not in I, {p), ,=0 implies p=0 on 0GQ.

The simple proof of Lemma 2.1 will be given at the end of Section 5.
From it we see that (-), , is a norm for s ¢ I. We denote the completion
of C*(0G) with respect to the norm by W$?(0®). (These spaces are not
identical to the ‘“‘trace spaces’ of Lions-Magenes [10, IIT]. However
when s+1/p is an integer, they are equivalent (cf. Section 3).) For
sel we set
(2.3) WsP(0Q) = [W-1/P:P(0@), Wi-1/p:P(0@); (s + 1/p)]

(cf. Section 2 of Part I). For such s we let (), , denote the norm in
Ws»(2Q).

Let A4 be a properly elliptic operator of order m=2r in @ and {B;}}_,
a set of boundary operators which covers A (cf. Section 5 of Part I).
We assume that the coefficients of 4 and the B; are in C*(G). Moreover,
the orders m; of the B; are to be distinct and less than m, and oG is to
be nowhere characteristic to any of the B;.

Let V be the set of those w € C*(G) which satisfy
(2.4) Bu =0 on 0G, 1<j=r,

and V'’ the set of v e C°(G) such that (Aw,v)=(u,4'v) for all ueV
(recall that A4’ is the formal adjoint of 4). As in Part I we make use of
the following norms for s real and non-negative

w,v
(2.5) |’ p = Lub, 122
veV’ ”v”a,p’

le,s,p = Hw”s.p

The closure of V' with respect to the norm |-|’, , is denoted by V'#?(@).

Math. Scand. 13 — 4



50 MARTIN SCHECHTER

TurorEM 2.1. For each real 8

r
(2:6) [l p S const. (140 + 3 CBitYy s+ [le-mp )
2

holds for all u e C°(G).

THEOREM 2.2. Let f be a distribution in Hs--2(@) (1> 0), g a distribution
on 0G, and assume that

(2'7) |(faAu) + <g’B1u>[ é co”“llm—s,p’
for all e C°(G) satisfying

2.8) Bu=0 in 80, 25j<r.

Then f € V'&2(G), g e W™mt1-1rn.P(3Q), and

(2-9) If,’s,p + <g>s—m+m1+l—1/p,p § const. (co + ”f”s—l,p)

where the constant does not depend on f, g, or c,.

THEOREM 2.3. For each real s the inequality

(2.10)

m—1 . r

20 <aju/an]>s—j—1/p,p é const,. (”Au“s—m,p+ 21<Bju>s-mj-—1/p,p+ Hu”s—m,p)
i= =

holds for all w e C*(G), where d*u[on? denotes the normal derivative of order j.

We now consider the spaces H%P(0G) (cf. [10, III, p. 66]). Since ¢@G
is of class 0, G can be covered by an interior subdomain G, and a finite
set of open ‘‘boundary patches” {N,} with the following property:

(*) For each v there is a C* homeomorphim 7', which maps N, onto
the ball |#| =1 and N,noG into the hysperplane x,=0.

The sets N,noG form a n»—1 dimensional open covering of 0G. Let
3¢,2=1 be a partition of unity subordinate to this covering. We may
assume that each {, € C,™(V,). If S* denotes the unit ball |z| <1 in E¥,
then 7',(N,)=8" and T (N,noG)=_8""1 by (*). For g € C*(0Q) we set

19(x) = 9(T, ), =xelS"1!
and

1/
(2.11) llE, = [z <||r,c,gn§,";‘>f’] !

where we consider S"-! as a domain in E*-!, and the norm on the right
hand side is that of Hs?(S»-1). Clearly, |- ||zf’p is a norm; we denote the
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completion of C*(9G") with respect to it by H*?(0Q). It is not difficult
to show that all possible choices of the N, and ¢, give equivalent spaces
(cf. [10, IIT]).

An important relationship between the spaces H%?(0G@) and Ws:?(3@Q) is

THEOREM 2.4. If p=2, then for each real s

(2.12) Hs?(0G) = Wsr(0Q) .
If p<2, then
(2.13) H5p(3Q) 2 W*?(0G)

Both inclusions are continuous.
Combining Theorems 2.1 and 2.4 we have

THEOREM 2.5. If p=2, then for each real s

r
(214) ”uus,p é OOHSt. (”Au”s-m,p + zlllBju“igmj—llp,p'*' Hu”a—m,p)
J=

for all uw e C*(G).

We give now some local versions of Theorem 2.2. Let I' be a subset
of 0G which is open in the topology of 0G and such that the boundary
of I' consists of a finite number of C* manifolds of dimension n—2.
The set C,®(GuTI’) will consist of those functions in C®(G) which vanish
near 0G—I. We say that we HpP(Gul') if {ue H>?(G) for every

loc
LeCy®(@ul). Similarly ,we say that g e WiP(I') if g € W%P(0Q) for
every g € Cy*(I"), the set of those ¢ € C°(0@) which vanish on and near
oG —1T.

THEOREM 2.6. If f is a distribution on G and
I(f, Aw)| < const. [ulyq

SJor all w e C*(GuUT) satisfying
(2.15) Bu=0 on T, 1<j=<r,
then fe HyP(GUT).

Turorem 2.7. If f is a distribution on G, g a distribution on 0G and

I(f, Au) +{g,Byu)| < const.|[ull,,—s, ,

for all we Cy>®*(GuTI) satisfying

(2.16) Bu=0 on I, 2
then

J

IIA
IA

r,

feH:PGUT) and g€ Whrtmt=upp()

loc
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For s an integer =m, (2.6) was proved by Agmon-Douglis-Nirenberg
[3], Browder [5] and Slobodeckii [17]. For s an arbitrary integer, it was
proved in [16]. Related results employing different norms were estab-
lished by Lions-Magenes [10]. A slightly weaker form of Theorem 2.2
was first proved by Peetre [12] for the case p=2 and s greater than the
maximum order of the B;.

The relation (2.13) was essentially proved by Calderén [6] for
§21—1/p (cf. Lemma 4.8).

The proof of Theorem 2.4 is given in Section 5 with the remaining
proofs given in Section 6. In Section 3 we prove some abstract inter-
polation results from which we obtain

Wer+6se—sy), P(0@) = [W*rP(0@), Waz,p(aG); 4(0)]

for any real numbers s;, s,. The relationship between the spaces Hs?(E¥)
and Ws?(E¥) is discussed in Section 4. In Section 5 we consider the
spaces H%P(0G). In the original draft of the paper we included some
estimates of the Schauder type. However, we have decided to postpone
their publication until our results are more complete.

We now consider some remarks concerning our study of coerciveness
in L. We refer the reader to [16]. In that paper we proved that for s
an integer

(2'17) ”u“s,p é const. (Z ”Aku”s—hk,p + E <Bju>s—m7—1/p,p + ”u”s—m,p)

holds for all % under certain assumptions on the operators 4, (hypotheses
(a)—(c) of Section 3 in [16]. In (2.17) &, is the order of 4,. The notation
is slightly different from that of [16].) The precise statement is given in
Theorem 3.1 of [16]. The proof of (2.17) relied on (2.6) which had then
been proved only for s an integer. As soon as (2.6) is known to hold for
all real values of s, it follows that the same is true for (2.7). We state
this as

TaEOREM 2.8. Under hypotheses (a)—(e) Section 3 of [16], inequality
(2.17) holds for each real s. In particular if p=2 we have

(2.18)  lully,p, S const. (S| 4xull—ny, p + ZIB UL 1/p, p + 1ellam, p) -

The same remarks apply to our theorems for bilinear forms in Section
8 of [16]. We refer to that section for definitions.

THEOREM 2.9. Under the hypotheses of Theorem 8.1 of [16], the inequality

”u”s,p < const. ([u]s—m,p + Z <Bju>s—m,-—1/p,p + “u”s—m,p)

holds for each real s. An inequality corresponding to (2.18) holds when
pz2.
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3. Some Theorems of Interpeolation Spaces.

In this section we shall discuss the spaces W?(3GF). We shall show
that they have very desirable properties when complex interpolation
methods are employed. Specifically, we shall prove

THEOREM 3.1. For any real numbers s,, s,
(3.1) W P(@©G) = [W*P(3G), W*™P(0G); 6(0)] ,

where 83=8,+ 0(sy— 8,).
In proving Theorem 3.1 we shall make use of abstract results in com-

plex interpolation theory. In addition to the lemmas of Section 2 of
Part I, we shall employ

THEOREM 3.2. Let X, and X, be Banach spaces and set
Xy = [X,,X;; 0(0)], 0<0<1.
Then for any 6, such that 0<6,<1
Kooy S [XosXg,; 0(0)] .
with continuous injection.
Cororrary 3.1. If X, and X, are reflexive, then
Koo, = [Xo, Xg,; 0(0)] .

We shall prove Theorem 3.1 and Corollary 3.1 at the end of this sec-
tion. Employing them we have

CororrarY 3.2. If X, and X, are reflexive, then for 0£6,<0,<1
[Xo,s Xoy3 6(0)] = [Xo, Xy; 6(0;+0(6,—6,))] -

Proor. By Corollary 3.1,
Xol = [Xo’on$ 5(01/02)] .
Hence by formula (2.1) of Part I
Xy, = [Xgp Xo; 6(1—0,/6,)] .
Thus
[Xe,aX(a,? 6(0)] = [XOQ’XOI; 6(1-0)]
= [on, Xo; ‘S((l -0)(1- 01/62))]
= [Xg, Xg,; 0(0+06,/6,—06,/0,)]
= [Xq,Xy; 0(005+ 6, — 60,)],

where we have employed Corollary 3.1 twice more.
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TuEOrREM 3.3. Let {X,} be a sequence of reflexive Banach spaces,
k=0,+1,+2,..., such that

(3.2) st = [Xkl,sz; 6(0)]

whenever ky, ky, and ky=Fk,+ 0(ky—k,) are integers. For any real number
s let © be the integer such that 1<s<i+1 and set

= [X;, X405 0(s—1)] .
Then for any real numbers s,, 8, and s;=8; + 0(s,—8,), we have
XS;; = [Xsl’XSQ; 6(0)] *

Proor. We consider three cases.
Case I; the numbers s, and s, are integers and s; is arbitrary. Let ¢
be the integer such that ¢ <s;<i+1. Then by Corollary 3.2 and (3.2)

. 1—8; 8g—1
X,, = [Xy Xougs 85y —0)] = [XX (== +—3—)] — (X, X,,; 8(0)]

82-‘81 82_81

since 0= (83— 8;)/(85—8,).
Case II; the number s, is an integer, s,,s; are arbitrary. Let 7 be the
integer such that i —1=<s,<i. Then by Case I,

(3.3) [XSI,X a( )] .
1—8
Hence by Corollary 3.1

(X X 80 = | X, X 0(0%72)| - x,,

7/—81

by another application of Case I.

Case III; all of the s; are arbitrary. By Case II and (2.1) of Part I,
the theorem holds when s, is an integer. Thus (3.3) holds and the theorem
follows by repeating the proof of Case II. This completes the proof.

When s;+ 1/p are integers, ¢= 1,2, 3, Theorem 3.1 was proved by Lions-
Magenes [10, V, Theorem 1.1]. Actually they did not employ our spaces
Wsr(©@). However, their spaces (called “‘trace spaces’) are equivalent
to ours when s+ 1/p is an integer (cf. Theorem 5.1 of [10, ITI]). We state
their result as

Lemma 3.1. If s,, 8y, 83=8,+ 0(s3—s,) are integers, then

W"S”I/P’P(aG) - [War—l/?’»P(aG)’ Weetp, P(aG), 6(0)] .
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We now define related spaces W*?(9@) in the following way. For 4
an integer we set

Wi-1p.p(0Q) = Wi-1/p,p(0Q) .

For s not an integer, we let ¢ be the integer such that i <s<i+1. We
then set

(3.4)  WeUP2(3Q) = [Wi-Vp.p(3@), Wi+i-1p,2(3@Q); b(s —1)] .

LEmMmA 3.2. For all real s
[We2(0@)] = W-*7(0G) .

Proor. When s+ 1/p is an integer, the space W#?(0G)= W#?(0Q) is
equivalent to the ‘“‘trace space’” of Lions-Magenes [10], and the lemma,
follows from Proposition 2.10 of [10, ITI]. Otherwise let 7 be the integer
such that i <s+1/p<i+1. Then by Lemma 2.3 of Part I, the dual space
of W*?(0Q) is
[Wi-1p.p(0@), Wi+i-1/P:2(0@R); 6(s — i+ 1/p)]’

= [W-i+1p.2'(0@Q), W—i-1+1/p, P (0@G) ; 8(s — ¢ + 1/p)]
= [W--UrLP'(08G), W-H+1-VP"P(0@); 6(i — s+ 1[p")] = W-*7(0G)

and the lemma is proved.
CoROLLARY 3.3. The spaces W*P(0G) are reflexive.

Lemma 3.3. For any real sy, Sy, S3=8,+ 0(83—8,)
W P(06) = [WP(3G), W**P(2G); 8(0)] .

Proor. Set X, = Wk-1r.2(0Q), k=0, +1, +2,.... By Corollary 3.3,
the X, are reflexive. By Lemma 3.1 the hypothesis (3.2) of Theorem 3.3
holds. The definition (3.4) shows us that our result is merely the con-
clusion of Theorem 3.3.

By Lemma 3.3, Theorem 3.1 will follow immediately from

THEOREM 3.4. For each real s
(3.5) WeP2(0G) = W#?(34) .

Proor. For s in the interval I there is nothing to prove (cf. (2.3)).
We claim that it suffices to prove (3.5) for s> 1—1/p. For then we shall
know that W&?(0Q)=W#?(0G) is reflexive for such s (Corollary 3.3).
Moreover, one easily checks that W-%7(0() forms a complete set of
bounded linear functionals on W#?(2@). This means (a) that W-%7'(0Q) <
[We?(@@)]) and (b) if p € W*2(3G) and {(p,p)=0 for all y € W-7(3@),
then ¢=0. Both (a) and (b) follow from (2.2). Since W-%7'(3G) is a
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Banach space with the same norm as [W*?(0G)]’, it forms a closed sub-
space of [W%?(0)]. We now invoke the theorem that a complete set
of linear functionals over a reflexive Banach space is dense. Thus
W-%7'(2G) is both dense and closed in [W$?(0G)]" giving

(3.6) W-57(3Q) = [W*?(3G)] .
Once (3.6) is proved we have
W-s2(2@) = [W=2@@] = [W5*@e@) = W-7(26)

and (3.5) is proved for negative s as well. It therefore remains to prove
the theorem for s>1—1/p. This was essentially done in [16, Lemma
4.6]. We repeat the simple proof for the convenience of the reader. Let
i be the integer such that 1 <s+1/p<i+1 (of course, there is nothing to
prove when s+ 1/p is an integer). By the definition (2.1) of the norms
we know that the restriction operator y, from G to oG is a bounded
linear mapping of H%?(@) into Wi-1/7.»(9@) and from H*+LP(GF) into
Wi+1-1/p,2(3G@). Hence by Lemma 2.1 and 2.4 of Part I, y, is a bounded
linear mapping of H*+/».»(@) into W+?(0F). Thus W#?(dG)< W*?(2G)
with continuous injection. We prove the opposite inclusion as follows.
For ¢ € C*(0@) let Ep denote the harmonic function in G which equals
@ on 0G. Then one sees that £ can be extended to be a bounded linear
mapping of Wi-1/p.»(G) to H“?(Q) and from Wi+l-1/p,»(0@R) to Hi+1:7(Q)
(cf., e.g., Theorem 6.1 of [16]). Hence it is a bounded mapping of
W?(0G) into Hs+/».»(G) giving W*?(3G)= W*?(0G) and the proof is
complete.

Proor or THEOREM 3.2. If u € Xy, then there is a f(2) € #°(X,, X;)
such that f(66,) =u (cf. Section 2 of Part I). We claim that for each real
Yo, f(Bp+1y,) € Xo. For set g(z)=f(z—1y,). Then g(iy) e X, and
g(1+14y) e X,. Hence

F(Oo+1y,0) = 9(0,) € X, -
Next set h(z)=f(0y2). Then h(iy) € X, and h(1+1y)=F(0,+16py) € X,
Hence h(z) € (X, X,,) and since u=f(60,)=h(6), we have

w e [Xo, X, 0(0)] -
Proor orF CoroLLARY 3.1. By Lemma 2.3 of Part I

Xy = [X,,X,"56(0)] .
Hence by Theorem 3.2
X'09, S [X'0,X'55 0(0)] .
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Another application of Lemma 2.3 of Part I gives
[Xo, Xgy5 0(0)] Xy, -

We now combine this with Theorem 3.2. to complete the proof.

4. The spaces H*P(E¥) and W*P(E¥).

Let E* be k dimensional Euclidean space. The space HSP?(E¥) is
defined in the same manner as H$?(@) for a bounded domain G in E¥,
For s a non-negative integer it is defined as the completion of C*(£¥)
with respect to the norm

1/p
Il p = ( [3 ID“ulpdx) .

Ek ]u|§8
For 7 an integer 20 and i <s<i+ 1, HSP(E¥) is given by
Ho2(BY) = [Ho2(BF), H+2(B¥); (s —i)],

and for negative s it is
(4.1) Hs»(E¥) = [H-¥(E¥)] .

An equivalent method of defining H%?(E¥) is by means of Fourier trans-
forms (cf. Calder6n [6] and Lions-Magenes [10, III]). Let & denote
the k dimensional Fourier transform. For any real number ¢ the operator
Jt is defined by

FJu = (14 |&%)-2Fu,

where |£'|2=£2+ ... + &2 Then H%P(E¥) is the space of distributions
w such that J-%u is in L?(E*). For the proof of the equivalence of the two
definitions see, e.g., Lions [9]. From the second definition we have im-
mediately

Lemma 4.1. J! is an isomorphism between H®P?(E¥) and Hs+-P(E¥),

We now consider the spaces W$?(E*). They are defined as follows.
We consider E* as the hyperplane z;_,=0 in E*+! and as the boundary
of the halfspace x;., >0 (denoted by E**!), For s>1—1/p the functions
in We»(E¥) are the restrictions to E* of functions in H*'VP-P(Ek+1),
The norm in WeP(E¥) is

(4.2) (PYE" = gLb.|ulZ5r

where the g.Lb. is taken over all u € H**'/P-P(E*+) which equal ¢ on E¥.
From the well known inequality
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gl < const. |ju|f++

we see that (4.2) is actually a norm. For s< —1/p we define W*P(E¥)
as the completion of C,*(£*) with respect to the norm

B (9™
(poip = lub.
w€00°°(E") <w>—s P
Finally, for s € I we set
Wan(Bk) = [W-10:0(B¥), W-1m:(B4); 8(s+1/p)]
The following lemma is due to Lions-Magenes [10, III].

Leymma 4.2. For arbitrary integers 1 and j, J7 is an isomorphism between
Wi-lp,p(Ek) and Wi+i-1/p,p(gk),

The proof of Lemma 4.2. relies upon the fact that for I an integer
(43) Wi-yinp(B¥) = T(p,0; HL»(E*), H-12(EY) ,
where T'(p,o; Xy, X;) represents ‘“trace’” interpolation between Banach
spaces X, and X, (cf. [10, ITI, Proposition 1.4]). A result similar to
Lemma 2.1 of Part I holds for this method of interpolation (cf. Theorem
1.1 of [10, ITI]). Thus since J7 is an isomorphism between H%?(E¥*) and
Hi+ip(E¥) and between H:-1.»(E¥) and Hi*+-1.2(E¥) (Lemma 4.1), it is
an isomorphism between Wi-1/2.2(E¥) and Wi+i-1/p.p(E¥k),

LemmaA 4.3. For s+ 1/p an integer

(4.4) [WeP(E*)] = W-5P(EF).

Proor. For s=i—1/p, i an integer, we have by (4.3),
[Wer(E¥)] = [T(p,0; H-»(E¥), Hi-L2(EF))]' .
Now by Theorem 1.1 of Chapeter II in [8],
[T(p,0; Hi-»(E*), H-Lo(Bk)] = T(p',0; H*-5-7' (E*), H-H7'(E¥))
= Wi-i-ur’, p(E’k) = W—s,p’(Ek)

and the lemma follows.

LemmA 4.4. For s; real and s;+1[p21, i=1,2,3, s3=8,+ 0(s,—8,),
(4.5) (W P(BY), W= P(B*); 8(0)] = W*P(E").

Proor. The proof is similar to that of Theorem 3.4 (cf. also Lemma
4.6 of [16]). The restriction mapping y, of E**! to E* is bounded from

Heelpp(gE+Yy 4o WerP(EF), §=1,2. Hence, by Lemma 2.4 of Part I,
it is bounded from H**UPP(E**1) to X, the space on the left in (4.5).
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Thus X 2 W*?(E*). Next, for ¢ € C;°(E*) let Ep denote the harmonic
function in LP(E*"!) which equals ¢ on E*. It is easily checked that E
is a bounded mapping from W®:P(E*) into H*tVP-P(E*1) =1 2,

Hence it is a bounded mapping of X into H**UP-P(E**!) ghowing
that X < W*P?(E*) and the proof is complete.

Lemma 4.5. (4.5) holds when s;+ 1/p is an integer, 1=1,2,3.

Proor. Let j be an integer such that s;+j+1/p=1. By Lemma 4.2,
Ji is an isomorphism between W*P(E*) and W**?(E¥), {=1,2. Hence
it is an isomorphism between X and

(W29, W25 8(0)] = W P(BY)

(Lemma 4.4). Hence, by Lemma 4.2, the identity mapping (which is
J-1Ji) is an isomorphism between X and W®*P(E*) and the proof is
complete.

LemMa 4.6. (4.4) holds for arbitrary real s.

Proor. We first note that it follows from Lemma 2.3 of Part I and
Lemmas 4.3 and 4.4 that W?(E¥) is reflexive for s>0. One easily
checks that W-#?(E¥) forms a complete closed set of bounded linear

functionals on W$?(E*) and the assertion follows (cf. the proof of
Theorem 3.4).

Lemma 4.7. (4.5) holds for s; real, 1=1,2,3.

Proor. All we need note is that the hypotheses of Theorem 3.3 are
now known to be fulfilled. This follows from another application of
Lemma 2.3 of Part I to Lemmas 4.4 and 4.6 together with Lemma 4.5.

THEOREM 4.1. For each integer ¢ and each real s, J is an isomorphism
between W P(E¥*) and Ws+i.p(Ek),

Proor. Let j be the integer such that j<s+1/p<j+1. Then by
Lemma 4.2 J* is an isomorphism between Wi-1/2:p(E¥*) and Wi+i-1/p,p(E¥k)
and between Wi+1-1/p,p(Ek) gnd Wi+i+1-1/p,p(F¥). We now apply Lemma
4.7 to complete the proof.

The next important result was proved by Calderén [6].
LeMMA 4.8. For s21—1/p and 1<p<2

(4.6) Wsp(Ek) < HSP(E¥)

with continuous imjection.

With the aid of Theorem 4.1 we extend this to
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THEOREM 4.2. (4.6) holds for 1<p =<2 and all real s.

Proor. Suppose v € WsP(E¥) for s<1—1/p. Let ¢ be an integer such
that s+421—1/p. By Theorem 4.1 J? is an isomorphism between
Wep(E¥*) and Ws+i-P(E¥). Thus by Lemma 4.8 Jiu € Hs+-?(E¥). Hence,
by Lemma 4.1, w=J-%Jiu € H*?(E¥).

THEOREM 4.3. If 2 < p< oo, then H%?(E*) S WP (E¥) for all real s with
continuous injection.

Proor. By Theorem 4.2 we have W-s#(E¥)c H-5?'(E¥). Since
[Wep(Bk)] = W57 (E¥) (Lemma 4.6) and [H*?(E¥)]'=H-%?(E*) (by
(4.1)), the result follows by duality.

Subsequent to our investigations, we were informed that both Calder6n
and E. M. Stein had obtained our Theorems 4.2 and 4.3. (Cf. announce-
ment by Stein [18].) Moreover, Stein characterized the spaces W3 ?(E¥)
analytically for s>0. For 0<s<2 W#P(E*) consists of those functions
[ in L?(E¥) for which

If (@ —y) +f(=+y) - 2f ()|

|y|*+sp

dx dy

EFk EF

is finite. For other positive s, the function f is in W?(E¥) if f is in
Lr(E*) and its first derivatives are in Ws-1.»(E¥), By a result of Lions [7],
Wsr(E¥) is equivalent to the ‘“‘trace space” of Lions-Magenes [10, III]
for all values of s except for s an integer and p+2. (It had previously
been known only that they are equivalent for s—1/p an integer. This
fact was exploited in the present paper (cf. Section 3).) As a result it
follows that the norm of W$P(E¥) satisfies (2.1) for all positive s.

5. The spaces H*P(0G).

In this section we give the proof of Theorem 2.4. It depends upon
some properties of the spaces H®P(0G) which we shall develop here.
The following lemma will be useful.

Lemma 5.1. For each real t>0 there is a linear mapping ¢, of L*(G)
into LP(E™) such that cu=u in G and
(5.1) loulle, < const. ||, < const.|lou|Z),
for each real s in the interval 0 <s<t.

It clearly suffices to construct the mapping o, for ¢ an integer. We
employ the construction due to Lions (cf. [10, III, Lemma 2.1]). For s
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an integer, the first inequality of (5.1) follows from Lemma 2.1 of [10,
IIT]. The second is trivial. For s not an integer, both inequalities follow
by interpolation.

We now consider a result similar to Lemma 14.2 of [3]. Let G be a
domain in E* with boundary oG of class C*. Let N be » dimensional
neighborhood of a boundary point x,. We know that there is a C*®
homeomorphism 7' of N into 8* which maps NnoG into E»-! (i.e., into
the hyperplane x, =0.) By modifying NV slightly, we may assume that
T maps N onto 8». Let N, be a neighborhood of x, such that N,=N.
For any function o defined on Nn@ we set

(@) = o(T %), xeT(NnG)
=0, 2 ¢ET(N 0 G)
For a function 7 defined on T(NnG) we set

n(Ty), yeNnQ
=0, y¢NnG

T In(y)

The restriction of 7 to functions defined on NnoG is denoted by the same
symbol.

LemMma 5.2. For each s ¢ I there is a constant C, such that

(5.2) (P = OLatgyyy,
Sor all p € Cy®(Nyn0G), where o, s the mapping for 8" of Lemma 5.1.

Proor. Consider first the case s=1—1/p. Let v be a function in
He+l/p,p(F ») which equals o,7¢ on E»-1 and such that

”vlle+llp P = 2<O’ T¢>En ' .

Let ¢ € Cy®(8S™) be such that {=1 on T'(V,) and set w=7-1{v. One easily
checks that
0l Zsp,p < cOMSE. [[0]57%"

when s+ 1/p is an integer. When s+ 1/p is not an integer it follows by
interpolation. Since w=¢ on 0G we have

()&, < const.(o @)y,

and the lemma is proved for s21—1/p. For s< —1/p we note that

— l b <(P’ w)aG
vecw@e) (P25

<‘P>2,Gp
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But for ¢ € Cy*(N,noG)

(@, )% = (@,mp)’? = (v, hogyy™™ ™" = (o v, hony)?" ™",

where 7 is a function in Cy*(Nn0G) which is identically one on N,noG
and & is the Jacobian of the mapping of NnoG onto S*-1. Thus
Ko 9)*| = Cogrodsry homydZ, < const(o ), (o2 s .

If we can prove that for each £>0 and p>1 and each neighborhood N’
such that N'< N
(5.3) (-rg)E" ! < const. (g)fz,

for all p € Cy*(N'n0o@), then it will follow that

(CoqpdE < const. (p)S

and the lemma will be proved. Thus it remains to prove (5.3). The
reasoning is very similar to the above. We let w e H'+/»:?(@) be such
that w=p on 0G and

”w“t+1/p p = 2<Q t,p*
Let £ € Cy™(N) be such that £=1 in N’ and set w= téw. Then
iy, p < const.|wlif,, , -

We now note that v =19 on E*-! and hence

-1
<TQ>En ”u“t-i-l/p p°

Combining the last three inequalities we obtain (5.3) and the proof is
complete.

Lemma 5.3. The space H%P(0G) consists of those distributions uw on oG
such that ©,C,u € H5P(S"-1) for each v.

Proor. Clearly, if e H%?(0G), then 7,lu e H%?P(S*-1) for each ».
Conversely, if this holds, then there is a sequence w,” of functions in
C=(8™-1) which converge to t,lu in H®P(S*-1). We set w@W=
3:Cet tw,®. Then wt € C*(0GF) and we claim that it converges to « in
H#?(0@). In fact

It e = Gl = Indlere () — wl)ls

which tends to zero as ¢ - c. Hence (7, 'w,® converges to ;2 in
H37(0@). Hence w® converges to » and the proof is complete.

THEOREM 5.1.
[H?(0@)] = H-%7(0G) .



ON L? ESTIMATES AND REGULARITY II 63

Proor. If f and g are in C*(0G), then
Y = SL.97 = L9 = Z(nb LTl

where the {, and 7, are defined as in Section 2 and &, is the Jacobian of
the transformation of N,n9G onto S»-1. Thus

Kf,9)%%) < const. |IfIE%, gI7%, ; -

This shows that H-5?(0G) < [H*?(0G)]'. Conversely, let F be a bounded
linear functional on H%?(0G). Then by the Hahn-Banach theorem there
are functions f, € H-%7(8”-1) such that

Fg = 3000, Y5 = 280,570 YYC = (g, 28,5 h )

Since f=3¢,v,~'h,Yf, is in H-%?(0@) by Lemma 5.3, we see that
[H5?(0@R)) < H-%?(0@) and the proof is complete.

THEOREM 5.2. For any real s, s,
(5.4) H*>»?(0Q) = [H*?(0@),H**P(0Q); §(0)] ,
where 83=38;+ 0(s,—8;).

Proor. Let X denote the space on the right hand side of (5.4). Define
w,u to be 7,0,u in 87! and zero in E*-1— 871, Then one easily checks
that =, is a bounded linear mapping from H$?(0G) to Hs?(E"-1) for
each real s. Hence it is bounded from X to H*»?(E"™). Thus if u e X,
then 7,;, € H*»?(S"™) for each » and hence w € H*»?(9G) by Lemma 5.3.
Hence X < H**?(0¢'). By Lemma 2.3 of Part I, the same reasoning gives
X'cH*»7(0G). Thus X 2 H*?(0@) and the proof is complete.

We can now give the

Proor or THEOREM 2.4. We assume p =2 and prove the first relation-
ship (2.12). By Lemmas 3.3 and 5.3, the relation (2.13) follows by
duality. Let g be any function in C*(0(f). As remarked previously, we
assume that 7',(N,)=_8" Thus for s¢ 1

@5, = (L2905, < 34628,
< 0, 3o n . ny,
< const. 3 Ilr,Cngf,"p_ !
= const. |[(7,,)(7,5,9)I55 " < const.|lgF%, ,

where we have employed Lemma 5.1 and Theorem 4.3. Thus for s ¢
the identity mapping is continuous from H*?(0G) into W*?(0@). By
interpolation it is continuous as well from H%P(0G) to W&P(0@), sel
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(Theorem 3.1 and 5.2). Hence H%?(0G)< W*?(0G) for p=2 and the
theorem is proved.

Proor oF Lemma 2.1. We first note that ¢ € Cy°(E"-Y) and (p)7 ' =0,
§21—1/pimplies ¢ = 0. For then the L?(E¥) norm of ¢ is O (cf. Sectlon 4).
If s< —1/p, then (tp)E" '=0 implies {p,p)?" " =0 for all y € C,°(E»-1)>,
This again gives ¢=0. Next, if ¢ € C°(0F) and (<p) =0, s ¢ I, then by
(5.3) we have 7,p=0 for each ». Hence ¢ =0 and the lemma is proved.

6. The use of regularity.
In proving the theorems of Section 2 we shall make use of the following
regularity theorem.

Lemma 6.1. Under the hypotheses of Section 2, if f is a distribution and
(f,Au)=0 for all we V, then fe C°(G).

The proof of Lemma 6.1 may be found in [1,13]).

We now choose normal operators B,,,,...,B,, so that the orders m;
of the operators B,,...,B,, are distinct and <m.

Lemma 6.2. Under the same hypotheses there are mormal operators
B/,...,B, such that
m
(61) (Au,'v)—(u,A’v) = z (BjurB’m—j+1v>
j=1
for all u,ve C°(G), where A’ is the formal adjoint of A. The order of
B\ i 18 m—m;—1.
For a proof of Lemma 6.2 see, e.g., [4]. From it we see easily that V'
consists of those v € C*(G) which satisfy- B;/v=0 on 0G for 1<j<r.
Hence the function f of Lemma 6.1 is in V.

CoroLLARY 6.1. If F,Q are distributions such that for some j<r

(6.2) (F, Au) +(G,Bjuy = 0
for all w e C*(G) which satisfy
(6.3) Bu =0 on G, 1<isr,i+j5,

then FeV', A’F=0 and
B, inF=-G on 0G.

Proor. By (6.2) and (6.3), (F,Au)=0 for all u € V. Hence by Lemma
6.1, F € C°(@). Applying (6.1) we have
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— (B, Gy~ (u, A'F) = (Byu, Bp_j i F3+ 3 (B, By s F

1=7r+1

from which the conclusions immediately follow.

Proor or THEOREM 2.1. For s an integer, (2.6) is Theorem 6.1 of [16].
We prove it for other s by interpolation. Let N denote the set of those
w e V such that Au=0. We know that N is finite dimensional (cf. e.g.,
[3]). The same is true of V', the set of v € V' which satisfy 4’v=0. Thus
by Rellich’s lemma, for s an integer,

i
(6.4) luf,.p < const. (lAul's_m,p+ _21<Bju>s_m,_1,p,p)
J=

for all we C®(G)/N. Consider the set of functions @={f,g,,...,9,},
feC™(@), g; € C*(0@) for which there is a solution of

Av =f in @&,
Bu =g; on 0@, 1<j=sr.

Set w=T®, where w is the unique solution in C*(G@)/N. Then by (6.4)
T can be extended to be a bounded linear mapping of a subset of

M, = V'=™P(Q)x T W UP-P(3Q)
j=1
into H%?((#). (The definition of V's:?((F) is given in Section 2. If s=m,
V's?(@) should be replaced by Hs-™?(@) in M,). Now the domain of 7'
is closed by (6.4). Moreover, it has finite codimension. Forif F,&,,...,Q,
are distributions such that

(F,Au)+ Y {G;,Buy = 0
i1

for all w e C®(@), then by Corollary 6.1 we have F € N’ and
Bj,F = _Gm—j+1’ T<j§m .

Thus {F,B,,...,B,} belongs to a finite dimensional set. Hence 7' may
easily be extended to be bounded in the whole of M,

7P|, , < const.||D|p,, s an integer.

We now interpolate between consecutive integers. For the spaces
Hs?(@) we apply Lemma 2.4 of Part I. For the spaces V's-m2(@F) we
apply Theorem 4.1 of Part I when s <m. For s=m,V’'3-™?(Q) is replaced
by Hs-m»(@). Finally for the spaces W* ™ PP(3() we apply Theorem
3.1. Thus (6.4) holds for all real s. The extension of (6.4) to (2.6) is

Math. Scand. 13 — 5
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elementary and is left to the reader (cf. the proof of Theorem 6.2 of [16]).
This completes the proof.

Proor or THEOREM 2.2. By (6.4)
(6-5) Hu’”m——s,p’ < const. (IAul’—s, p’+<Blu>m—s—m1—1/p’, p’)
for all u € C°(G)/N which satisfy (2.8). Set
F{Au>Blu} = (faAu)+<g7B1u>

for such . By (2.7) and (6.5) F' is a bounded linear functional on a
subspace of
V—7(@) x Wm——m-Yr 7 (5Q)

Extending to the whole space we see that there is an fy e V'%?(#) and a
go € WoHm—mHIP-P(5(@) satisfying

(6'6) |f0|,s,p + <go>s+m1—m+1/p',p = const. Co
and

F{Au,Bu} = (f,, Au)+{gy, Bu)
for such % (cf. Lemma 3.3). Thus
(f—fo, Au) + <9 — 9o, Byu) = 0
for such . Applying Corollary 6.1, we have
f—foeN" and g¢,—9g = B,/ (f—f,) € C*(G) .

Hence f and g belong to the same spaces as f, and g,, respectively. The
estimate (2.9) comes from the estimate (6.6) coupled with the fact that
f—7J, and g —g, belong to finite dimensional spaces (cf. above).

Proor or THEOREM 2.3. We first note that the result is clearly seen
to be true for s>=m. In fact, the right hand side of (2.10) is greater than
const. |[u|l, , (Theorem 2.1) which in turn is greater than the left hand
side (by (2.1)). Next we show that it is also true for s < 0. For by Lemma
6.2

|(’Lb, y: | ’U) + .21<Bm—j+lu’ lev>]
Jj=

= I(Au’v)l + _EIKBju’B,m—j+lv>|
=

IA

r
”Au“s—m, p”v”m—s, p’ + 21 <Bju>a—m7--1/p, p<B,m—j+lv>m_,'—s+1/p, p’
]=

A

r
const. ”v”m-s, p'(”Au”s—m,p + z](Bju>a—m7-—1/p.p)
J=
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where we have employed (2.1) and made use of the fact that the order
of B’y ;1 is m—m;—1. We now apply Theorem 2.2 to the operators
A',By,...,B, (which satisfy the same hypotheses as A4,B,,...,B,, cf.
[13]) to conclude that

m r
'ul’s,p + . 2 1<Bju’>a—-mj—1/p, D é const. (“Au”s——m, i) + 21<Bju>s—mj—1/p,p +
Jj=r+ =
+ [lls-m, ) >

since s —m+(m—m;—1)+1=s—m;. Next we observe that we can add

r

z <Bju>s—mi—1/p,p

J=1

to the left hand side by adjusting the constant on the right hand side.
In addition, for each I, 0=l <m,

where /,; is an operator involving only tangential derivatives and is of
order =l—m;, and summation is taken only over those j for which
m; <1 (cf. [4]). Thus

<8lu/anl>s-—l—1/p,p _.§ Z<Aliju>s—l—-1/p,p é const. Z<Bju>s—mj—1/p,p .
Finally, to prove (2.10) for 0<s<m we eliminate the term |ju|;_,, , by
means of Rellich’s lemma with the resulting inequality holding for

u e O°(G)/N. Then we apply interpolation as before to obtain the com-
plete result.

In proving Theorem 2.6 and 2.7 we make use of the following regularity
results similar to Lemma 6.1. For a proof cf., e.g., [14].

Lemma 6.3. If f is a distribution and
(f,Au) = 0
for all we VnaC®(GuUT), then {f € C(G) for each ¢ € C,;*(GuTl).
Proor oF TurorEM 2.6. By Theorem 2.1 and Rellich’s lemma
Nllyoes, pr < comst.|Au|'_g
for w e VnCy™®(GuI')/N. Hence

|(f,Au)| £ const.|Au| _, , < const.||Aul|

-8 P

for such w. Setting F(Au)=(Au,f), we see that F is a bounded linear
functional on a subspace of H-%7 (). Thus there is an f;e H*?(G)
such that
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F(Au) = (Au, f,)

for such u. Substracting, we see that

(f—fo, Au) = 0

for all u e VNCy>®(GuI') from which we conclude via Lemma 6.3 that

L(f—fo) € (@) for each { € O°(GUT). Hence {f=Cfy+C(f—f,) € HH?(G)
and the proof is complete.

Proor oF THEOREM 2.7. By Theorem 2.1 and Rellich’s lemma we have
l(f’Au) + <g’Blu>| é const. (”Au”—s p’ + <Blu>m—s—m1—1/p’,p’)

for all we Cy™*(GuI')/N satisfying (2.16). By the same reasoning as
above there is an f, € H>?(G) and a g,e€ W*™™+1-Ur.P(5() such that

(f—Jo,Au)+{g—go, Bu) = 0

for all w e Cy™*(GuI") which satisfy (2.16). Let G, be any subdomain of
G such that G,<Qul. By Lemma 6.3. (f—f,) € C®(@) for each
e Cy™®(QuT). Let ¢ be such that it equals one on G,. Then

(C(f—fo),Au)+ &(g—go),Byuy = 0
for all u e Cy™*(G,uTl") satisfying (2.16). By Lemma 6.2

(A'C(f=fo)w) +<Bu'E(f o) Brup+ §1<B'm-,~+lé (f=Jo), Bju)+
J=r+
+{8(g—go), Byu) = 0

from which one concludes, among other things, that

8go—9) = B, C(f—fo) -

Since {=1 in G,, we have g—g,€ C°(G,nI"). Since G, was arbitrary,
the theorem follows.
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