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ON A PROBLEM OF ALFSEN AND FENSTAD

SOLOMON LEADER

In [2] the authors closed with the following question: Does every
p-equivalence class of uniform structures have a finest member? The
purpose of the present note is to give a negative answer to this question.
Thus completion of proximity spaces is not equivalent to completion of
uniform spaces.

Let (X,p) be a general proximity space [3]. Let % be the class of all
pseudometrics ¢ on X x X which satisfy

(1) o(4,B) = 0 for all subsets 4,B of X with A p B.

(% is the “‘gauge system” of [5].) Let 7 consist of all totally bounded
pseudometrics in %. We shall consider uniform structures to be classes
of pseudometrics with the appropriate properties (see [4, Chapter 15]).
From this point of view Z is a uniform structure [1]. We shall prove
(Theorem 2) that % need not be a uniform structure.

From [1] it follows that a uniform structure % belongs to the equiv-
alence class determined by p if, and only if,

(2) TS cU.

LemMa 1. Let # be any non-empty subclass of U such that
(3) o1 and g, tn X imply o,V o, 1S in K.

Then the uniform structure & generated by X is a subclass of %.

Proor. In view of (3), & consists of all pseudometrics which are uni-
formly continuous with respect to #. Since % contains every pseudo-
metric uniformly continuous with respect to % and since £ is contained
in %, % contains every pseudometric uniformly continuous with respect
to Z.

Lemma I1. Given any pseudometric o in % there exists a uniform structure
& contarning o such that (2) holds.
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Proor. Let # consist of all pvf with 8 in . By Lemma 1 of [5], Z
is contained in . Thus Lemma II follows from Lemma 1.

THEOREM 1. For a general proximity space the following conditions are
equivalent:

(i) The equivalence class of uniform structures determined by p has a
Jfinest (i.e. largest) member.
(ii) % is a uniform structure.
(i) o, and oy in U imply o,vo, ts in %.

Proor. The equivalence of (i) and (ii) follows from (2) and Lemma II.
That (iii) implies (ii) follows from Lemma I. The converse is a con-
sequence of the definition [4] of uniform structure.

THEOREM 2. There exist proximity spaces for which the conditions (i),
(i), (iii) fael to hold.

Proor. Let X be the cartesian product X; x X, where X, =X, is any
infinite set. Let P; be the canonical projection of X onto X;:

(4) Pz =z, for x= (2;,%,).

For A4,B subsets of X define 4 p B to mean:

Given any finite coverings 4,,...,4,, of 4
(5) and B,,...,B, of B there exist 4; and B;
such that P,4; meets P,B; for t=1,2.

One can verify directly that p is a proximity relation. (Indeed p is the
product proximity relation over the product of two discrete proximity
spaces [6], [1].) Now p is not the discrete proximity relation. In particu-
lar, for D the diagonal in X we contend

(6) DpX-D.

To prove (6) consider (5) with 4=D and B=X-D. Since D is in-
finite, some A, from the given covering of D must contain at least two
distinct points (x,,2;) and (@,,%,) of D. Thus (z,,,) is in X —D, hence
in some B; from the given covering of X —D. Thus for ¢=1,2 we have
, in bothP,4; and P,B;. So (5) holds, giving (6).

Now we contend that (iii) of Theorem 1 fails to hold for the class %
of pseudometrics defined by (1). To show this define for z=(z,,z,) and

Y=Y .
_ 0 i Xy = ?/t
(7) Ql(x’y) - 1 if , + Yy -
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Clearly each g, is in % since by (5) A p B implies P, 4 meets P,B, which
by (7) implies g(4,B)=0. Now for g=p,vp, we have

|0 ifx=y
Thus,
(9) oD, X-D)=1.

Comparison of (9) with (6) shows that g is not in % since (1) fails to hold.

NotrE ADDED IN PROOF: Theorem 2 has been proved by Alfsen and
Njastad in Proximity and generalized uniformity, Fund. Math. 52 (1963),
235-252.

REFERENCES

1. E. M. Alfsen and J. E. Fenstad, On the equivalence between proximity structures and
totally bounded uniform structures, Math. Scand. 7 (1959), 353-360.

2. E. M. Alfsen and J. E. Fenstad, A note on completion and compactification, Math. Scand.
8 (1960), 94-104.

3. V. A. Efremovich, The geometry of proximity, Mat. Sb. N. S. 31 (73) (1952), 189-200.

4. L. Gillman and M. Jerison, Rings of Continuous Functions, Princeton, N. J. 1960.

5. 8. Leader, On completion of proximity spaces by local clusters, Fund. Math. 48 (1960),
201-216.

6. S. Leader, On products of proximity spaces, Math. Ann. (To appear).

RUTGERS — THE STATE UNIVERSITY, NEW BRUNSWICK, N.J.,, U.S.A.



