ON A PROBLEM OF ALFSEN AND FENSTAD

SOLOMON LEADER

In [2] the authors closed with the following question: Does every p-equivalence class of uniform structures have a finest member? The purpose of the present note is to give a negative answer to this question. Thus completion of proximity spaces is not equivalent to completion of uniform spaces.

Let (X,p) be a general proximity space [3]. Let $\mathscr U$ be the class of all pseudometrics ϱ on $X\times X$ which satisfy

(1)
$$\varrho(A,B) = 0$$
 for all subsets A,B of X with $A p B$.

(\mathscr{U} is the "gauge system" of [5].) Let \mathscr{T} consist of all totally bounded pseudometrics in \mathscr{U} . We shall consider uniform structures to be classes of pseudometrics with the appropriate properties (see [4, Chapter 15]). From this point of view \mathscr{T} is a uniform structure [1]. We shall prove (Theorem 2) that \mathscr{U} need not be a uniform structure.

From [1] it follows that a uniform structure \mathscr{S} belongs to the equivalence class determined by p if, and only if,

$$\mathscr{T}\subseteq\mathscr{S}\subseteq\mathscr{U}.$$

LEMMA I. Let R be any non-empty subclass of U such that

(3)
$$\varrho_1 \text{ and } \varrho_2 \text{ in } \mathcal{R} \text{ imply } \varrho_1 \vee \varrho_2 \text{ is in } \mathcal{R}.$$

Then the uniform structure ${\mathscr S}$ generated by ${\mathscr R}$ is a subclass of ${\mathscr U}.$

PROOF. In view of (3), \mathscr{S} consists of all pseudometrics which are uniformly continuous with respect to \mathscr{R} . Since \mathscr{U} contains every pseudometric uniformly continuous with respect to \mathscr{U} and since \mathscr{R} is contained in \mathscr{U} , \mathscr{U} contains every pseudometric uniformly continuous with respect to \mathscr{R} .

Lemma II. Given any pseudometric ϱ in $\mathscr U$ there exists a uniform structure $\mathscr S$ containing ϱ such that (2) holds.

Received June 15, 1962.

PROOF. Let \mathscr{R} consist of all $\varrho v \beta$ with β in \mathscr{T} . By Lemma 1 of [5], \mathscr{R} is contained in \mathscr{U} . Thus Lemma II follows from Lemma I.

Theorem 1. For a general proximity space the following conditions are equivalent:

- (i) The equivalence class of uniform structures determined by p has a finest (i.e. largest) member.
 - (ii) *U* is a uniform structure.
 - (iii) ϱ_1 and ϱ_2 in \mathscr{U} imply $\varrho_1 \vee \varrho_2$ is in \mathscr{U} .

Proof. The equivalence of (i) and (ii) follows from (2) and Lemma II. That (iii) implies (ii) follows from Lemma I. The converse is a consequence of the definition [4] of uniform structure.

THEOREM 2. There exist proximity spaces for which the conditions (i), (ii), (iii) fail to hold.

PROOF. Let X be the cartesian product $X_1 \times X_2$ where $X_1 = X_2$ is any infinite set. Let P_t be the canonical projection of X onto X_t :

(4)
$$P_t x = x_t \text{ for } x = (x_1, x_2).$$

For A, B subsets of X define A p B to mean:

Given any finite coverings
$$A_1, \ldots, A_m$$
 of A_1, \ldots, A_m of A_m and A_m of A_m of A_m and A_m of A_m and A_m such that A_m meets A_m for m and m such that M_m meets M_m for m and M_m such that M_m meets M_m for m and M_m such that M_m meets M_m for m and M_m such that M_m meets M_m for m and M_m such that M_m meets M_m for m and M_m such that M_m meets M_m for M_m such that M_m meets M_m for M_m meets M_m for M_m meets M_m for M_m meets M_m for M_m meets M_m meets M_m for M_m meets M_m meets M_m for M_m meets $M_$

One can verify directly that p is a proximity relation. (Indeed p is the product proximity relation over the product of two discrete proximity spaces [6], [1].) Now p is not the discrete proximity relation. In particular, for D the diagonal in X we contend

$$(6) D p X - D.$$

To prove (6) consider (5) with A=D and B=X-D. Since D is infinite, some A_i from the given covering of D must contain at least two distinct points (x_1, x_1) and (x_2, x_2) of D. Thus (x_1, x_2) is in X-D, hence in some B_j from the given covering of X-D. Thus for t=1,2 we have x_t in both P_tA_i and P_tB_j . So (5) holds, giving (6).

Now we contend that (iii) of Theorem 1 fails to hold for the class \mathcal{U} of pseudometrics defined by (1). To show this define for $x = (x_1, x_2)$ and $y = (y_1, y_2)$

(7)
$$\varrho_t(x,y) = \begin{cases} 0 & \text{if } x_t = y_t \\ 1 & \text{if } x_t \neq y_t \end{cases}$$

Clearly each ϱ_t is in \mathscr{U} since by (5) A p B implies $P_t A$ meets $P_t B$, which by (7) implies $\varrho_t(A,B) = 0$. Now for $\varrho = \varrho_1 \mathsf{v} \varrho_2$ we have

(8)
$$\varrho(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}.$$

Thus,

$$\rho(D, X - D) = 1.$$

Comparison of (9) with (6) shows that ϱ is not in \mathscr{U} since (1) fails to hold.

Note added in Proof: Theorem 2 has been proved by Alfsen and Njåstad in *Proximity and generalized uniformity*, Fund. Math. 52 (1963), 235–252.

REFERENCES

- 1. E. M. Alfsen and J. E. Fenstad, On the equivalence between proximity structures and totally bounded uniform structures, Math. Scand. 7 (1959), 353-360.
- E. M. Alfsen and J. E. Fenstad, A note on completion and compactification, Math. Scand. 8 (1960), 94–104.
- 3. V. A. Efremovich, The geometry of proximity, Mat. Sb. N. S. 31 (73) (1952), 189-200.
- 4. L. Gillman and M. Jerison, Rings of Continuous Functions, Princeton, N. J. 1960.
- S. Leader, On completion of proximity spaces by local clusters, Fund. Math. 48 (1960), 201-216.
- 6. S. Leader, On products of proximity spaces, Math. Ann. (To appear).

RUTGERS - THE STATE UNIVERSITY, NEW BRUNSWICK, N. J., U.S. A.