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TRANSFORMS FOR OPERATORS AND SYMPLECTIC
AUTOMORPHISMS OVER A LOCALLY COMPACT
ABELIAN GROUP!

I. E. SEGAL

Introduction.

For the real symplectic group ¥, which may be defined as the group
of all linear transformations on the direct sum of a real linear space I
with its dual IN* which leave invariant the skew form

B@f,'®f") = f@)—f'(®), w2 eM; ff e M*,

a representation as a group of *-automorphisms of a certain abstract
operator algebra (C*-algebra) U was defined in [7], in connection with
quantum field dynamics. When the space I is finite-dimensional, the
algebra U is isomorphic in a natural way with that of all bounded linear
operators on the Hilbert space L,(IM) consisting of all square-integrable
functions on 9. Since every *-automorphism of this irreducible algebra
is induced by transformation by a unitary operator, a projective unitary
(unitary ray) representation U of 3 on L,(IMM) results. The algebra A
relates to the system (IMPIM*,B), consisting of a linear space with a
distinguished non-degenerate skew-symmetric bilinear form in a manner
formally analogous to that in which the Clifford algebra relates to the
system consisting of a linear space together with a distinguished non-
degenerate symmetric form, and the procedure for setting up the represen-
tation U is quite analogous in a formal way to that of Brauer and Weyl
[1] in setting up in global form the spin representation for the orthogonal
group.

It was shown in fact by David Shale [8] that the analogy with the
spin representation was remarkably close. Notably, he showed that the
projective representation in question was not equivalent to a full unitary
representation, but could be obtained from such a representation of a
double covering of the symplectic group. Again, the present represen-
tation splits, like the spin representation, into two irreducible parts
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which are exchanged by a type of outer transformation. Novel theoretical
difficulties arise in the treatment of the present representation, due to
its infinite dimensionality, and to the unboundedness of the operators
corresponding to the vectors in the linear space MPIMM*. The former
feature of the representation means that the Hilbert space topology
must be made essential use of; the Weyl algebra o in the symplectic
case is not simply the linear envelopping algebra, as in the Clifford
algebra case, but the maximal algebra of continuous linear transforma-
tions with the same invariant subspaces (or the weak closure). The latter
feature necessitates the use in place of the Heisenberg commutation
relations, which provide the direct analog to those defining the Clifford
numbers, of those relations involving finite (rather than infinitesimal)
elements which were first formulated by Weyl [10] and used incisively
in work in the present direction by von Neumann [4]. These analytical
complications and some obvious algebraic differences do not disturb
the apparently fundamental analogy, which is moreover from a theoretical
physical point of view very logical, being a particular mathematical
manifestation of the widely accepted if somewhat metaphysical prin-
ciple that any fundamental formal development applicable to systems
obeying one type of quantum statistics has an analog for systems obeying
the other type.

From an elementary quantum-mechanical point of view, the present
representation operators are those generated by hamiltonians which are
quadratic in the canonical variables. The commutators of any two such
hamiltonians is again such, and an infinitesimal unitary representation
of the (symplectic) group defined by the commutation relations of the
finite-dimensional set of such hamiltonians is thereby obtained. This
somewhat loosely formulated representation is explicitly described by
van Hove [2] as a formal subrepresentation of the infinitesimal represen-
tation derived from the unitary global representation involved in his
approach to the correspondence between classical and quantum-mechan-
ical hamiltonians. (The restrictions in this work in the global treatment
to functions of the canonical variables growing not too rapidly at in-
finity, so that polynomials are excluded, are clarified by Shale’s result,
which implies that the infinitesimal subrepresentation can not generate
a subrepresentation of a full unitary representation such as that obtained
by van Hove.)

The most familiar and important quadratic hamiltonian is that of the
harmonic oscillator, which is distinguished mathematically as well as
the generator of the center of the envelopping algebra of the restriction
to the maximal compact subgroup (unitary group) of the representation
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of the symplectic group in question. It is therefore appropriate, as well
as in harmony with the existing nomenclature “spin representation”,
to designate this representation as the “harmonic representation”, as is
done in the following. Additionally, the restriction of this representation
to the orthogonal group decomposes exactly into the irreducible sub-
spaces defined by the spherical harmonics.

Quite recently, A. Weil has introduced a representation of the sym-
plectic group relative to an arbitrary locally compact field (of character-
istic =% 2), which plays a central role in his explication and development
of arithmetical results of C. L. Siegel. His construction of this represen-
tation is not at all parallel to that of Brauer and Weyl for the spin rep-
resentation, but it is actually identical, in the case of the real field, with
the harmonic representation. (The work of Shale was not known to
Professor Weil at the time of his lecture on this material at Harvard
University (December, 1962). A written communication from him,
following his examination of the work of Shale, expresses his agreement
with the foregoing statement.) In the case of a more general field, such
as the p-adic field, which is essential for the arithmetic applications, a
rather direct adaptation of the earlier treatment is possible for setting
up in a simple way an analogous projective unitary representation as-
sociated with those locally compact abelian groups for which the squaring
operation is sufficiently regular. The present article gives a variant of
this approach which avoids the use of the generalized theorem of Plessner
(to the effect that a quasi-invariant measure on a locally compact group
is absolutely continuous with respect to Haar measure) and is based on
the development of an independently interesting transform for Hilbert—
Schmidt operators on the group. There is a type of invariant Fourier
representation for any such operator in terms of a square-integrable
function on the direct sum of the group with its dual, the correspondence
between the Hilbert space of Hilbert—-Schmidt operators and that of
functions being unitary; in a somewhat different form and in special
cases this transform plays a significant part in [10] and [4].

The starting point is the projective Weyl relation of the type given in
[7] for the real case. The general theory of induced projective represen-
tations due to G. W. Mackey [3], which subsumes among other develop-
ments his earlier extension of the Stone—von Neumann uniqueness theo-
rem for the Schrodinger operators to the case of arbitrary locally com-
pact groups, as well as an extension of the cited generalized theorem of
Plessner, is applicable to such relations, and should provide an alter-
native basis for the derivation of the harmonic representation. Here the
representation emerges directly from general properties of the Weyl
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transform, including continuity features which are less accessible from
the uniqueness theorem cited.

The treatment of the harmonic representation for more general groups
is of interest not only in connection with number theory but also for
the clarification of the logical and mathematical structure of quantum
mechanics, along the lines initiated in [5]. A theory based on a cyclic
group of large prime order can be expected to approximate the con-
ventional one based on the additive group of the reals, as well as to
minimize analytical difficulties. (Some degree of confirmation of this
idea has been provided by joint explorations in a Senior Seminar on
quantum mechanics at the Massachusetts Institute of Technology held
in the Autumn term, 1961-62.) The physical role of the p-adic group is
considerably more tenuous, but the harmonic representation makes
possible the formulation of analogs to quantum-mechanical motions in
generalized spaces which seem of mathematical interest. In any event,
the canonical commutation relations intervene in two distinct ways in
quantum mechanics: in connection with Bose—Einstein quantization,
and as an implicit description of the structure of quantum-mechanical
microspace. It is only in the former respect that the axiom that physical
observables are represented by real numbers requires the use of the real
field; the precise identity of quantum-mechanical microspace with
classical macrospace is physically dubious and logically expendable.

Many special features of the harmonic representation, such as its
reducibility properties, the essentiality of the multiplier which inter-
venes, etc., appear to be quite group dependent, and are not treated,
reference being made to the work of Shale [8] and forthcoming work of
Weil on these matters. We venture however the suggestion that the
representation of the extended symplectic group (see below) may be
irreducible whenever the group is transitive, as in the case of the real
vector group treated in [8].

The extended Weyl relation and transform.

Let G be a given locally compact abelian group, written additively,
let A be the direct sum of @ with its topological dual G*, and for any
element z of A4, say z=(a,a*), set W(z) for the unitary operator

W(z): f(x) —>a*2x+a)f(x+a), felyd),

on the Hilbert space of square-integrable functions over G (relative to
Haar measure). It is straightforward to verify the generalized Weyl
relation
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W)W (') = y(z,2")W(z+2')
for arbitrary z and 2’ in A, where
x(z,2") = a*()(b*(a))t, for =z=(a,a*), 2'=(b,b%).

From the continuity of a*(2x+ a) as a function of a* and a jointly, and
the continuity of the map a — f(x+a) from @G into L,(®), it follows
that W(z) is a continuous function of z in the strong operator topology.

In the following, the element of Haar measure on a locally compact
abelian group H with generic element « will be denoted as dx, and where
the dual group is also involved, its Haar measure will be assumed to
have been normalized so that the Fourier transform, f(x) - [y*(x)f(x)dzx,
is unitary from Lo(H) to L,(H*), in accordance with the Plancherel-
Weil theorem [9]. For any operator B on a Hilbert space 9, ||R||,, will
denote the usual bound, sup, ., |[Bz||, while ||R||, denotes the square root
of X, ,|(Re,,e,)|% where {e,} is an arbitrary maximal orthonormal set
in § (of the choice of which ||R||, is independent); R is called ‘“Hilbert—
Schmidt™ if ||R|, is finite, and the set of all such operators forms a
Hilbert space K(9) relative to the (invariant) inner product, (B,S)=
2, »(Re,,Se,). The product of two Hilbert—Schmidt operators is said to
be of absolutely convergent trace, and to have trace (denoted ‘‘tr’’)
(R, S*).

THEOREM 1. If the map x — 2x transforms Haar measure into its mul-
tiple by a constant c2, then for any function f in L,(A)nAy(A), the operator
JW(z)f(2)dz is Hilbert—Schmidt, and the map

Foe fW(z)f(z) dz

extends uniquely to an isometric transformation (called henceforth the Weyl
Transform) from Ly(A) into the Hilbert space of all Hilbert—Schmidt
operators on Ly(@). If the doubling map is an automorphism, the Weyl
transform is unitary (onto), and any operator T of absolutely comvergent
trace on Ly(G) is the Weyl transform of the function f(z) given by the equa-

tion
f(2) = cte(W(-2)T).

To clarify the role of the absolute continuity condition, it may be
noted that if the map x — 2z is singular, e.g. if every element is of
order 2, the operator [W(z)f(z)dz will in general not be Hilbert—Schmidt.
(If G is the additive group of an infinite Boolean ring in the discrete
topology, W; is equivalent via the Fourier transform to a multiplication
operator in L,(G*), which is Hilbert—Schmidt only if f=0.) On the other
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hand, it is sufficient, — but not necessary, as the case of the circle
group shows, — that * — 2x be an automorphism of G.
For the proof, consider first the case of a single function f(z) of the

form
f(@) = gla)h(a*), z = (a,a%).

W, then carries a general element F(x) of L,(@) into
ffa*(a) a*(2z) g(a) h(a*) F(x + a) da da* .
On replacing a by a —x and integrating first over a* this becomes
fﬁ(a+x) gla—x)F(a)da ,

where £ is the Fourier transform of k. Thus W, may be described as
the integral operator F(x) -~ [K(x,y)F(y)dy with kernel

K(x,y) = My +2)g(y—2) .

Such an operator is Hilbert—-Schmidt provided [f|K(x,y)|? dxdy < o, and
here this integral is

[[ 1 +ayy-2)edzay.
Replacing y +x by y, and integrating first with respect to = gives
[l |[loty—200 da] dy

Replacing 2z by z and using the relation d(2x)=c%dx, the last integral
is readily evaluated as c-2||g|%|A|® (where ||| indicates the L,-norm),
which by the Plancherel-Weil theorem [9] is the same as ¢~2||f|2. Thus
W, is indeed a Hilbert-Schmidt operator.

In view of the linearity of W, as a function of f, it follows that W,
is Hilbert—Schmidt whenever f is a finite linear combination of product
functions of the type just treated. To show unitarity of the map f - cW;
from the domain of all such finite linear combinations to the Hilbert—
Schmidt operators & on L,(G), it suffices by linearity to treat the case
of two product functions, —i.e. to show that if

fila,a*) = gy(a) hy(a®), 1 =1,2,

with the g; and h; continuous and vanishing outside compact sets, then

(f17f2) =c? t’r(W*thl) :
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To this end, recall that the product of two Hilbert—Schmidt operators
which are integral operators with kernels K(x,y) and L(z,y) is of trace
JIK(z,y)L(y,x)dxdy. This gives

(W, Wy) = [ [y +2) haly+ o) 0s(y—2) faly —2) dody
Integrating first over « and using the Plancherel-Weil theorem as above

gives
(R, h2)(91,92) 72 = ¢~ 2(f1, fo) -

Thus the map f — cW, from the dense domain of all finite linear combina-
tions of product functions of the type indicated, in Ly(4) to K, preserves
inner products, and so extends uniquely to an isometric transformation
W of Ly(A) into a closed linear manifold in ®. To show that this mani-
fold is all of ®, when doubling is an automorphism, it suffices to show
the range of W includes a spanning subset in ®. Now these operators
with kernels K(z,y) of the form K(x,y)=p(x)q(y), with p and ¢ ranging
over spanning subsets of L,(G) are well-known to form such a spanning
set. The image of this spanning set under any unitary transformation on &
will likewise be spanning. Consider now the unitary transformation

U on &:
K(z,y) > c'K(x+y,y—=x) .

This transforms the kernel

Py +2)q(y—x)
into the kernel

¢ p(2y) q(2) .

From the assumption that d(2x)=c2dx it follows that if {p(x)} is a span-
ning set in L,(@), then so also is {p(2x)}. Since those p’s of the form
p="} for some continuous % on G* vanishing outside a compact set are
dense in Ly(@), by virtue of the density in L,(G*) of those 2’s, U1 car-
ries a spanning set into a set of kernels for the W, with f a product
function on 4 of the indicated type, showing that such W, span .
For the converse, define the skew convolution f x, g of two functions
fand g on A relative to y as the function . given by the equation

W) = [ 1) fe—2) ) de'

The circumstance that y(z,2’) is of absolute value one permits the deriva-
tion from the Fubini theorem of analogues to the familiar results for the
case when y is replaced by unity; in particular, if f and g are integrable,
then their convolution exists almost everywhere and
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If %, 9l = [Ifl llglhy »

where the subscript “1” indicates the usual L; norm, while if f and g
are in L,, then the convolution exists everywhere and

I(f %, 9)@)] = [Ifllz llglle -

The special properties of y are however involved in the

Lemma. If f and g are in Ly(A), then f x, g is in Ly(A) and
Wfaxg = WfWg .

If f and g are integrable as well as square-integrable, this follows from
the Fubini theorem in the indicated fashion. But additionally for such

fand g,
If *, gl = W Wla

which is dominated by [[W/l||/W,ll;, which in turn is dominated by
W lgIW,ll;, since the operator bound is dominated by the Hilbert—
Schmidt norm. If now f and g are arbitrary in L, sequences f, > f
and g, > ¢ in L, with the f, and g, in L;nL, may be chosen; then
fn *, 90 — [ * g by the preceding inequality, while

(fn *, 90)(2) = (f %, 9)(2)

by the bound given above for the latter expression.

To conclude the proof, let 7' be an arbitrary operator on L,(G) of
absolutely convergent trace, and hence also in the Hilbert—Schmidt
class, and let it be written in the form 7T = RS*, with R and S likewise
Hilbert-Schmidt (as is clearly possible from the polar decomposition
of T). Then R=W,, S=W,, and T=W,, for f, g, and k in Ly(4), and

h=f*9% g*%@:)=3d(-2).
Now tr(W(—2)T)=tr((W(—2)R)S*)=c? j f(2")g(z')dz', with W(—2z)R=
W,. From the latter equation it follows that

fz(z') = f(z+z')x(—z:z’) s

i.e.

tr(W(—2)T) = c—zfx(—-z,z’)f(z+z') j(z') dz’,

which on replacing 2’ by —z’ is seen to be identical with (f x, g*)(z)c~2.
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The harmonic representation of the symplectic group.

A (bicontinuous) automorphism of 4 which leaves invariant the bi-
character y may be called a symplectic transformation, and the set of
all such transformations the symplectic group X for @; when y is carried
into its inverse, the automorphism may be called anti-symplectic, these
together with the symplectic transformations forming the extended
symplectic group X+ containing X as a subgroup of index 2. In the compact-
open topology, in which a transformation 7' on 4 is close to the identity
if it carries a preassigned compact set into a preassigned neighborhood
of the identity, these are topological groups. A projective representation
of a group on a Hilbert space is a homomorphism of the group into the
group of all invertible bounded linear transformations on the Hilbert
space, modulo the subgroup of multiplications by non-zero scalars. The
latter group is topologized by regarding an element S as close to the
unit in case its action X — SXS-! on the space of Hilbert—Schmidt
operators is close to the identity in the strong operator topology for
this space of operators. A continuous projective representation of a
topological group on a Hilbert space is then one which is continuous in
this topology; for full unitary representations, this agrees with the usual
notion of continuity (i.e. continuity in the strong operator topology).

THEOREM 2. If the map x — 2x on the locally compact abelian group G
is an automorphism, then for any symplectic (resp. anti-symplectic) trans-
formation T there exists a unitary (resp. amti-unitary) transformation
I'(T) on Ly(@), unique within multiplication by a scalar factor, such that

W(Tz) = I'(T)W(z) (T, zed.

The map T — I'(T) gives a continuous projective representation of the
symplectic group.

Observe first that a symplectic or anti-symplectic transformation is
Haar measure preserving; since the square of an anti-symplectic trans-
formation is symplectic, it suffices to consider the case of a symplectic
transformation 7. Then for any integrable function f on 4 and for some
constant k,

(**) f f(T2)de = & f f(2) d .
For f in L,nL,, define a transform yf=F by the equation
@) = [ 122 1@) d;
by the Plancherel-Weil theorem, |[F|[=(|f|. On the other hand,
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F(T-12) = j 2(T12,2) f()dz' = ke j 122 f(T-12') dz'

by (**) and the invariance of y under 7.

Thus, Fp=kyfy, where the subscript “7"”’ indicates the function ob-
tained by replacing the variable z by 7-1z, showing that |F|= k| frl.
On the other hand, from (**) it results that || f;||2=Fk|f|*> for any f (in-
cluding F). It follows that k=1.

Now let T be symplectic. The map f — f carries L,(A) onto itself, and
it results from the invariance of y and of Haar measure under 7' that
this mapping is an automorphism of L,(4) as an algebra relative to skew
convolution as multiplication. Since (f*);=(fr)*, where f*(z)=f(—z),
it is a *-automorphism. It follows, noting that (W,)*= W, that the
map W, W, is a *-automorphism 6(7') of & Appealing to the result
that any such automorphism is transformation by a fixed unitary
operator, unique within multiplication by a scalar factor (see Appendix
following Corollary 2.2), the existence of the I'(T") described in Theorem 2
follows.

Continuity of I' means that 6(7') depends continuously on 7, in the
strong operator topology, which is equivalent to the continuity of the
map T — fp from X into Ly(4) for any fixed fin Ly(4). If f is continuous
and vanishes outside a compact set, this follows directly from the defini-
tion of the topology on 2. For arbitrary f in Ly(A4), it results from the
fact that if {f,} is a sequence of continuous functions vanishing outside
compact sets convergent in Ly(A4) to f, then {(f,)r} is uniformly conver-
gent on X to fp.

Now consider the case when 7' is anti-symplectic. The map f — fr,
which is anti-linear, is then an anti-linear automorphism of L,(A4) as an
algebra over the reals relative to skew convolution as multiplication,
which leaves invariant the set of all self-adjoint elements, and the exis-
tence of the required anti-unitary I'(T') follows.

CoroLLARY 2.1. If G and G' are locally compact abelian groups, and
if T and T' are symplectic transformations on GPHG* and GDG'* respec-

tively, then rer) ~ (T,

where I is the representation described tn Theorem 2, while TOT' is the
automorphism of (GDF)D(G*DG'*) extending both T and T', and the
unitary equivalence between L,(GPG') and Ly(G)QLy(G') ts that extending
the correspondence f(a)g(a’) — fRg.

This follows in a straightforward way from uniqueness, since I'(T)®
I'(T') is readily seen to have the defining properties of I'(T@®T").
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COoROLLARY 2.2. I'®Q;I'* >, where Q is the unitary representation of
the extended symplectic group given by the equation

QT): f(e) > f(T12), feLy(GDRG*),
and “®,” indicates the internal direct product.

For any representation I' of a group on a Hilbert space, I'x I'* is
isomorphic to the induced action in the Hilbert space of all Hilbert—
Schmidt operators, X — I'(a)X I'(@)*. By Theorem 1 this action is
equivalent, via the Weyl transform, to the stated action.

APPENDIX. Any *-automorphism 6(7') of ® is transformation by a
fixed unitary operator, unique within multiplication by a scalar factor.
This quite elementary result may be established in the following way.
Any projection P in & is carried by a given linear automorphism 6 of:S%
preserving the set of self-adjoint elements into a projection @, and 6
maps the subring of operators X such that XP=PX =X into that of
operators Y such that Y@=@Y =Y. These subrings are *-isomorphic
to the complete rings of all linear transformations on the respective
ranges of P and @, so that by the familiar finite-dimensional result there
exists a unitary transformation Sp between these ranges, unique apart
from an ambiguous scalar factor, implementing the isomorphism. The
ambiguity may be removed by requiring an arbitrary fixed non-zero
vector in the range of P to go into a particular representative for the cor-
responding ray of vectors in the range of . Doing this once for all, and
then considering only P’z P, a net Sp is obtained, each Sp. being a
well-defined unitary transformation from the range of P’ onto that of
6(P') and with Sp. an extension of Sp when P’ < P", since the restric-
tion of Sp. to the range of P’ has the defining properties of Sp. Defining
S as the unique transformation on the Hilbert space extending all the
Sp, S is a unitary operator implementing the given automorphism.
The structure of the general anti-linear automorphism leaving invariant
the set of all self-adjoint elements follows from this by composing it
with a fixed such automorphism which is transformation by an anti-
unitary operator (e.g. any conjugation).

Comments on the foregoing.

1. Strict conformity with the conventional Weyl relation. In the interest
of treating more general groups G, in the formulation of the Weyl opera-
tors W(z) above, certain factors of 2 intervene above in a different
fashion from the treatment in [7]. When the doubling operation on @
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is an automorphism, the procedure followed is entirely equivalent to
one directly parallel to that followed in [7]. Specifically, the fixed
unitary transformation

V: fx)>c'f(ex), ¢'2 = d(ex)/dx,

where 2¢x =2 for all x, carries the operators W(z) defined above into the
operators Wy(ez), VW (2)V-1=Wy(ez), where

Wy2): f(x) > a*(@+ea)f(x+a), o (a,a*) > (2a,a%).
The relation satisfied by the W(2) is
Wo2)Wo(z') = 20(2,2')Wo(2,2")
where xo(z,z’)=a*(eb)(b*(ea))‘1, for z=(a,a*) and z'=(b,b*).

2. The inhomogeneous symplectic group. The harmonic representation
is the restriction to the symplectic group of a projective unitary represen-
tation of the larger group obtained by extending X+ by the translations
on A. The inhomogeneous symplectic transformation S: z — Tz +z,,
where T' € X'+, is represented by the unitary operator I'(S) on L,(G)
characterized as that transforming W, into W, , where fg(2)=f(S'2).
From an elementary quantum mechanical viewpoint the corresponding
infinitesimal group is that of all hamiltonians which are at most quad-
ratic in the canonical variables.

3. The exponential of certain representations. Corollary 2.1 is a type of
exponential law for the representation I, which is significant for quantum
theory. It is noteworthy that in the case of a real vector group, the
restriction I"" of I" to the maximal compact subgroup (the unitary group,
within conjugacy) can in fact be expressed by a series having a formal
analogy with the exponential series:

r'u) = IQUOURU),®. . .®URU®R...)y®- - - ,

where for any unitary operator U, (UQU®...),, with n factors repre-
sents the n-fold symmetric tensor product. (Cf. [6], where analogous
features to this and Corollaries 2.1 and 2.2 are also discussed.) The fore-
going representation has however only a specious similarity to the
representation of the full symplectic group

T - ISTOTRT) D .. DT RTS...)y®. . .;

the tensor products involved here are relative to the real rather than the
complex field as in the case of I". It would seem of interest to determine
more generally the decomposition into irreducible constituents of the
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restriction of I" to a maximal compact subgroup; in the real vector case
this is multiplicity-free, and forms the basis of the so-called occupation
number formalism in quantum theory, the proper functions under a
maximal abelian subgroup of the maximal compact group being the
familiar hermite functions which intervene in this connection.

ADDED IN PROOF. (January 16, 1964). In amplification of the indica-
tion earlier as to the relevance of the Stone-von Neumann-Mackey theorem,
it may be mentioned that the use of the extended Weyl relations in
place of those which are the direct concern of this theorem, makes possible
a very short derivation from it of the existence, but not the continuity
or other finer features, of the harmonic representation. On the other hand,
Mackey has since independently made essentially the same observation,
and in addition derived from his general theory certain continuity pro-
perties for the representation, as well as a natural extension of it to
the case of an arbitrary locally compact abelian group, for which squar-
ing is not necessarily an automorphism [to be submitted for publication].
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