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THE AXIOM OF
COMPREHENSION IN INFINITE VALUED LOGIC

C. C. CHANG!
Introduction.

In this paper, we improve a result of Skolem [10] which states that the
set 2 of sentences

Va,...x, dyVi(tey o Uta,...,z,)),

where U is an open (quantifier-free) formula, is consistent in the infinite
valued logic of FLukasiewicz, hereafter denoted by the symbol L. We
shall show that two other sets of sentences X, and X, are also consistent.
2, is the set of sentences

Ay Vi(tey - UR),

where U contains no free variable other than ¢ but may contain arbi-
trary quantifiers, and X, is a set of sentences

Va,...x, Iy Vi(tey o Utm,...,x,)),

where U may contain bound variables of a specified sort (described later).
Thus we have shown that the axiom of comprehension without para-
meters is consistent in ¥, (Theorem 2.1) and that the set of sentences X,
can be considerably augmented and still remain consistent (Theorem 2.2).
Whether or not the full axiom of comprehension is consistent remains
an open problem. We emphasize that the axiom of comprehension is
clearly inconsistent in every finite valued logic, including of course the
two valued logic. Hence the question of its consistency is only open in
the logic L.

Actually, we shall prove the consistency of X, and X; under two
further assumptions about them. One is that we shall assume L. has an
identity symbol =, and the other is that we shall assume the variable y
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may also occur free in the formulas U. These two additional assump-
tions, if anything, make the proofs more difficult. As we shall see in § 3,
the assumption that L. has identity will be useful in further work along
these lines. As for the fact that y may occur free in U, it follows simply
as a consequence of our method of proof, and it serves to illustrate the
expected difference between the two valued logic and L. In any case,
the consistency of X, and 2; under these assumptions certainly implies
that X, and 2; are consistent without these assumptions.

Our method of proof depends on three things: A generalization of
Skolem’s method of [10]; the Compactness Theorem (Theorem A of § 2)
for the logic L. [3]; and the Brouwer Fixed Point Theorem for the space
[0,1]™. It is a fortunate coincidence that all three devices are available
to the author.

We have put all the preliminary definitions and results in §1. The
proofs of the main results are in § 2. Section 3 ends the paper with s
brief discussion of generalizations and problems.

1. Preliminaries.

We recall some simple facts about the logic L. (see, for instance, [6],
[8], [2], [3]). The symbols of %. are the following:

two binary predicate constant symbols = and €;

an infinite number of individual variables, vy, v,,...;
propositional connectives — (unary) and — (binary);
quantifier symbol 3;

improper symbols (,).

Formulas of L. are constructed in the usual way. The sequences of symbols
x =y, ey,

where z,y are individual variables, are the atomic formulas of L. If
U, V are formulas, then — U and U — V are formulas. If U is a formula
and z is an individual variable, then (3z)U is a formula. We can define,
as usual, the notion of an occurrence of a variable z in a formula U, and
the notions of free and bound variables of a formula U. We write
U(xy,. . .,x,) to indicate that the free variables of U are among the vari-
ables z;,...,z,. An open formula is a formula with no bound variables.
A formula with no free variables is called a sentence. So far there is no
difference between the formulas and sentences of ¥. and the formulas
and sentences of the two valued first-order predicate logic with identity.
It is only in the interpretation of €, =, —, and — that the difference
shows up.
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Throughout this paper we let X denote the closed real unit interval
[0,1]. We endow X with the natural topology on [0,1]; thus X becomes
a compact Hausdorff topological space. Let — and — be the following
functions on X and X2: for z,y in X,

- (®) =1-2x,
- (z,y) = min(1,1—z+y).

The function 3 is defined on the set of all non-empty subsets of X as
follows: for 9+ Y < X,
3(Y) =sup Y.

It shall be clear from context whether the symbols —, —, 3 are to stand
for connectives and quantifier or for functions defined above. Notice
that the functions — and — are continuous on X and X2, and the function
3 is continuous with respect to a reasonable topology on the set of all
non-empty subsets of X. Each function —, -, and 3 has range equal
to X.

A model M ={S,e) for L. is a pair {8,e) where S is a non-empty set
and e is a mapping of § xS into X. The function ¢ may be regarded as
a subset of (S xS)x X. A partial model M =(8,e) is a pair {S,e) where
S is a non-empty set and e is a partial mapping of S x 8 into X not
necessarily defined for all pairs {a,b), a, b in S. A (partial) model M, =
{S1,€,) is a (partial) submodel of a (partial) model M,={(S,,¢,), in sym-
bols M,cM,, if 8,8, and e;=e,n((Syx8;)xX). The relation <
among (partial) models is clearly reflexive and transitive.

Given a sequence of models Myc M,c...cM,<..., the union of
the sequence M =U, M, is defined as follows:

S =U,S;,, e=Ukg, and M ={S,e).

We see that for a,b in S, e(a,b)=e¢,(a,b), and that M, < M for each k.
For each formula U(z,,. . .,z,), model M ={8,e), and interpretation of
xy,...,%, as elements a,,...,a, of S, we define a real number

Ua,,...,a,)[M]

in X by induction on the formulas as follows: (When the model M is
understood, we sometimes drop the symbols [M] and write U(a,,...,a,)
for U(a,,...,a,)[M].)

DeriniTION. (i) If U is the atomic formula x;=x;, 11, j<n, define

Uay,...,a,) =1 if a; =a;,
Uay,...,a,) =0 if a; % a;.
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(ii) If U is the atomic formula xz; € x;, 1<14, j<n, define
U(ay,. . .,a,) = ela;a;) .
(iii) If U is the formula — V, define
Uay,- - @) = = (V(ay,...,a,)).

(iv) If U is the formula V — W, define

Uay,. . .,a,) = > (Viag,...,a,), Wiay,...,a,)).
(v) If U is the formula (3z,,,)V(x;,. . .,2,,;), define

Uay,. .. a,) = I({V(ay,. . .,a,,b):b in S}).

In this way U(ay,...,a,)[M] is a uniquely defined real number in X.
In case U is a sentence, U(a,,. . .,a,)[M] is independent of the sequence
ag,. . .,a,, and we shall denote it simply by U[M]. In case U is an open
formula and M, < M,,

U(a’l’ s ’an)[Mll = U(al’ cee :an)[Mz]

for any interpretation of z,,...,z, as elements a,,...,a, of S;.
From the truth functions — and —, we can define by compositions
the following truth functions: for z,y in X,

mln(x’y) = [_’ (x’ - [-_) (x’y)])] ’

max(r,y) = — min(-2,— y) .
We let A and v denote the propositional connectives corresponding to
the functions min and max, and we let U « V denote the formula

(U = V)A(V - U). Thus, for formulas U and V, model M, and inter-
pretation of z,,...,%, as a,,...,a, of S, we have

(UAV)ay,...,a,) = min(U(ay,...,a,), V(ay,...,a,)),
(UvV)ay,...,a,) = max(U(ay,...,a,), V(ay,...,a,)),
(U o V)(ay,...,a,) = 1=|U(a,,...,a,)—V(a,,...,a,)] .
Consequently,
(U A VXay,...,a,) =1 if and only if U(ay,...,a,) =1
and V(a,,...,a,) =1,
(Uv V)ay,-..,a,) =1 if and only if U(ay,...,a,) =1
or V(ay,...,a,) =1,
(U & V)(ay,.-..,a,) =1 if and only if U(a,,...,a,) = V(a,,...,a,).

We define (Vz)U as the formula — (3x) — U, and we see easily that
for a formula Ul(x,,...,%,,;), we have
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(V2,1 U(ay,...,a,) = inf{U(ay,...,a,,4) 0, in S}.
Thus,

(Az,1)U(ay,. . .,a,

Ua,,. .., 0,4

) = 1 if and only if for every £ = 1,
) 2 (1-1/k) for some a,,, in §,
and

(V&,.1)U(a,...,a,) = 1 if and only if for all @, ,, in S,

Ulay,...,0,4) =1.

We say that a sentence U holds on a model M if U[M]=1. A model M
satisfies a set 2 of sentences if each sentence U of 2 holds on M. If
M satisfies X, we say that 2 is satisfied by M. A set 2 of sentences of
¥, is said to be consistent if X is satisfied by some model for .. The
precise meaning of the result of Skolem in [10] cited in the introduction
is now clear: In X. (without identity) the set X is constistent.

We need to know the following form of the Compactness Theorem for
the logic L.

THEOREM A. For a set X of sentences to be consistent it is necessary and
sufficient that every finite subset of X be consistent.

This theorem is not directly connected with the subject at hand and
so we shall not give a proof of it here. Theorem A can be found in the
abstracts [3] and a more general version of it can be found in [5]. (A
theorem embodying both Theorems A and B (below) will be proved in a
forthcoming monograph by Chang and Keisler.) Theorem A is needed
in an essential way for the proof of Theorem 2.1. The proof of our
Theorem 2.2 can be simplified somewhat by the use of a stronger version
of Theorem A, namely:

THEOREM B. For a set X of sentences to be consistent it is necessary and

sufficient that for every finite subset X' of X and every k=1, there exists a
model M such that

UM] 2 1-1/k foreach U in 2.
Our proof of Theorem 2.2 will require neither Theorems A nor B. It is

not known if a proof of Theorem 2.1 can also be given directly and not
via Theorem A. We might also mention that the following is also true:

TurorEM C. If a set X of sentences is consistent then it is satisfied by a
countable (finite or infinite) model.

Thus, in applying Theorem A to Theorem 2.1, we can always be sure
of finding a denumerable model for 2.
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We continue the preliminaries by introducing some auxiliary but
necessary notions.

A formula U(x,,...,x,) is said to be valid if for all models M and all
interpretations of x,,...,x, as elements a,,...,a, of S, U(a,,...,a,)[H]
=1. We use the symbols kU to denote that U is valid. This notion is,
of course, the semantical counterpart of the syntactical notion of prov-
ability (see, however, [1], [2], [4], [8], [9] and § 3 for the difficulties
encountered in syntax). It turns out that most of the familiar rules
and axioms of two valued first-order predicate logic remain true. In
particular the following semantical results concerning the symbol k
can be easily proved.

Rule of substitution for bound variables. Let U be a formula and let U’
be obtained from U by replacing a bound variable of U by a variable
not occurring in U. Then U - U".

Rule of substitution for formulas. Suppose that FU « U’. Let V and
V' be such that ¥V and V'’ are alike except that some occurrences of U
in V are replaced by occurrences of U’ in V’'. Then £V « V',

Prenex normal form. Let U be a formula. There exists a formula
V=QW where W is an open formula and @ is a (possibly empty) string
of quantifiers (3 or V) such that U & V.

Substitutivity of the identity. Let U and V be such that U and V are
alike except that U contains free ocurrences of the variable z wherever
V contains free occurrences of the variable y. Then Fz=y - (U « V).
(This last rule is a consequence of Definition (i).)

For each formula U in prenex normal form and variables z,,. ..,z
not occurring in U, we define the k-transform of U, written 7,(U), by
induction on the number of quantifiers occurring in U. If U is an open
formula, 7, (U)=U. If U=(3x)V, then

TU) = TXV)v ...vTKV),

where T,J(V) for 1<j <k is obtained from 7', (V) by replacing the vari-
able z by the variable z;. If U=(Vx)V, then

T(U) = TANV)A ... ATXTV),

where the T,7(V), 1 <j <k, has the same meaning as before. We see by
an easy induction that if U is a formula in prenex normal form, then
T,(U) is an open formula. Furthermore, if z;,...,2, are the only free
variables of U, then x,,...,z,, 2,,...,%, are the only free variables of
T(U). The following lemma can be established by a simple induction
on the number of quantifiers in U.
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Lemma 1.1, Let U(xy,...,x,) be a formula in prenex normal form, let
M={(S,e) be a model with exactly k elements, S={a,,...,a;}, and let
245 . -,2;, be interpreted as the elements a,,...,a; of S. Then, under any
interpretation of x,,...,x, as by,...,b, of S,

U(bl,. . .,bn) = Tk(U)(bl" .o ’bn’a’b' . ”ak) .
For each open formula U(z,...,?,), we define the function P(U) of

(at most) 2-k% real variables d;; and e;, 1=<i, j<k, by induction as
follows:

P(zi = z]') = dij9 1 é i,j é k )
P(zi € z]') = e'ij’ 1 é 7:3]. é k ’

P(U - V) = - (P(U), P(V)) .

The function P(U) is a continuous mapping of X2* into X. Since X is
a compact Hausdorff space, the function P(U) is uniformly continuous.
That is to say, for every positive integer m, there exists a positive integer
r such that if

|di;—d'yl

IA

lr, lej—e€'yl < 1fr for 1 £4,5 £k,
then

[P(U)(dgjre455 1 < 4, )

IIA

ky—PU)d ;,¢';1 < 4,5 k)| £ 1/m.

Given two sequences o={a,,...,a;y and o' ={a'y,...,a’;) of elements
of a model M ={S,e), and an open formula U(z,,...,z,). We say that
the sequences ¢ and ¢’ are within 1/r modulo the formula U, written
symbolically

lo—d’| £ 1fr (modU),

if for every pair (3,j), 1<%, j<k, if the atomic formula z;=2; occurs in
the formula U then

a; = a; ifandonlyif e,/ =a,
and if the atomic formula 2; € 2; occurs in the formula U then
le(a;,a;) —e(a;’,a;")| < 1/r.
It should be quite clear that if

lo—0'| £ 1)r (modU)
then
|U(ay,. . ., ap)[M]—Ula,,...,a; ) [ M]| £ 1/m .
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From the function P(U), we define another function R(U) of (at most)
k? real variables e;;, 1 <1, j<k, by setting each d;;=1 and d;=0 if i +j.
The following lemma is clear.

Lemma 1.2. Let Ul(zy,...,z;) be an open formula, let M ={8S,e) be a
model, and let a,,...,a; be distinct elements of S. Then

U(ay,...,a) = R(U)(e(a;,a;); 1 £ 4,5 < k).

Let Uy(zy,...,2;), 1=4, j=k, be an array of open formulas, let M =
{8,e) be a partial model, and let a,,...,q, be distinct elements of S.
A sequence of real numbers ¢;;, 1<1, j<k, is said to be a fixed point of
the array U;;, 1=<1, j<k, with respect to the partial model M and the
elements a,,...,a; of S, if for 1=7, j<k,

ty; = elay,a;) if e(a;, ]) is defined ,

ty = R(Uy)(ty; 1 = 4,5 < k) if e(ay,a;) is not defined .

Lemma 1.3. For each array U, (z,,. . .,2,), 1 <1, j <k, of open formulas,
each partial model M ={S,e), and every sequence of distinct elements
@q,. .., 0 of S, there exists a fixed point.

Proor. If e is defined for all pairs {a;,a,), 1 <1, j <k, then the sequence
e(a;,a;), 114, j<k, is a fixed point. Suppose, therefore, that e is not
defined for some pairs (ai,aj). Let

I = {(i,5): e(a;,a;) is not defined and 1 < 4,5 < k}.

Let m be the number of elements of I. For {iy,j,» in I, we denote by
R'(U,,;,) that function of (at most) m variables obtained from the func-
tion R(U, ;) by replacing the variable e;; by the real number e(a;,a;)
whenever (¢,5) is not in I. Consider now the m equations

R'(Uy)eys4,jinl) = ey, (@G,jyinl,

in the m unknowns e;;,<t,j) in I. Let F be the continuous mapping of
X™ into X™ defined by the m equations

F(ey; <i,5> in I)(GG,5)) = B'(Uy)(ey; €,y in I),  Ci,jyin 1.

From the Brouwer Fixed Point Theorem, F' has a fixed point r;, (i,5)
in I. Clearly the sequence

ty = e(a;a;) if (3,j)isnotin T,
t'ij = Tij if <'£,j> in I >
is the required fixed point for the array U,;.
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Lemma 1.4, Let t;;, 14, j<k, be a fixed point as in Lemma 1.3. Then
the function e can be extended to a function e’ defined on all pairs {aa;),
124, =k, in such a way that for each (3,5) in I,

U'ij(ah' L] ya’k)[Ml] = e’(ai’a’j) ’
where M' is the partial model (S,e").
Proor. By Lemmas 1.2 and 1.3.

2. Proofs of the main theorems.
Let 2, be the set of sentences

yVi(tey o Ut,y)),

where U is an arbitrary formula of & with at most the variables ¢ and y
free.

THEOREM 2.1. X, is consistent.

Proor. By Theorem A, it is sufficient to show that every finite subset
of X, is consistent. Let, therefore, U,(t,¥),...,U(t,y) be formulas of

L so that the sentences V,

V,=3yVi(tey— Ugty),

form a finite subset of X,. We may assume that each U;, 1sj<k is
already in prenex normal form. We shall prove that there exists a model
M ={8S,e) with exactly k& elements, S={1,...,k}, such that

(1) ViM] =1 for 1<j=<k.

To prove (1), we first show that in the model M to be constructed

(2) Uj(").?) = 6(’0,.])

for every interpretation of f,y as elements ¢,j of S. Let z,...,2, be

variables not occurring in any of the formulas U;, 1<j<k. Consider the
k-transforms 7,(U;) for 1<j<k. Each transform 7',(U;) will contain at
most the free variables ¢,y,z,,...,2,. For each pair (¢,j), 154, j<k,
define the formula W(z,,...,z,) by replacing ¢ by z, and y by z; in the
formula 7',(U,). Thus, schematically,

(3) Wij(zl,. . .,zk) = Tk(Uj)(z- 2 zl,. . .,zk), 1 é ":,j é k .

179>

Let S={1,...,k} and let M =(8S,e) be the partial model where e is not
defined at all. Consider the array of open formulas W, 1=<1, j<k.
By Lemma 1.3, let the sequence ¢;;, 1 <1, j<k, be a fixed point for the

Math. Scand. 13 — 2
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array with respect to the partial model M and the distinct elements
1,...,k of 8. Define
e(i,j) = ti]" 1 é i,j § k .

M =(S,e) now becomes a model. Under the interpretation of z,,...,z;
as the distinct elements 1,...,k of S, we have, by Lemma 1.4,

(4) Wi(l,....k) = e(3,j), 1=4,j <k;
hence, by (3),
(5) T.(U)@,4,1,...,k) = e@i,j), 1=14,j=k.

By Lemma 1.1 and (5), we have

IIA
=~

U;i,§) = e(i,§), 1=14,j
and (2) is proved. From (2) it follows that

(iejHUj(i,j)) =1 1=24j=k
Hence
Vi(tejo Uftj) =1, 1=2j<k,
and, finally,
JyVi(tey - Ult,y) =1, 1=2j=k

Thus (1) is fulfilled and the theorem is proved.
Let 25 be the set of sentences

Va,...2, Ay Vi(tey o Uy, . ..,2,)),

where U is a formula of . with at most the variables ¢,y,z,,...,z, free
and such that in every atomic formula u € v of U, if » is a bound vari-
able of U then w=v. Putting it in another way, this means no bound
variable w of U can occur in the first place of an atomic formula of the
form u € v unless » is already the variable ». Notice that no restriction
is placed on the atomic formulas of the form w=v. It is clear that X,
contains X, as a subset.

THEOREM 2.2. X; is consistent.

Proor. Let S be the set of positive integers arranged in the natural
order,
S={1,....k...}.
We shall define three increasing sequences of finite subsets of S,

So Sk

D

0 cee

A
B,

NN

N 1NN
Iin 1N 1N

Ak
... B,

ooy
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and one increasing sequence of functions,

€S ... S e

N

satisfying the following conditions:
Ay =0; By =8, = {l};
Akan::@; AkUBk=Sk;
S = UkSk;
¢, is defined on (S, x S;) U (S x B,,) taking values in X .

The model we construct is M ={S,e) where e=U,e;. Let

C={Y,U):Y is a finite (possibly empty) sequence, ¥ =(b,,...,b,),

of distinct elements of S, and U=U(t,y,x,,...,x,) is a formula in
prenex normal form of the sort described and in which the variables
Z,...,%, appear free}.

Notice that the variables ¢ and y need not appear in U. Clearly C is a
denumerably infinite set. Let

C,=<KY,Uy), Cp =LY, Uy, ..., Cpb = (XY}, Uy, ...

be an enumeration of the elements of C in such a way that each element
(Y,U) of C occurs an infinite number of times. This is always possible.
We define ¢, on (Syx Sy)u (S x S,) as follows,

ek,1) =1/k, 1= k.
Assume that the sets

Sos- s B s
A, .., 4,,,
B(v L] Bm ’
and the functions
eo’ ’ em ’

have already been defined with the help of the sequence C,,...,C,,.
Suppose that S,, has (k—1) elements, so that S,={1,...,k—1}. We
proceed to the definition of S,,,;, 4,41, Bm+1, and e,,,, with the help of
Cri1={Y i1 Un+1)- There are two cases. In case the sequence

Y,,.1=4by,...,b,) contains elements not belonging to S,,, we let
Apmiy = Apy, Bpy = Bpy Sy = Sy lmir = €y -

The case where every element of the sequence Y,,,, is an element of §,,
will occupy our attention for some time. So let us assume that b, < (k—1)
for 1=i=n.
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First we let 4,,,,=A4,u{k}. Thus 4,,,,—4,, is the singleton {k}.

Before defining B,,.; and e, ., we would like to give the reader some
idea of what we intend to do. It should be clear by now that the element
k just introduced in A4,,, is intended to be that element in S so that

Vi(tek o Uyt k,by,....0,))[M] =1

for the given sequence (b,,...,b,>. If we can do this for all sequences
{by,...,b,y and all formulas U(t,y,z,,...,x,), then M shall be the
desired model. Since Brouwer’s Fixed Point Theorem applies only to
finite powers of X, we can only define the model M by finite approx-
imations. Now the possible quantifiers in U cause a great deal of trouble.
This is because the value of U, 4(t,k,b,,. . .,b,) would change depending
on how much of M we have already defined. It turns out that due to
the special restriction on the bound variables of U we can add enough
extra elements, the elements of B, ,;— B,,, in such a way that the value
of U,,.,(,k,b,,...,b,) will not change appreciably as we extend the defini-
tion of e. This is why the definitions of B,,,, and e, ,; seem very
complicated.
Next we shall define B,, ;. Let

Um+1 = quq'- -Q1u1V(t,?/:951’---,wn,ul,---,uq)
where z,,. . .,x, appear free in U,,,; and V is an open formula, @,,...,Q,
are the quantifiers (3 or V) of U, ,, and u,,...,u, are the bound vari-

ables of U,,,;. Consider the function P(V) of (at most) 2-(2+n+q)? real
variables. By the uniform continuity of P(V), there exists a positive
integer r such that if

|dy—d'y = 1/r, le;—e'sl < 1/r, for 1 £4,j £ 2+n+gq,
then

[P(V)(dijres55 1 £ 9,5 £ 24n4+q)—P(V)(d'j.€4551 S 4,5 S 2+n+9)|

1/(m+1).

IIA A

Let p=r®+3 let I=k+p-(g+1), let
B = Byu{k+1,...,0},
and let 8,,,;=4,,,1UB,,,;- We have already fulfilled the conditions that

Am = Am+1’ Bm S Bm+1’ Sm (= Sm-l—l ’
Ap1 N Bpyy =0, ApiaUBpy =84
To define e,,,, we extend e, in two stages. First we shall define e,

on the set S x B,,,;. To do this we only need to assign values to all
pairs of Sx (B, ,;—B,). We divide the (I—k)=p-(q+ 1) elements of
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B, ., — B, into p blocks each having (¢ + 1) elements. For each j, I<j<p,

let
D; = {k+s:s = j (mod p) and 1=s=p-(q+1)}.

We see that D,nD;=0 if i+ j, each D; has exactly (g+ 1) elements, and
Bm+1—‘Bm = 'D].U .o UDp-

We define e,,; on §xD; for each j, 1<j<p. Let g;,...,9, be an
enumeration of all functions mapping the set with »+3 elements
{0,%,b,,...,b,, —1} into the set of rational numbers {1/r,2/r,...,1}cX.
For each element a in D;, define

em+1(bi’a) = gj(bi) for 1 §7f§n,
em+1(k:a’) = gj(k) s

em+1(a:a) = gj(—l);
en+1(b,a) = g;(0) for all b + k,b,,...,b,,a.

sYns

In this way, we have extended e, to be defined on all of S x B,, ;.
Notice that given any element b of 8 (b need not be distinct from
k,by,...,b,, and may be in B, ., —B,), and given any (n+ 3)-sequence
of rational numbers of the form s/r, with s> 1, there will always be at
least g elements a of B, ,,— B, distinct from b so that the sequence

<em+l(b’a’)>em+1(k=a)’em+1(blsa)> e ’em+1(bnsa)’em+l(a:a’)>
is the given sequence.

To extend the definition of e,, to include all of S,,,; X S,,,; it is only
necessary to define e, ., on the set

Sm+1 x {k} U (Sm+1 _Sm) X Am ’
since e, ., is already defined on
(Sm+1 X Sm+1) - (Sm+1 x {k} U (Sm+1 '—Sm) X Am) .

Let z,,. . .,7 be individual variables not occurring in any of the formulas
U,...,U,,; Consider the l-transforms T(U,),...,T(U,,.,). We may

write
Tl(Um+l) = Tl(Um-i—l)(t’y,xl’ LI :xnyzl" .. :zl) .

For each pair (i,k) in §,,,; x {k}, we define the formula
Wik(zl,. . ,z,) = Tl(Um+1)(zi,zk,zbl, oo ,an,zl,. .. ,21) .

For each pair (i,5) in (8,,,;—S,,) X 4,,, let h be the unique index such
that j € 4, — A4;_;. We may write

T(U,) = TyUR)(E,Y, %15« 1 Zg215 - +57)
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where C,=(Y,,U;) and Y,={cy,...,c,) is a sequence of elements of
8S),_;- We define the formula
Wi,-(zl, .. .,z,) = Tl(Uh)(zi,Zj,zcl,. . ,zc“,zl, oo ,zl) .

In this way, an open formula W(z,...,7) is defined for each pair
1,5y in

Spi1 Xk} U (81 —Sp) x4, .
For any other pair (z,j) in S, x8,,,1, we define W, arbitrarily. We
now have an array of formulas W;;, 1=1, j=I. Let (S,,,;,€,4+1) be the
partial model on the set S,., with the e, , defined so far. Let ¢,
1=<7,j7=1, be a fixed point of the array W, 1=<1,j<1, with respect to
{Smi1,€m+1y and the distinet elements 1,...,7 of §,,,;. We now extend
em+1 to the rest of S, ., xS, ., by the definition e, ,(s,j)=t,; for (3,5) in

Sm+1 x {k} U (Sm+1*Sm) X Am .

By mathematical induction the sequences of sets and functions S;, 4,,,
B, and e;, are defined for each k> 0. As we have already noted, we let
e=U,e, and M =(8,e). We also let M, =(S,,e,), where only that part
of ¢, on S, x 8 is used. Each M, is a submodel of M.

To complete the proof of the theorem we require the following lemmas.
Each of the lemmas is proved for an arbitrary integer m = 0.

Lemma 2.3. If G,k) is in Sy x (Ap—Ay) and Y, 1=(b,...,b,),
then

U,ia1(t,k,by,. . . 0,)[M,, 1] = e(i,k) .
Proor. It is quite clear that, by the definition of e, ,,,
Wil,. .., DIM,y] = €peqlis k) = e(i k) .
By the definition of W,
Wal,. . . 0M,, 1] = TyU )@k, 0y, . 00, 1,0 DM, 0]
By Lemma 1.1,
U@k, by, 0 0,) [ M ] = Ty(Upir)(3,k,04,. .00, 1,00 O M, 4] -
So, putting everything together, we have
Upia(@k,0y,. . 0 [ M, 1] = e(3,k) .

Lemma 2.4. If (3,5) s in (S,1—Sp) x4, and h is the unique index
such that je€ Ay — A,_,, then
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Un(i.,61- - 1 C)[Mpm1a] = €(3,]) ,
where Y, ={cy,...,Ce).
Proor. By the definition of e, ,,,
Wiyl . D[Mpiq] = em1(t,J) = €(1,J) .
By the definition of W,
W1, . D[ Mpyq] = Ty(UR)E G515 - 565 Ly o, D[ M iq] -
By Lemma 1.1,

Uh(/';’jvclv' . 'vcs)[Mm+1] = Tl(Uh)(i’j’ C1se v +5Cq L.. "l)[Mm+1] .
So

Uh(ihj!cl»' . "cs)[Mm+1] = e("’:]) .
LemmA 2.5. Suppose that hz2m+ 1. If (¢,k) is in S, x (41— A,) and
Y,,i1=¢by,...,b,), then
IUm+1(i’k’bl" . ’bn)[Mh] - Um+1(i?k’b1" . ’bn)[M]l = 1/(m+ l) .

Proor. We recall that the formula U,,,, is written as

Upirt, ¥, ., %,) = Quuy ... Quuy V(E,y, 2, . ., 20, uy,. .., %,) ,

where V is an open formula, @,,...,Q, are quantifiers of U, and
Uy,...,u, are the bound variables of U, ;. Recall also the function
P(V) and the pair of positive integers r, m+ 1 with respect to which
P(V) is uniformly continuous. For each j,0<j=<¢q, we let

Vil 4,1, o s Ty Ujins - - -5 %)

denote the formula Qu;...Qyu,V(t,y,,,...,2,,%y,...,%,). We now
prove: For each integer j,0<j =g, each sequence

o = (,k,by,. . by, 054, .0
of elements of §;, and each sequence
U’ = <i,k,b1,- . .,bn,a,j+1,. . .,a’q>

of elements of S, if
le—0o'| £ 1fr (modV)
then
IV"('i, k’bl’ .o ,b,n, aj+1’ .o ,aq)[Mh] - Vj(i, k, bl’ .o ’bn’a’1+1’ R alq)[M]l
< 1/(m+1).
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The case when j =0 is trivial, because of the definitions of the function
P(V) and the integer r, and because V is an open formula and M, is a
submodel of M. So, let us assume that the case for j is proved. We
consider the case j+1. Let

o = (,k,by,....b,,0;.,,...,0,)
be a sequence of elements of S, and let
o' = (i,k,by,...,0,,0",,...,0/)
be a sequence of elements of S. Suppose that

lo—0'| £ 1fr (modV).
We first show that

(1)  for each a in §,, there exists a’ in S such that

[k, b5 v 2,0y 0,04 g, . - 20> — 8, K0y, ., by,0 0 44, . . 0 )
£ 1fr (modV).

Suppose a is one of the elements in the sequence o, then let a’ be the
corresponding element in the sequence ¢’. Suppose a is different from
every element in the sequence o. Recall that u;,, is a bound variable of
U,..1 and hence, in order to satisfy (1), it is sufficient to find an element
a' in 8 such that, first of all, a’ is different from every element in the
sequence ¢’ and, secondly, the sequences of values

(2) {e(t,a), e(k,a), e(by,a),. . .,e(b,,a), e(a,a))
and
(3) {e(t,a’), e(k,a’), e(by,a’),. . .,e(b,,a’), e(a’,a’))

are term by term within 1/r of each other. We know that there are at
least ¢ elements a’ of B,,,, — B,, distinct from ¢ such that the sequences
of (2) and (3) are within 1/r of each other. Since the elements k,b,,...,b,
are not in B,,,, — B,,, and there are at most (¢ —1) elements a'; ,,. . .,q,/,
we can easily find an element a’ satisfying (1). The same argument will
show that (1) remains true if the roles of S, and 8 are interchanged.
Now, independent of whether @;,; is 3 or ¥, we have from (1) and the
inductive hypothesis

1Q41{V (2, k,by,. . .,b,,0,0)4,...a)[M}]:a in 83} —
—Qin{V;(i,k,by,. .. ,b,,0",0 4s,...,a")[M]:a" in 8} < 1/(m+1).

This implies
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|V 100, k,bg, . o by, @pa, . o @) [ M ] —
= V(6 k,by, .0y, g, .0 )[M]| £ 1/(m+1)
and the induction is complete. The lemma is proved with j=gq.
LemMmA 2.6. If {3,k is in Sy q X (Apir—A4p) and Y, =<by,...,b,),

then
|Um+1(i?k’b1’ v ’bn)[M] ——e(i,k)l = 1/(m+ 1) .

Proor. This follows from Lemmas 2.3 and 2.5.

Lemma 2.7. If (3,5) s tn (S,01—Sp) X 4,, and h is the unique index
such that j € A, — A,,_,, then
|Un(3,g,¢15. - -, e ) [M]—e(i,j)| = 1]k,
where Y, ={cy,...,c).
Proor. In Lemma 2.5, read h for (m+ 1), (m+ 1) for &, and j for k. The
result follows from this and Lemma 2.4.
We now return to the proof of the theorem. Let V be a sentence of

25 of the form
Va,...x,dyVi(tey o Ult,y,x,,...,2,))

where U is a formula in prenex normal form of the sort described. We
show that V[M]=1. Let b,,...,b, be elements in S. Without loss of
generality, we assume that b,,...,b, are distinct. In order to show
VIM]=1, it is sufficient to show

JyVi(teyo Ultyb,,...,0,)[M] = 1.

This means we have to prove that for every positive integer & there
exists an element £ in S such that for all elements ¢ in §

(4) ]U(i>k:b1>' . 5bn)[M]”e(7”k)| = I/h *

Let a positive integer A be given. By the way in which the enumeration
Cy,0C,,...,Ch, ... was chosen, there exists an integer m so that

Ym+1 = <b1’ .. "bn>’ Um+1 =U,
Cm+1 = <Ym+1’ Um+l> )’

by,...,b, arein S, and b < m+1.

Let {k}=A4,,,—4,. We show that (4) holds for all + in 8. If 4 is in
S,.+1, then by Lemma 2.6,

\UG, Kby, . ., b,)[M]—e(i k)| < 1/(m+1) < 1/h.
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If ¢ is not in 8,,,,, let m’ be the index so that ¢ isin S,,.,,—8,,. Clearly
m' 2 (m+1). So by Lemma 2.7, reading m’ for m, m+1 for » and k for
j, we have . .

|U(i,k,by, . ..,0,)[M]—e(i,k)| < 1/(m+1) < 1/h.

Hence (4) holds for all ¢ in S and the theorem is proved.

3. Generalizations and problems.

In this section we shall discuss various aspects of our results, progress-
ing from things we know to be true (or false) to things which may be true
(or false).

Our proofs have already established that the formulas U occurring in
sentences of X, and 2; can have free occurrences of the variable y. It
may turn out that some of the problems we pose later on cannot be car-
ried out with this liberal assumption. Therefore, whenever we speak of
the sets 2, and 2 in what follows, it is with the understanding that they
may have to be curtailed by not allowing free y’s to occur in the U’s.
Before we go on, let us denote by X, the set of all sentences of the form

Va,...x,yVi(tey o Ultxy,...,z,))

with no restriction placed on the formulas U. The set X, is referred to as
the full axiom schema of comprehension.

Our results can be generalized in various ways. For instance the
logic L. can be enriched by adding a countable number of new propo-
sitional functions, provided they are all continuous. The more proposi-
tional functions we have in a language, the more we add to the power
of expression of the language. It is almost immediate that our results
hold in any such extension of .. We should also mention that the cor-
responding generalizations of Theorems A4, B and C also hold in any
such extension of L.

The space X of truth values need not be confined to the interval [0, 1],
see for instance [4], [5]. It is difficult to put precise conditions on those
spaces Y for which our results hold. However, at the very least, ¥ must
have the following properties:

Y is compact Hausdorff;

Y™ has the fixed point property for each positive integer m;

Y contains the proper analogs of the continuous functions min, max,
inf, and sup.

We feel that at the moment we should try to extend our results to sets
of sentences more general than X, and X; with the fixed space X,
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rather than to investigate more general spaces for which our results
hold. For instance, the very first such problem might be to find out if
the set 2,UZ2; is consistent.

The next question that concerns us is whether the axiom of exten-
sionality in its classical form,

A,: Vay (¢ = yoViterotey))

can be consistently added to X, and 2;. This would amount to saying
that a model M will have to be constructed so that X, (or 2}) is satisfied
on M, and whenever a,b in M and a+b, then

in‘fcin M(l - |e(c, a) - e(c,b)[) =0.
This happens only if
(1) Sup, ., i le(c,a)—e(c,b)| = 1 for a + b .
Suppose that M satisfies 2, (or 2;). Then the two sentences
dyvVt(teyotel),
JyVi(tey o (—tet>tet))

must have value 1 on M. From this we can easily find two elements
a,b in M so that a4b and (1) does not hold. Hence the axiom A; cannot
be consistently added to X, or X,.

In many set theories the following holds:

A Yoy (z = yoVi(@etoyet)).

We can show that A;" holds in any model M satisfying X;. For suppose
a,bin M and a+b. We would like to show that

(2) Supciane(“vc)_e(b?c)l =1.
We have

(3) JyVi(teyot=a)M]=1,
and

(4) dyVi(teyot=b[M]=1.

Since a+b, (3) and (4) easily imply (2). Hence the set Z3U{A,'} is con-
sistent. We can also show, without a great deal of trouble, that the set
2,U{A,'} is also consistent. This can be done, for instance, by adding a
sufficient number of extra elements in each of the finite models con-
structed in Theorem 2.1 with preassigned values for e (0’s or 1’s) in
such a way that (2) holds for any two distinct elements a and b of that
finite model. Then extend the function e to the rest of the model by a
fixed point argument.
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The question then is open as to what form of the axiom of exten-
sionality we should accept. It may be that the condition (1) is unreason-
able to impose on @ and b if ¢ +b. Certainly the fact that (1) should hold
in two valued logic may simply be a consequence that only the values 0
and 1 are permitted. We can, of course, weaken our notion of identity
somewhat by relaxing our fixed interpretation of the symbol =. Let us
temporarily mean by a weak model M an ordered triple M =(S,e, =)
where both e and = are interpreted as arbitrary functions of two argu-
ments mapping 8 x 8 into X. By a weak model with identity we mean
a weak model M such that whenever a,b are in M,

= (a,b) =1 ifandonlyif @« =5b.
It makes sense now to ask whether any of the sets

ZUu{A, 2V {ALASY,
23U {Ay), Z3U{AL A}

can be satisfied by a weak model or by a weak model with identity.
The only thing that we can state positively is that 2,u{A,} can be
satisfied by a weak model. The argument goes as follows. We simply
repeat the procedure of Theorem 2.1 except that whenever the atomic
formula =y occurs in the formula U, we replace it by the formula

Vi(texotey).

In this way, we get rid of all occurrences of the atomic formulas z=y in
U. We next find the fixed points of the array W,;, and finally we cal-
culate the values of =(a,b) by using the equation

= (a,b) = Vt(teateb)[M].

In connection with this argument we should mention that Theorems
A, B, and C hold for weak models but not for weak models with identity.

We should also warn the reader that weak models (with or without
identity) may not satisfy the rule of substitution for identity mentioned
in § 1. However, if a weak model should satisfy both A; and A,’ then
it can be proved that it must also satisfy the rule of substitution for
identity. Thus it is more important to determine whether or not the sets
Z,U{A;, A’} and Z3U{A,, A,’} can be satisfied by weak models.

To continue we note that two other classical axioms of set theory,
namely the axiom of union,

A,: Vz3IyVi(teyeoIz(tezazen)),
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and the power axiom,
A, VedyVi(teyoVz(zet >z€eq)),

do not have the required form to be included in either X, or X;. It would
be interesting if it could be proved that the set X3u{A;, A/, A,, Aj}
is satisfied by a weak model.

One can even speculate that perhaps the classical axioms of regularity
and infinity can also be consistently added to the set Z3u{A;, A", A,, A}
It should be clear that axioms A,’, A,, and A;, and even the axiom of
replacement, will be satisfied in every model of X,. Thus, the main
open problem is still whether or not X, is consistent.

Finally, we would like to re-examine the whole question of the defini-
tion of consistency. We have defined a set X of sentences of L. to be con-
sistent if for some model M, U[M]=1 for every sentence U in X. Since
there are more than two truth values in X and since X admits a simple
ordering, this notion of consistency is clearly susceptible to generaliza-
tions. Suppose that 7 is a rational number in X. We say that the set X
is [r]-consistent ((r)-consistent) if for some model M, U[M]zr (U[M]>r)
for every sentence U in 2. Clearly (r)-consistency implies [r]-consis-
tency, and if r <s, [s]-consistency implies (r)-consistency. In particular
[1]-consistency is our old notion. In some respects the study of (r)-con-
sistency may be more important than the study of [1]-consistency. This
is because of the following reasons.

It is known (from [9] and unpunlished results of the author) that for
any positive rational r in X the set of sentences U of L. such that

U[M] =z r for every model M

is not recursively enumerable. On the other hand, for any rational r in
X the set of sentences U such that

(5) U[M] > r for every model M

is recursively enumerable ([7]) and is, in fact, axiomatizable by some
simple axioms and rules of inference ([1]). Now, in case the set X
turns out to be inconsistent, it would be quite natural and significant
to ask if there exists any rational r > } in X such that X, is (r)-consistent.
It is easily seen by letting e be the constant function } that X is [4]-
consistent; it is not even known if X is (})-consistent. The hope here is
of course that one might be able to develop a syntactical system of set
theory using the axiomatizability of the set of sentences U in (5) and the
(r)-consistency of 2, for some r= 3.
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