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ELLIPTIC DIFFERENTIAL PROBLEMS
WITH HIGH ORDER BOUNDARY CONDITIONS

A. L. MULLIKIN AND K. T. SMITH!

1, Introduction.

Let A, A;, and B be linear homogeneous differential operators with
constant coefficients of orders 2m, m;, and s, s<2m. Let the system
(4,{4;}) be elliptic in the half space R,». (The definitions are given in
§ 2.) The usual L? estimates for the solution of the boundary value

problem
(1.1) Au=Bvin R,™ and Au=0 on the boundary R"»-!

are of the form
(1'2) |u|2m—8+k, Lp = Cl’l)‘k’ Lp> 1< p<oo,

for k>m;+s—2m. However, there are natural problems (see § 4) which
call for such estimates for smaller k, in which case the estimates do not
hold generally, but for certain functions v they may come about because
of cancellations. It is our purpose to give a description of this class of
functions v.

For example: If v vanishes near R"-1, there is always a solution of
(1.1) which satisfies (1.2) for any £= 0.

The orders m; of the boundary operators are completely immaterial.

Our results partly overlap recent unpublished work of S. Agmon.
Agmon treats the special case where {4,} is a normal system of order
<2m. However, he does without our restriction that the operators be
homogeneous with constant coefficients. We do not know if this is
possible in the general case.

In § 2 we list the notations and some known properties of the Poisson
kernels of Agmon, Douglis, and Nirenberg and of the singular integrals
of Calderén and Zygmund.

In § 3 we give the main theorem. Its chief novelty is in the case men-
tioned above where the orders of some of the boundary operators are
relatively high, but it holds in general. Moreover, although the inequali-
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ties are stated for the L? norms, the proofs (as usual) involve explicit
formulas in terms of singular integrals, and remain valid for various
other norms such as the Holder norms.

In § 4 we give an illustrative application to the spaces L,?(Q).

We are indebted to L. Hormander. Initially we considered only the
particular boundary value problems arising in this application. The
proper generality of the results came out in a discussion with him.

2. Preliminaries.

We use the following notation: R” is the real n-dimensional space

with points z=(x,,...,z,); C* is the complex n-dimensional space with
points &=(&;,...,&,); R* ! is the hyperplane z,=0 with points z’'=
(#y,...,7,_4); R,"is the open half space x, > 0; & =(xy,...,x,) is a finite

sequence of integers between 1 and n, and |x|=r; §*=¢, ...&, ; D;=
o[ox;; D,=D,,...D, ; if a is a polynomial, then A =a(D) is the differen-
tial operator obtained by replacing &* by D,.

For sufficiently regular functions » on an open set 2 < R™ we put

ol =k

1/p
[4lg, Lo =| > J'lDauV’ dx] ,
2

BT

1/p
”qu Loy = { Z leaulp dx} .
Q

When p and Q are fixed we may write simply |u|, and |ju|,. We will
always suppose that 1< p< .

Let A and A4,, i=1,...,m, be linear homogeneous differential opera-
tors of orders 2m and m; with constant coefficients. The system
(4,{A;}) is elliptic in the half space R " if for each fixed real &' € R"-1,
&' %0, the polynomial a(é)=a(&',£,) has m zeros t,,.. .7, with positive
imaginary part, and m with negative imaginary part, and the polynomials
a,(&',&,) are linearly independent modulo a*(&,)=(£,—1;)...(&,—T,n)-
Equivalent to this linear independence is the property that for &+ 0 the
equations Au=0 in R ™ and 4,u=0 on R"! have no bounded solution
%0 of the form
iz’ &)

u(x) = e P(@,) -

The first formulation is found in [1], where it is called the complementing
condition ; the second is due to Hormander, unpublished.

Agmon, Douglis, and Nirenberg have constructed Poisson kernels K,
for an arbitrary elliptic system. The explicit formulas for these kernels
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and some other K ; connected with them can be found in [1]. Here we
simply list the necessary properties, in a somewhat different notation.
To shorten the statements we shall say that a function F is almost
homogeneous of degree d if D,F is homogeneous of degree d—|«| for
|x| >d, and [D, F(x)| <c|z/**(1+1og+|x|) for |x|<d.

(a) Fori=1,...,m and j an even integer =0, K, ; is a function of class
C™ in the closed half space R.,™ except at 0.

(b) K, ; 1s almost homogeneous of degree m;+j+1—mn.

(c) K; ;=A'K, ;5 where A" is the Laplacian in R™1,

(d) The functions K;=K, , are Poisson kernels for the system (4,{A;})
in the sense that

w@) = S Ko = 3 [ Ko~y ) oy dy’
D) i pn

satisfies Aw=0 in R.™ and Aqw=¢, on R*1,

Also we shall use the following results from the theory of singular
integrals of Calderén and Zygmund [2, 3].

(e) If F is almost homogeneous of degree k—n and w= D (Fxv), |x|=Fk,
then

[wlo, Locrny = €|lo, Locam) -

Here the * denotes convolution over R®, while in (d) it denotes convolu-
tion over R*-1, The meaning will be clear from the context.

(f) If K is homogoneous of degree —n on R.™ and

w@) = [ K@ -y an+y.)f W) dy ,
Ryn
then

o, LaRym = clflo, LR *

It is pointed out in [1] that this results immediately from the singular
integral theorems if K is extended to B_" so as to be odd in z,,. Actually,
we use mainly a combination of (e) and (f).
(@) If
w@) = [ K@ -y z,+yn) DFroly) dy

Ryn
then *

lu[o,Lz»(R+n) p-S cl”Io,Lp(Rn) .

Here K is homogeneous of degree —n, F' is almost homogeneous of
degree k—mn, and |x|=k.

Finally we note (see, e.g. [1])

(h) A has a fundamental solution F which is of class C* except at 0
and 18 almost homogeneous of degree 2m —n; that is, A(Fxv)=v.
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Remark. The statements above require mild regularity conditions
on the functions involved. In the use that we make of these statements
very strong regularity conditions prevail. The kernels K, ;, F, and K
are all of class C™ except at the origin. The functions ¢, v, and f are all
of class C* with k as large as desired (usually k= ).

The statements also require integrability conditions at oo. If our
proofs were carried through in a completely straightforward way, these
conditions would not always be met, even when the data have compact
support. The precautions which have to be taken on this point are
evident in the proofs.

3. The main theorem.

Let 4, A;, and B be linear homogeneous differential operators with
constant coefficients of orders 2m, m,, and s, s<2m. Let the system
(4,{4;}) be elliptic in the half space R . The result stated partially in
the introduction is as follows. (We treat only k=0. Larger k’s offer no
extra difficulty.)

THEOREM 1. For each function v € C°(R_") there is a function u € C°(R,™)
satisfying
Au=Bv in R.® and Amu=0 on R*1 and

[Ulom—s = €|vlo -

The constant ¢ depends only on certain ellipticity constants of the
system (4,{A4;}). The space C,(R,") is the space of functions which
are of class C* and which have compact support in R ™.

This theorem follows immediately from a more complete one which is
easier to prove. Let b; and r; be the quotient and remainder when a;b
as a polynomial in &, is divided by a. Thus

(3.1) ab = b,a+r;, and the degree of r;in &, ts <2m .

Since the coefficient of £,%™ in @ is constant and = 0, b; and r; are uniquely
determined polynomials in & Note that if m;< 2m—s, then b;=0

THEOREM 2. For each function ve Oy (R™) there is a function we
C%(R,™) satisfying
(3.2) Au=Bvin R.* and Au=Bwon R*' and
(3.3) [l ms < Clolo.

The constant ¢ depends only on certain ellipticity constants of the
system (4,{4;}). Concerning |v|y, see Remark 2 below.
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CororrLARY. The functions v for which Theorem 1 holds are those which
satisfy the boundary conditions Bpy=0 on R™1,

This is the description mentioned in the introduction. A completely
precise description is given after Theorem 2’ below.

Proor or THEOREM 2. Formally the solution u is given in terms of
the fundamental solution F' and the Poisson Kernels K; by

where
uy = FxBv and u;, = Kx(Bp—Au,) = —Kx(R,Fxv) if 1>0.

In order to ensure the convergence of the convolution with K, (which
is over R"-1) we suppose at the start that » has the special form v=A4g
with g € C,”(R"). It follows from the results quoted in § 2 that u is of
class C™, that « satisfies (3.2), and that u, satisfies (3.3).

In showing that each u;, i >0, satisfies (3.3) we consider two cases.
First, m;+s—2m > 0. Writing D* for a generic derivative of order k, we
have

Dm—sy, (x) = — f Dan=sK (x' —y',x,) R, Fxv(y',0)dy’ .
Rn—1
As in [1] we rewrite this as an integral over R, by differentiating and
integrating
D2m_sKi(x’ - y”xn + yn) RiF*v(y,’ yn)

with respect to y,. We get

Dpim-suz) = [ D DK@~y 2, +y,) RFwoly) dy+
Ryn
+ f Dim=sK (x' —y', 2, +Yy,) D R Fxv(y) dy .
R
Each term in r,(&) has degree at least m;+s—2m+1 in &. Therefore,

we can integrate by parts m;+s—2m times in the first integral and
m;+8—2m+1 times in the second to obtain terms of the form

f DMK (2 —y @, +Yy,) D™ Fxo(y) dy .
Ryn

The required inequality then follows from (b), (d), (g), and (h) of § 2.
Now suppose that m;+s—2m <0, and choose an integer j so that
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2j22m—m;—s. Using the fact that K,=A"K, ,; and using the same
device as before to produce an integral over R.™ we have

D2m-sy, (x) = f D, D*=3A"K,; oi(x" —y' %, +yy) B:F3v(y) dy +
Ryn
+ f DEm=sA'iK (2’ — Y @, +y,) D R;Fxv(y) dy .

R+"

Now we can use the derivatives in 47 to integrate by parts 2m —m;—s
times in the first integral and 2m —m;—s—1 times in the second to
obtain terms of the form

D2j+mi+1Ki,2j(x’ - y', z, + yn) D2”‘F*v(y) dy :

Ryn
As before the required inequality follows from § 2.

Remark 1. This part of the proof shows that there is no additional
difficulty in proving

(3'4) ’u'2m—s+k = clvllc fOT k 2 0.

All that is needed is a sufficiently high power of A4'.

Now let v be an arbitrary function in C;*(R"), not necessarily of the
special form Ag, and let k be a large integer. As is well known, there is a
sequence of functions v, of the special form such that

llv— vn”k, Leemy > 0 .

Let u, be the corresponding solution given by what has been proved.
The inequality (3.4) shows that for every « with 2m —s < x| <2m—s+k,
D u, converges in LP(R,") to some function u, € L?(R,"). The u, are
uniquely determined by v, are bounded and of class C* on R,», and
satisfy the relations necessary for the existence of a function u of class
C® on R, with D u=wu,. Thus

(3.5) 1D~ D tpllom-sii-jo) >0 for 2m—ss|a[s2m—s+k.
When £ is sufficiently large this implies that

(3.6) Awu=Bvin R, and Amu=Bpwon R*' i m;z2m—s,
(3.7) Au=q;on Rt 4f m;<2m-—s,

where ¢, is a polynomial of degree <2m—s—m;. Indeed, consider for
example (3.7). If D, is any derivative of order 2m — s —m,; which depends
only on z’, then D, 4,u,=0 on R"-'. Therefore by (3.5), D,A,u=0 on
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Rn-1, Since this is true for every such derivative D,, it follows that on
Rr-1) A is a polynomial of degree <2m —s—m,. Since (3.3) and (3.6)
are unaffected if » is changed by a polynomial of degree <2m—s and
since B; =0 when m; < 2m —s, the proof will be finished by the following
lemma. (The homogeneity gives the right degrees.)

Lemma 1. If q,(x') are any polynomials, there is a polynomial p(x)
satisfying A;p=q; on R*1,

It is convenient to prove the lemma with weaker hypotheses on the 4,
than the ones resulting from ellipticity.

LemMMa 2. Let a,(§),...,a,(&) be polynomials which are lLinearly im-
dependent over C(&'), the field of rational functions of &'. If g (x') are any
polynomaals, there is a polynomial p(x) satisfying A;p=q; on R"-1,

In proving Lemma 2 we will use a third lemma.

LemMa 3. If /(&) and q(x') are polynomials, there is a polynomial
r(z') satisfying A'r=q.

The proof of Lemma 3 is a simple induction on the dimension.

Proor or LEmMMA 2. Let d—1 be the highest degree in &, of any of

the polynomials a;, and choose additional polynomials a;,,,...,a; so
that a,,...,a; is a basis over C(&') for the polynomials of degree <d
in &,. Then 4 4
a; = 3 a;&,77 and  @'£7 =3 a'pay,
j=1 E=1

where a;;, a’;;,, and a’ =det {a;;} are all polynomials in ¢'. By Lemma 3

there are polynomials r,(x') such that A'r,=q, on R*-1. If we define

p(x) so that 4

D,ilp = 3 A'yr, om R,
k=1

then
Aip = zAijA,jkrk = A,r‘i = q; on Rr-1,
Ik

REMARK 2. It would appear at first that the norm of v in (3.3) should
be taken over the whole space R*. Actually, the norm over R, " suffices.
The proof is as follows. Since the derivatives of u of order 2m —s are
bounded,

u(@) = O(|z|*=°)  as  |a| >oo.
Let k be a large integer, and let v, be of class Cj¥(R"), v, =v on R ,*, and

loell;, Lomy = cllollj, omymy JSor O0sjsk.
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The procedure above leads to a corresponding solution u, which is
sufficiently regular and satisfies u,(x)=O(|x|>™¢). A special case of the
uniqueness theorem in [1, p. 662] states that any solution to Aw=0 in
R, and A;u=0 on R"-! which is sufficiently regular and has polynomial
growth must be a polynomial. Therefore, u—u, is a polynomial, which
must have degree < 2m—s since |u—uy|s,_s<cc. Hence

[lom—s = |Uplom—s = ClVklo, Lomny = clvlo, zocr,my -

ReMARK 3. The solution we have found may not be unique. The
function % in (3.5) is only determined up to a polynomial of degree
< 2m—s, and the polynomial p in Lemma 1 may not be unique. In both
cases a finite number of additional relations can be used to fix the deter-
mination. Thus we have a slightly more precise version of Theorem 2.

TueorEM 2'. There is a linear transformation T from C,°(R*) into
C%(R,™) such that uw=Tv satisfies (3.2) and (3.3) (with the norm over R_")
and has polynomial growth at oc.

The boundary operators B; are the only ones for which such a theorem
is true. In fact, suppose it were true for some others B, and a linear
transformation 7. When v e Cy*(R,*), By=B;/v=0. Hence, by the
uniqueness theorem used in Remark 2, Tv—T"v is a polynomial, which
must have degree <2m—s. Given v € C,”(R"), let v, € C;*(R,™) and

For |x|=2m—s [0 =plo, Logymy = 0 -

D Tv-DTv = lim(DTv,—DT'v,) = 0
so that Tv—T'v is a polynomial. Hence, on R*-!
By—-B/v=ATv—AT"v

is a polynomial, and this is not possible for an arbitrary v e C,(R")
unless B;=B,.

An argument very much like this one leads to the following precise
version of the corollary to Theorem 2.

CoRroLLARY. Let C be a linear class of functions, Cy (R, ») = C < Cy*(R").
Suppose there is a linear transformation S: C - C*(R.,™) such that for
v e C, the function w=Sv satisfies

(a) Au=Bv in R,» and A;u=0 on R*!,

(b) %l oms, R n = € [V]o, R 70

(¢) wu has at most polynomial growth at oco.

Then every function v € C satisfies the boundary conditions B =0 on R™-1,
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4. An application to the spaces L, P(R).

Let 2 be a bounded open set in B* with boundary of class C™. The
class L, P(£2) of functions whose derivatives of orders <m belong to L7
on Q is a Banach space under the norm |||, 7r) Some of its properties
are given in [1, 4, 5]. We shall give a general representation theorem
about the linear forms on this Banach space.

Let {P’-} be a finite set of linear differential operators of orders <m
with coefficients sufficiently regular in £2. Let p; be the part of the
characteristic polynomial of P; of order m. (If P; has order <m, then
p;=0.) We assume:

(a) If x € 2, the p;(x,£) have no common real zero £+ 0; and

(b) If x €092, the p;(x,£) have no common complex zero &£+ 0 with
Im¢& orthogonal to 02 at .

THEOREM 3. For every linear form ¢ on L,P(Q) which vanishes on the
common null space of the P; there is a function v € L,P'(2) such that

o) =3 [PuPpde  forall  weln@).
j!)

Lions and Magenes [5] have obtained this result by other methods, at
least when the set {P;} is the set {D,}, |x| <m.

We shall not give the proof in detail, but we shall show its connection
with Theorems 1 and 2. In addition to these theorems the main fact
needed is the inequality

(4.1) > [ 1P o + [(up dz 2 cliuley, pie, -
7 a 2

It has been shown by Agmon (unpublished) and by Smith (unpublished)
that conditions (a) and (b) on the P; are necessary and sufficient for such
an inequality. In [6] there is a proof of the sufficiency when (b) is re-
placed by the slightly stronger condition: (b’) If x € 02, the p;(x,£) have
no common complex zero &+ 0. If the coefficients of the p; are constant,
(b) and (b’) are equivalent.

SKETCH OF THE PROOF. By virtue of (4.1) the common null space N of
the P; is finite dimensional, and the mapping

u — (Pyu,Pyu,...)
is an isomorphism of the quotient L,P(2)/N into a product of spaces

Lr(Q). Consequently, any linear form ¢ on L,,?(2) which vanishes on N
has the form
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o) = 3 [ Pufyde,
7 2

where the f; are functions in L?'(2). Therefore we must find a function
v e L,?(Q) such that

(4.2) > ijuP;-z} de =Y fP,-ufi de  forall we L,?(9).
7 i

If we can show in addition that
(43) ”U”m LP(!J) c z ]f]]O,LP () »

then by continuity we will only have to consider f;’s which lie in a dense

set in L7 (). We will take f; € C;™(22). (For the reason see Remark 4
below).

If D, is the normal derivative to 02 and if boundary operators C;
are chosen so that (P;* denoting the adjoint of P))

o m—1 R
j Puw dx = juP,-*w dx + Z D=1y Cyw da’
e Q =052

then (4.2) becomes
(4.4) > P*Ppw =3 P*f; in Q, and zC Py =0 on cQ.
J J

Ul

Hence, if we take
Azsz*Pi’ E 191’

J
f to be one of the f;’s, and B to be the corresponding P;*, then we need
a solution to

Av = Bf in  and Ap =0 on 02,

(4.5) Wllm, Loy S clflO,LT”(!)) .

This problem is similar to the one considered in Theorem 1 (with
s=m and m;=m +1) except in the following respects. The operators are
not homogeneous with constant coefficients, £ is not a half space, and
(4.5) involves the norm |[|-||,, rather than the semi-norm |-|,,. However,
in the beginning the problem can be localized and transformed to a half
space by the usual methods, so that what is really needed is a local
version of Theorem 1 which involves the norm |[-],,. Such a local version
is easily established by means of the first part of the proof of Theorem 2.
Consideration of the functions of the special form 4g and of the poly-
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nomials is unnecessary. The ellipticity of the system (4,{4,}) is not
difficult to verify, especially if the definition of Hérmander (see § 2) is
used.

ReMARK 4. If we take f; € C°(2), the boundary conditions in (4.4)
become

Z Oi’PJ’U = z Ci]'f] .
J J

Theorem 2 could be applied here, but it would have to be verified that
if B=P*, then B;=C,;. This is avoided by taking f; € C,™(2) and using
Theorem 1.

RemARKk 5. The proof of Theorem 3 is much less elementary than the
theorem itself. The right proof should give the theorem for rather general
domains {2 — perhaps, for example, those with Lipschitz boundaries.
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