A NOTE ON INDUCTIVE LIMITS OF LINEAR SPACES

OTTE HUSTAD

1.

It is well known [4, p. 92] that a closed subspace of an (LF)-space (that is an inductive limit of a sequence of Fréchet-spaces) need not be an (LF)-space. Hence, if $E = \lim_{\rightarrow} E_{\alpha}$ is an inductive limit (in the sense of Bourbaki [2, Chap. II, p. 63]) and F is a linear subspace of E, it might happen that the induced topology in F is different from the topology of the inductive limit $F = \lim_{\alpha} E_{\alpha} \cap F$, where each $E_{\alpha} \cap F$ has the topology induced from E_{α} . We prove, however, in the present note the following. Let $-\alpha$ denote closure in E_{α} , equip every $\overline{E_{\alpha} \cap F^{\alpha}}$ with the topology induced from E_{α} , and let $\lim_{\longrightarrow} \overline{E_{\alpha} \cap F}^{\alpha}$ denote the inductive limit on the union E_0 of the spaces $\overline{E_{\alpha} \cap F^{\alpha}}$. Assume that E is the union of the spaces E_{α} . Then the topology of $\lim_{\rightarrow} E_{\alpha} \cap F$ coincides with the topology induced from $\lim_{\alpha} \overline{E_{\alpha} \cap F^{\alpha}}$. Specializing a corollary of this proposition, we obtain a result, due to Bourbaki [3, p. 55], concerning a construction of Radon measures on a locally compact space. As another application we show that the completion of a strict inductive limit of metric spaces is an (LF)-space.

PROPOSITION 1. The topology \mathscr{T}_F of $F = \lim_{\to} E_{\alpha} \cap F$ coincides with the topology induced from the topology \mathscr{T}_0 of $E_0 = \lim_{\to} \overline{E_{\alpha} \cap F^{\alpha}}$. Furthermore, $\lim_{\to} E_{\alpha} \cap F$ is a dense subspace of $\lim_{\to} \overline{E_{\alpha} \cap F^{\alpha}}$.

PROOF. It is easy to verify that the topology induced from \mathcal{F}_0 is coarser than \mathcal{F}_F . In order to prove that \mathcal{F}_F is coarser than the topology induced from \mathcal{F}_0 , we first prove that if a linear functional f on F is continuous in the first mentioned topology, then f is also continuous in the latter. The restriction f_α of f to $E_\alpha \cap F$ is continuous, and f_α can therefore be extended in a unique way to a continuous linear functional \bar{f}_α on $\overline{E_\alpha \cap F}^\alpha$. Suppose that $E_\alpha \subset E_\beta$ and let $x \in \overline{E_\alpha \cap F}^\alpha$. Hence there exists a net $\{x_\gamma\} \subset E_\alpha \cap F$, such that $x_\gamma \to x$ in E_α . Since the topology induced from E_β is coarser than the topology of E_α , we also have that $x_\gamma \to x$ in E_β . Consequently,

$$\bar{f}_{\beta}(x) \, = \, \lim f_{\beta}(x_{\gamma}) \, = \, \lim f_{\alpha}(x_{\gamma}) \, = \bar{f}_{\alpha}(x) \; . \label{eq:fbeta}$$

Received July 7, 1962.

Now there exists, whenever E_{α} and E_{β} are given, an E_{γ} such that $E_{\alpha} \cup E_{\beta} \subset E_{\gamma}$. We can therefore infer that the linear functional \bar{f} is defined uniquely on E_{0} by the equation

$$\bar{f}(x) = \bar{f}_{\alpha}(x), \qquad x \in \overline{E_{\alpha} \cap F}^{\alpha}.$$

Furthermore, since the restriction of \bar{f} to $\overline{E_{\alpha} \cap F^{\alpha}}$ is \bar{f}_{α} , the functional \bar{f} is \mathscr{T}_{0} -continuous. Now the restriction of \bar{f} to F is f. Hence f is continuous in the topology induced from \mathscr{T}_{0} . A consequence of this result is that if K is a \mathscr{T}_{F} -closed, convex subset of F then K is also closed in the topology induced from \mathscr{T}_{0} . Let U be a zero-neighbourhood in \mathscr{T}_{F} . We may and shall assume that U is symmetric, convex and \mathscr{T}_{F} -closed. By definition $U \cap E_{\alpha} \cap F$ is a zero-neighbourhood in $E_{\alpha} \cap F$. Hence it follows, by a simple result in general topology [1, p. 39], that $\overline{U \cap E_{\alpha} \cap F^{\alpha}}$ is a neighbourhood in $\overline{E_{\alpha} \cap F^{\alpha}}$. Letting bar denote \mathscr{T}_{0} -closure, we have

$$\overline{U \cap E_{\alpha} \cap F}^{\alpha} \subset \overline{U \cap E_{\alpha} \cap F} \subset \overline{U} .$$

Therefore the convex hull of the union of the sets $\overline{U \cap E_x \cap F}^x$ is contained in \overline{U} . This shows that \overline{U} is a \mathscr{F}_0 -neighbourhood. Since U is closed in the topology induced from \mathscr{F}_0 , we infer that $U = \overline{U} \cap F$ is a neighbourhood in the induced topology. The second assertion in the proposition follows at once from the fact that $\overline{E_x \cap F}^x \subset \overline{E_x \cap F} \subset \overline{F}$.

Corollary 1. Suppose that the following condition is fulfilled.

(B) For every
$$\alpha$$
 there exists a β such that $E_{\alpha} \subseteq \overline{E_{\beta} \cap F^{\beta}}$.

Then the topology of $F = \lim_{\to} E_{\alpha} \cap F$ is the topology induced from $E = \lim_{\to} E_{\alpha}$, and F is a dense subspace of E. Furthermore, a linear functional f on F admits a continuous extension to $E = \lim_{\to} E_{\alpha}$ if and only if the restriction of f to $E_{\alpha} \cap F$ is continuous for each α .

PROOF. It follows from the hypothesis and an elementary result for inductive limits [2, Chap. II, p. 62] that $E_0 = E$, and that $\lim_{\to} E_{\alpha} = \lim_{\to} \overline{E_{\alpha} \cap F}^{\alpha}$. This proves the first assertion, and the last one is an immediate consequence of the first one.

Condition (B) has been used by Bourbaki in his theory of integration [3, Chap. III, § 2 Definition 3]. The following gives another example.

Proposition 2. If $E = \lim_{\to} E_n$ is an (LF)-space, and

$$\bigcup_{n=1}^{\infty} \overline{E_n \cap F}^n = E ,$$

then condition (B) is satisfied.

PROOF. This is an immediate consequence of [5, Théorème 1, p. 268].

2.

We assume in this section that E is a strict inductive limit of the sequence $\{E_n\}$, and that each E_n is a closed subspace of E_{n+1} . We claim no novelty for the following lemma, but being unable to give a ready reference, we give the proof.

Lemma 1. Suppose that F is a subspace of $E = \lim_{\to} E_n$ such that F is a metric topological vector space in a topology finer than the induced topology. Then $F \subseteq E_n$ for some n.

PROOF. If the assertion is false, there exists a sequence $\{x_i\} \subset F$ and an increasing sequence $\{n_i\}$ such that $x_i \in E_{n_i} \setminus E_{n_{i-1}}$. Let $\{U_n\}$ be a decreasing fundamental system for the neighbourhoods of 0 in F. Then we can find for each x_i an $\alpha_i > 0$ such that $\alpha_i x_i \in U_i$. Hence $\alpha_i x_i \to 0$ in the metric topology, and therefore in the topology of E. This implies that $\{\alpha_i x_i\}$ is a bounded subset of E, and consequently [2, Chap. III, p. 8] $\{\alpha_i x_i\} \subset E_n$ for some n. This contradiction gives us the proof.

From now on every E_n is supposed to be metric. Let E'' (E''_n) be the bidual of E (E_n) . We equip both E'' and E''_n with their "natural" topologies and hence we may and shall consider E''_n as a topological subspace of E'' [4, p. 84]. Furthermore, since E''_n is a Fréchet-space [4, p. 62], E''_n is a closed subspace of E''_{n+1} and E'' is the union of E''_n . We also notice that since E and E''_n are topological subspaces of E'', they both induce the same topology on $E \cap E''_n$.

Proposition 3. $\lim_{\to} E_n = \lim_{\to} E_n'' \cap E$.

PROOF. It is immediate that the topology of $\lim_{\to} E''_n \cap E$ is coarser than that of $\lim_{\to} E_n$. On the other hand, since $E''_n \cap E$ is a metric subspace of E, it follows from Lemma 1 that $E''_n \cap E \subset E_k$ for some k, and hence the topology of $\lim_{\to} E_n$ is coarser than the topology of $\lim_{\to} E''_n \cap E$.

COROLLARY 1. $\lim_{\to} E_n$ is a dense topological subspace of the (LF)-space $\lim_{\to} \overline{E_n'' \cap E}^n$. (Here $^{-n}$ denotes closure in E_n'' .)

PROOF. This follows directly from the propositions 1 and 3.

COROLLARY 2. Every E_n is complete if and only if for each n there exists a k such that

$$(1) \overline{E_n'' \cap E}^n \subset E_k.$$

PROOF. If (1) is true, then $E = \lim_{\longrightarrow} \overline{E_n'' \cap E}^n$. Hence E is complete [5, p. 257], and therefore the closed subspace E_n is complete. Conversely, if every E_k is complete, then $E = \lim_{\longrightarrow} E_n$ is complete. Hence

$$\overline{E_n'' \cap E}^n \subset \bigcup_{k=1}^{\infty} \overline{E_k'' \cap E}^k = \bigcup_{k=1}^{\infty} E_k ,$$

and the conclusion follows from Lemma 1.

REFERENCES

- 1. N. Bourbaki, Topologie générale, Chap. I et II, 3e éd. (Act. Sci. Ind. 1142), Paris, 1961.
- N. Bourbaki, Espaces vectoriels topologiques, Chap. 1-2 et 3-4. (Act. Sci. Ind. 1189 et 1229) Paris, 1953 et 1955.
- 3. N. Bourbaki, Intégration, Chap. 1-4 (Act. Sci. Ind. 1175), Paris, 1952.
- 4. A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil Math. 3 (1954), 57-123.
- A. Grothendieck, Espaces vectoriels topologiques, Departamento de Matemática da Universidade de São Paulo, São Paulo, 1958.

UNIVERSITY OF OSLO, NORWAY