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THE SYMMETRIC NORMAL DERIVATIVE OF A
SUBHARMONIC FUNCTION II

BENT FUGLEDE

Introduction.

In a previous paper [2] the author has proved that an arbitrary sub-
harmonic function defined in a plane domain £ possesses a symmetric
normal derivative almost everywhere along any given line segment con-
tained in Q. It was stated without proof that the analogous theorem
holds for any twice differentiable curve in £2 instead of a line, and similarly
in higher dimensions, where the curve should be replaced by a hyper-
surface.

It is the purpose of the present paper to supply a complete proof of
this extension to curves in the plane and to (n—1)-dimensional mani-
folds in the n-dimensional Euclidean space E". Quite delicate—though
elementary—estimates are required in order to accomplish the proof.
The presentation is independent of the previous paper and is fairly self-
contained, the prineipal tools beyond classical analysis being the elements
of integration theory and the Riesz representation theorem for sub-
harmonic functions.

The symmetric normal derivative of a function f=f(z) of x € R is
defined at a point z of an (n — 1)-dimensional oriented smooth manifold

2 by
Ste) — lim? @ =1@=0)

§—>0 2s

provided this limit exists. Here xz,=x+sN(x), where N(x) denotes the
positive unit normal to X at z. Actually, we shall adopt in the present
paper a somewhat more general definition of a symmetric normal deriv-
ative Sf, which we obtain by replacing the normals, given parametrically
by s - x,=x+sN(z), by a smooth family of curves perpendicular to X'
and determined by parametric representations s -~ x,. This generaliza-
tion involves no complications in the proof of the results concerning
subharmonic functions.

Among known smoothness properties of general subharmonic functions
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we recall Evans’ theorem (which will, however, not be used in the present
paper), according to which a subharmonic function f is absolutely con-
tinuous along almost every straight line in a prescribed direction (Evans
[1, p.233f.]). This implies the existence of the partial derivatives
of[ox; almost everywhere in the domain of f! In particular, the usual
normal derivative exists almost everywhere on almost every hyperplane
of a given direction. On a prescribed hyperplane, however, the norma
derivative—unlike the symmetric normal derivative—need not exist any-
where, as we see from the example where the hyperplane is determined
by z,=0 and where f(x)=|z,|.

The content of the present paper may be summarized as follows. In
§ 1 we specify the requirements concerning the manifold 2 and the family
of curves I',, which may take the place of the straight normals to X.
Moreover, we formulate the results in Theorem 1 and in three proposi-
tions. In § 2 we prepare the proof and reduce the matter to establishing
a certain property of boundedness. (These steps are similar to the cor-
responding parts of the proof given in [2] for the special case n=2,
2= a line segment.) The verification of this boundedness condition takes
up the following three sections, the crucial estimates being obtained in
§ 5. The hypothesis that the curves I'; be perpendicular to the mani-
fold X' is used in Lemma 2, § 5.

We refer to the previous paper [2] for certain applications of the results
obtained in the present paper to the structural characterization of sub-
harmonic and d-subharmonic functions. (The proofs of these further
results are given in [2] only for the two-dimensional case n=2, but the
extension to higher dimensions is immediate.)

1. Formulation of the results.

The Euclidean n-dimensional space B™ will be viewed as a vector space
with the scalar product (x,y) and the norm |z|={x,z)}, in terms of
which the distance between x and y is written as |z —y|.

Let X denote an oriented (n—1)-dimensional manifold of class (2
imbedded in R™. The surface measure on 2' is denoted by o and the
positive unit normal to 2’ at a point x € X' by N =N(x), where |N(x)|=1.
For each point x € X let I', denote a curve in R™ passing through z,
defined as a mapping s — x, of some interval on the real line R into R".
We suppose that z,, considered as a function of the two variables x € 2
and s € R, is defined in some open set D <X x R containing X2 x {0}, and
that the following two conditions are fulfilled:
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A. The mappings (z,s) -z, and (x,s) - 0z /s of D into R™ are both of
class CY(D).

B. x,=2 and 0z,/0s=N(x) for s=0 and any point x € X.

Under these assumptions we say that the mapping (x,s) - x, of D into
R* defines a normal family of curves I', with respect to XZ. The inter-
pretation of the conditions A and B in terms of a local parametric re-
presentation of X' will be given in § 3. It follows from A that the para-
metric representation I',: s — 2, of each curve is of class C2, and from
B that the curve I, is perpendicular to 2 at the point x and oriented in
accordance with the positive unit normal N(z) to X at z. Note that the
parameter s is not required to coincide with the arc length ! from z to
xg along I',, but it follows from B that

dal | ox,
ds | os
It is easily shown that an (n—1)-dimensional manifold X< R" must
necessarily be of class C? if there shall exist a normal family of curves
with respect to 2 in the sense specified above. In fact, it follows from
A and B that N(x) must be of class (' as a function of x € . — Con-
versely, if 2 is an oriented (n—1)-dimensional manifold of class C? in
R™, then the positive normals to X, given parametrically by the mappings
§ > x,=x+sN(x), obviously constitute a normal family of curves with
respect to 2. Note, however, that this mapping (z,s) — z, is not of class
C? unless N(z) is of class C2, that is, 2'is of class C3. It is for this reason
that we have chosen to assume merely that the mappings (z,s) - x,
and (z,s) - 0z [/0s be of class C1 — which just suffices for the proof of
the subsequent results — instead of requiring x, to be of class C2.
Returning to the general case of a normal family of curves I',: s -z,
with respect to the (n—1)-dimensional manifold X< E®, we consider a
function f with values in B=[— oo, + o], defined in some open set 2 < R®
containing X. The symmetric normal derivative of f with respect to the
normal family of curves I',: s > z, is defined by

(1) 8f(@) = lim @) =/ (=)

8—>0 28

=1 fors=0.

at any point x € X for which this limit exists in B. (In particular, for
all sufficiently small values of |s|> 0, f(x,) and f(z_,) should not both be
infinite in the same sense.) Obviously, it suffices to consider values
§>0. — If f happens to possess a total differential at some point z € 2,
then clearly Sf exists at that point and coincides with the usual normal
derivative.
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THEOREM 1. Let f=f(x) denote a function which is subharmonic in an
open set 2 < R™, but otherwise arbitrary. Let X denote an oriented (n—1)-
dimensional manifold of class C? imbedded in £2, o the surface measure on
2, and N = N(x) the positive unit normal to 2. Then, for any normal family
of curves I',: 8 - x, with respect to X, the symmetric normal derivative (1)
of f exists at g-almost every point x € X and determines a locally o-inte-
grable function Sf on X, the equivalence class of which is independent of the
particular normal family of curves.

ProrositioN 1. Under the assumptions of the above theorem, there cor-
responds to any compact subset X* of X and to any normal family of curves
with respect to X a number 6 >0 such that f(x,) is defined, finite, and con-
tinuous® with respect to s € [—9,0] for o-almost every x € X*, and such that
moreover

@ [ sup £z do@) < o,
S —0<8<4
|f(xs)_f(x—s)l
(3) Josi}g)o———é;——da(x) < oo,

CororrLARY. The limit relation (1) holds not only pointwise almost
everywhere in X, but also in the sense of local mean convergence of
order 1. Explicitly,

lim
8—>0 o

f(@g) —f(2-s)
s

3 — 8f(x)|do(x) = 0

for every compact set Z* <2\

We express this property by saying that the symmetric normal deriva-
tive exists in the mean of order 1 on compact parts of 2. A similar state-
ment applies to the limit relation f(x,) - f(x;) for s ¢ in [—4,0] ex-
pressing the continuity of f(x,). The corollary follows immediately from
Theorem 1 and Proposition 1 by application of Lebesgue’s theorem on
dominated convergence.

ProrosTiON 2. If the subkarmonic function f has the form of a potential
of a negative measure —u, u=0, on R*, that is, if

v
w

- [le—yrduty)  for n

(4) fl@) =
[rogle—ylduty)  for n =2,
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then Sf may be determined o-almost everywhere on X' by differentiation under

the integral sign with respect to x in the direction of the positive normal to
2 as follows:3

(x—y,N(z)) cos 0

6 8@ = m-2) [F P duy) = -2
|z —yl

the integrals on the right being absolutely convergent for c-almost every point

x € 2. Moreover, for any compact set X* <X, the following interchange of

integrations s permassible:

du ,

,rn—l

-y, N
®) l §f () do(a) = (n—2) [ du(y) 2{ L2 o)
- (n—Z)fd,u fj‘:bs_leda.

=

Here r=|z—y| is the distance between the point xz € X' and the point
y € R™, and 0 is the angle between z—y and the positive normal to X
at x.

Returning to the case of a general subharmonic function f defined in
an open set 2< R", we denote by x =0 the measure associated with f
in the manner described in the Riesz representation theorem (F. Riesz
[4]). (Equivalently, u is determined by Poisson’s formula?

Af = (n=2)w,p,

interpreted in the sense of the theory of distributions. Here w,, denotes
the total surface measure of the unit sphere in R*.) Suppose now that
the C?-manifold X'< {2 is the boundary of some bounded open set G < £,
and that the positive unit normal N = N(x) to 2 points into [|G for every
z € 2. Then we have the following result generalizing the classical for-
mula [;(9f/0N)do = [gAfdx, which holds if f is smooth.

Prorosirion 3. Let f be subharmonic in 2, u = 0 the associated measure,
and G a bounded open subset of 2 with smooth boundary X < (2 as specified
above. Then?

[ 57(@) dota) = (n—2)er, (u(G) + Ju(2) -

2. Reduction of the proof to a certain boundedness condition.

It is easily shown that any manifold imbedded in a Euclidean space is
representable as the union of a denumerable family of compact subsets
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of the manifold. For this reason it is sufficient, in proving Theorem 1,
to verify the existence of the limit (1) for s-almost every point of X*
and to show that Sf, considered on 2*, is o-integrable and o-essentially
independent of the choice of the normal family of curves I',. Here 2*
denotes an arbitrary compact subset of X.

The measure u =0 associated with a subbharmonic function f in Q in
the manner described in the Riesz representation theorem is charac-
terized by the following property. For any bounded open set 2* with
closure 2* < Q we have the decomposition

f@) = f*@)+hx), 2e0*,

where % is harmonic in 2*, and where f* denotes the potential of — u*
as defined by the right hand side of (4), § 1, with u replaced by u*.
Here u* denotes the trace of u on 2% obtained by cancelling the masses
outside 2*. We choose 2* so as to contain the prescribed compact
subset 2* of 2’ mentioned in Proposition 1. By virtue of Borel’s covering
theorem applied to the compact set X* x {0}<D, there is a number
d*>0 such that z, is defined (that is, (x,s) € D) and belongs to 2* for
all (z,8)e Z*x[—d*,d*]. If we can find a number 6>0 such that
Proposition 1 holds with f replaced by f*, and such that Sf* exists almost
everywhere on X* and its equivalence class is independent of the par-
ticular choice of the normal family of curves I',, then the same state-
ments will follow for the given function f. In fact, the term %, which is
harmonic in Q*, will be of no effect in these matters provided we choose
é<d*.

In the proof of Proposition 2 we may likewise suppose without loss
of generality that the measure u is (bounded and) of compact support
since in any case the distant masses, e.g. the masses outside %, contribute
to the potential (4) only by some function which is harmonic in Q*, and
for which the differentiation under the integral sign in (5) as well as the
interchange of integrations in (6) is permissible. — Note that the inde-
pendence of the equivalence class of Sf from the choice of the normal
family of curves is implied by (5).

Summing up, we have now reduced the proof of Theorem 1 and Prop-
ositions 1 and 2 to establishing the following three statements, in which
[ is defined in R™ by (4) with x =0 of compact support, and X* denotes
a compact subset of the manifold X"

i) There is a number § > 0 with the properties asserted in Proposition 1.
ii) The limit relation®
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1im&~‘{):_f_(x_"s_) = (n—2) (x y, N )>dﬂ(?/)

50 28 | — y|n
holds for c-almost every point x € XT*.

iii) The formula (6) holds.

Finally, we observe that Proposition 3 likewise follows from these
statements. Applying the Riesz representation theorem, and choosing
Q* 50 as to contain the closure G of the given set @, we write again
f=f*+h in Q* where f* is determined by the right hand side of (4)
with u replaced by the trace u* of u on Q*. Since A is harmonic in Q*,
we have [;(0h[oN)do=[yAhdx=0, and hence, according to statement

iii),
<£I3—- ?/,N(x»
wa=waw=m—aJmmzvggg~wm.

This implies the identity stated in Proposition 3 when it is observed
that, by a classical formula,

1 for ye@
f9;&~ﬁ2d()_[%fmyez
0 for ye[G.

We begin the verification of the statements i), ii), and iii), to which
all the results announced in § 1 have now been reduced, by choosing a
number d > 0 with the property that z, is defined (that is, (z,s) € D) for
every pair (r,s) € 2* x[—d,d]. Replacing x by z, in the kernel entering
on the right of (4), we obtain the following “deformed kernel”

— — |2 >
K (2y) = l |z —y| for n _=_ 3

oglr,—yl for n = 2,
where x € 2*, y € R, se [—d,d]. For fixed (z,y), K («,y) is continuous
as a function of s with values in R. The corresponding symmetric dif-
ference quotient is denoted by

Ky@y) —K_yxy)

™) Ly@.y) = o

, 0<s<d.
For s > 0 (and x+y), L,(x,y) converges pointwise to®

0 (x—y,N(x))
Ly(z,y) = —K +(2,9) S=O=( )ﬂn .
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For any number 6 >0, § <d, we introduce the majorant

(8) My(x,y) = sup |K (x,y)| + sup |L,(z,y)| .

-850 0<8sd
(Note that M(x,x)= + oo because Ky(x,x)= — o). According to Lebes-
gue’s theorem on dominated convergence, the following passages to the
limit under the integral sign:

©) @) = [K@yduy) ~ [ K@y duw) = fa)
as 8 » ¢t in [—4,6]; and
ay  TEIIED g du) > [ Loy duw

as s - 0, are both permissible and lead to finite limits f(x,) and Sf(x)
respectively, at any point x € 2* for which the expression

¥, (@) = [ My(a,) du(y)
is finite. — Writing

Oy) = [ My@y) do@),  yeBr,
=
we have by Fubini’s theorem

an) [ @) dot@) = [ 2,0) duty)
*

Hence, if we can show that @,(y) is bounded as a function of y, at least
on bounded subsets of B®, then the integral on the right of (11) is finite
because u is bounded and of compact support. Consequently, ¥, will
be integrable over 2* and hence finite o-almost everywhere on 2*. From
this latter property will then follow that f(z,) is finite and — in view of
(9) — continuous as a function of s € [ ~4,0] for s-almost every x € 2'*;
and the limit relation (10) will hold, likewise for o-almost every x € 2'*.
The integrability of ¥, over XZ* will imply the domination properties
(2) and (3). In fact, it follows from (4), (7), and (8) that

fe)l = | [ Kuw) dutw)| < ¥ot@)

and

@) (e) -] = | [ Liw.9) duty)| < ¥(o)
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for —8<s<6 and 0<s<4, respectively. Finally, the interchange of
integrations (6) is permissible according to Fubini’s theorem because

-y, N
(n-2) [ du(y) | %&l do(z) = [ du(y) [ |Lo(@y)] do(a)

< [0, duty) < .

In this manner we have reduced the proof of the statements i), ii), and
iii), § 2 (and hence the proof of Theorem 1 and Propositions 1, 2, and 3,
§ 1) to showing that there is a number d > 0 such that @,(y) is bounded
as a function of y on every bounded subset of R*. Here 2* was meant
to denote an arbitrary prescribed compact subset of the manifold X. It
follows, however, from Borel’s covering theorem that it is enough to
prove that there corresponds to each point x* € X a number §>0 and a
netghbourhood X* of x* in X such that X* x [—§,6]< D (the domain of
the mapping (x,s) — x,), and such that the function

0,(y) = [ Myfary) dot)

is bounded on every bounded subset of R™.

3. Construction of 6 and X*.

According to the definition of an (n— 1)-dimensional manifold of class
C? imbedded in R", there corresponds to the given point z* € 2" an open
neighbourhood X< X of z* which is representable as the image of a
suitable open set U,< R*-! under a regular C*-homeomorphism

x = &(u)
of U, into R*. We may suppose that £(0)=x*. The Cartesian coordinates
x; =& (u)=E&;(uy, . . .,u,_,) are functions of class C*(U,), and the Jacobians
(12) T = (= 1yt O(Xyse o o s @y1sTiy1se » s %y)
O(Ugye - osUpy_q)

do not vanish simultaneously at any point u € U,. The vector J =J(u)=
(/q,-..,J,) is proportional to the unit normal N at the point x=§&(u)
of Z,. The hypothesis that X be oriented means that the parametric
representation x=&(u) of 2, may be so chosen that

(13) J=+|J|N.
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Here
(14) [J| = (J2+ ...+, = dofdu .

The mapping (x,s) > x, of an open set D <X x R into R®, which serves
to define the normal family of curves I', with respect to X, may now
be expressed (for x e X;) in terms of the parametric representation
z=E&(u) of 2, as follows:

(w,8) - n(u,s) (= x, with z = &u)) .

Here (u,s) ranges over the set W, of pairs (u,s) such that u € U, and
(&(u),s) € D, the domain of the mapping (x,s) > z,. Clearly, W, is an
open neighbourhood of the pair (u,s)=(0,0). — If we write, for brevity,

on(u,8)[0s = L(u,s),

then the properties A and B of the mapping (z,s) > x, (cf. § 1) are
reflected as follows (for x € 2):

a. The mappings (u,s) - n(u,s) and (u,s) > {(u,s) of W, into R™ are
both of class CY(W,).
b. n(u,0)=£&(u) and C(u,O):N(E(u)) for every u e U,

It follows from these two properties that the Jacobian I =1I(u,s) of the
mapping (%,8)=(Uy,...,%,_1,8) > n(u,s) is equal to |J(u)|=do/du for
s=0. We obtain, in fact, from (12), (13), and (14)
n
I(u,0) = Y J(u)l;y(w,0) = (J,N) = |J| = dofdu > 0.
i=1
We shall only need this result in so far as it implies that 1(0,0)40.
Since (u,s) - n(u,s) is a C'-mapping of an open neighbourhood W,<
Uy, x R of the point (u,s)=(0,0), and since the Jacobian I(u,s) is non
zero at that point, there is an open neighbourhood W,< W, of (0,0)
such that the restriction of #n to W, is one-to-one and of Jacobian
I(u,8)+0. In other words, the restriction of n to W, is a regular C'-
homeomorphism, and so is therefore the inverse of this restriction.
Now let B,={ue R"':|u|<a} denote the closed ball of radius a
about the origin in B*-1. We choose a > 0 so small that the cylinder

C, = B,x[—a,a] = {(u,s)e R*'xR: |u|Za, |s|Za}

is contained in W,. Since C, is compact, so is its image #(C,), and hence
n and ! are Lipschitz mappings between C, and #n(C,). This means
that there is a constant & such that the inequalities*

(18) ke M(ju—v|+[s—t]) = [n(u,8)—n(v,t)] = k(lu—2v[+[s—1])
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hold for (u,s) and (v,t) in the cylinder C,=B,x[—a,a]. — Since =
on/os is likewise of class C! (according to property a), there is a constant
¢ such that

(16) 18w, 8) = E(,0)] = e(lu—v|+[s—1])

for (u,s) and (v,t) in C,. Note also that do/du=|J(u)| is bounded in B,.

We proceed to show that @y(y)=[;.M4(x,y)do(x) is a bounded func-
tion of ¥ on every bounded subset of B® provided d <a and X* =&(B;),
the compact neighbourhood of z* in 2 obtained as the image of the ball
By={ue R"1: |u| <6} under the parametric representation x=~&u)=
n(u,0) of the original neighbourhood 2 of #* in 2. We distinguish the
two cases y € [n(C,) and y € 5(C,).

4. Boundedness of @, on bounded subsets of [:1](0“).

In order to show that the function @y(y) = [, p,Msx,y)do(x) of y € R"
is bounded for bounded % not in 5(C,), we recall that the cylinder C,;=
Bsx[—46,0] is compact and contained in the interior of C,. Hence 7(C;)
is a compact subset of the interior of #(C,). This implies the existence of
a constant b> 0 such that |z—y|2b for z € 9(Cy), y € [n(C,). In partic-
ular,

(17) le,—y| 2 b for xze&By), se[—6,0], ye[n(C,)

because x=&(uw)=n(u,0) for some e B,;; and so xz,=n(u,s), where
(u,8) € Byx[—6,0]=C;s. — It is now clear that, for n =3, the deformed
kernel K (x,y) defined in § 2 is uniformly bounded for x € &(B;),
se[—9,0], ye[n(C,). For n=2 we obtain uniform boundedness of
K (x,y) for y in a bounded subset of [7(C,). Consequently, the expres-
sion
| sup K @.9)] dota)
§(Bs) Iol

is bounded as a function of ¥ in any bounded subset of [7(C,).

In order to estimate the symmetric difference quotient L (x,y) defined
in (7), § 2, we shall make use of the following elementary inequalities
valid for any two vectors p and g in R™ of length |p| 2, |g| 25, where

b>0 denotes some given number:
1) [[pl2" ~ lgl*-"] < (n—2)lp—g|b*  for n23
log |p| —loglgl| < |p—g|b-! for n=2.

(Actually, these inequalities subsist even with |p—gq| on the right re-
placed by ||p| —lg||, and in this stronger form they follow e.g. by applica-
tion of the mean-value theorem in one variable.)
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Applying (18) to L,(x,y) with p=x,—y, ¢=x_,—y, and b equal to
the constant introduced a while ago, cf. (17), we obtain for z € &(B,),
0<s<4, and y e 9(C,),?

|Ls(wsy)l = (28)_1(n—2)lxs‘x—s|b1_n = (n—2)lcb1—",

because |r,—x_,|=|n(u,8)—n(u, —s)| < 2ks on account of the Lipschitz
conditions (15). It follows that the expression

| sup L@yl do@)
By 0<8<d
is bounded for y € [5(C,).

Summing up, we have established the boundedness of @,(y)=
[ze M y2,y)do(z) on bounded subsets of (C,). Here § was any number
<a, and 2*=¢(B,) was the image of the ball B; under the parametric
representation x=&(u) of X,

5. Boundedness of ®@,(y) for y en(C,).

In the proof that @,(y) is bounded as a function of y € 5(C,), it turns
out that we may just as well take d=a, 2*=n(B,) instead of d<a,
2*=n(B,). In other words, we propose to show that the expression

[ My@9) dote)
¢(Bo)

is bounded for y € (C,) provided d <a. Thus, from now on, the three

relevant points z, z,, and y of R" all belong to the image 7(C,) of the

cylinder C,=B, x[—a,a] under the Lipschitz mapping (u,s) - 5(u,s).
Accordingly, we shall write

xr = 77(””0)? Xy = 77('””8)’ Yy = ﬂ(v,t) )
where u,v € B,, s,t €[—a,a]. For brevity, we put

ro=|z—yl = In(u,0)—-n)], e=lu—v/+]

(19)
rs = Ixs-yl = l’?(“:s)—ﬂ("’t)la Qs=lu_v|+|8—tl .
Then
—r 2-n for n=3
K, = K (x,y) = 8 =
¢ y logr, for n=2,
28)-1 2-m _p 2-n f >3
L, = Lysy) = (28)~(r_q rs2-") for n2

(28)~1 log (ry/r_s) for n=2.
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According to the Lipschitz conditions (15), we have
(20) k7o = r = ko, k7o, S, S ko,

Our task is to estimate K, and L, (expressed in terms of u, v, and ¢
instead of # and y) uniformly with respect to s (and to u, v, and t). We
formulate the result to be obtained as follows.

Fundamental estimates. For x=n(u,0) and y=7(v,t) we have, writing
o=lu—v|+t],

O(u—v[2—n) for n=3

21 K =

(21) s(x’y) {ang(l‘\"lu—v'—l)) for n=2,
O((1+tle=)u—v[*") for nz3

22)  L(x,y) =
@2) L@y { O((1+[tlo2) log (2 +2|¢] [u—v]|-Y)) for n=2.

Here, and elsewhere in the sequel, we use Landau’s symbol O(...)
uwniformly with respect to u, v, s, and ¢ for u,v € B, and s,t € [—a,a]. —
The estimate (21) for K, follows for n =3 from the following inequalities
derived from (19) and (20):

ry 2 ko, 2 k-l |u—v|.
For n=2 we have, since g,=<|u|+ |v]|+|s| + [¢] < 4a,

kYu—v| £ k19, £ 7, < ko, < 4ka,
and hence
—logk—log(ju—v|-1) < logr, < log(4ka) .

Observing that |u—v|<2a, so that log(l+ |u—v|-!) is bounded from
below by a positive constant, we obtain 1=0(log(1+ |u—v|-')), and the
stated estimate of K, for n=2 follows.

The estimate (22) of L, is considerably more delicate. We shall need
the following two lemmas, of which the first is quite simple and similar
to the inequalities (18), § 4. We may suppose s> 0.

Lemma 1. If r,2b and 7_,2 b for some s> 0 and 6> 0, then?

Ly = (n—2)(48)7 r_2—r2lb" .

Proor. Apply the mean-value theorem to the functions A'-*/2 (for
n 2 3), and log (A?) (for n=2) of a real variable A over the interval between
r_,2 and r2, and observe that 4= b? throughout this interval.

Lemma 2. For u,ve B,, 0<s=<a, and —a=<t=<a, we have the uniform

estimate
(28)-2(r_2—r2) = 2t+0(p+8)?.
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Proor. We have
7.—.'32_”32 = ly—x—slz_iy_xslz = <2y—xs—x—saxs_x—s> .

Expanding x,=7(w,s) from (%,0) by means of Taylor’s formula, we
obtain on account of properties a and b, § 3,

x, = n(w,0)+8l(u,0)+O0(s?) = x+sN(x)+ O(s?)

uniformly for w € B,, s€[—a,a]. Inserting this expression for z, and
the corresponding expression for x_, in the identity above, we obtain,
taking from now on s> 0,

rL2-rd = (2y—20+0(sY), 25N (z) + O(s)

(23) = 45(y -, N(2))+ O(s%0 +5%),

uniformly for u,v € B,, 0<s=<a, and —a<t<a. We have used here that
le—y|=r=ko (cf. (19) and (20)) and that |N(x)| =1.

In order to estimate (y —x,N(x)), we evaluate y=n(v,t), again under
observation of properties a and b, § 3. We obtain

(24) y = n(v,t) = n(v,0)+#{(v,0)+O(¢?) ,

(25) 7(v,0) = n(u,0) +n§(vi—ui)3§(u)/5ui+0(lv~ul2) )
i=1

(26) {(©,0) = L(u,0)+O0(Jv—u|) = N(x)+O0(jv—ul) .

Since the second term on the right of (25) is a vector in the tangent space

to the manifold 2 at the point x = &(u) =#(u, 0), this term is perpendicular

to the unit normal N(x) at that point,® and hence we obtain, subtracting

x=mn(u,0) from (24), inserting 7(v,0) from (25), and projecting on N(x),
y—x, N(@)) = <t{(v,0)+O0(t*) + O(|lv—ul?), N(z)) .

Using (26), we obtain

27 y-=xN@)

I

(N () + O([t]|w—v| + [t2+ |[w—v[?), N(z))
= t+O(lt]| + |u—v|)? = t+0(e?) .

Summing up, we infer from (23) and (27) the estimate

r_g2—r2 = 4st + O(sp*+ s% + %)
= 25(2t+O0(p +5)?) .

This completes the proof of Lemma 2.

We are now prepared to establish the fundamental estimate (22) of L.
It is, however, necessary to distinguish three cases according to the
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relative magnitudes of s, t and o= |u—v|+ |t|. It is assumed throughout
that ue B,, ve B,, 0<s<a, —a=<t<a; and all estimates are uniform
within this range. We may suppose throughout that w=v, and hence
o=+0.

The case s <p[2. In this case we have from (19) and (20)
s Z k7loy, 2 k7N e—s) 2 k7l/2,

and hence we may take b=/k1p/2 in Lemma 1. Inserting s<p/2 in the
estimate given in Lemma 2, we obtain (2s)-1(r_2—r2)=2t+ O(p?), and
we conclude from Lemma 1 that

Ly(x,y) = O((|t| + 0%~

O((Itle=2+1)g*™)
O((Itle™2+1)|u—v|>~)

because g = |u—v|. This leads to the estimates stated in (22) when it is
observed, for n=2, that 1=0(log(2 + 2|t||u—wv|~?)).

It

The case s /22 2|t|]. Here we have
T, 2 ko, =k Mu—v|+|+ts—1t]) 2 kY (|u—v|+s/2).

In fact, | +s—t|=s—|t|=s/2 because s=2|¢|. Applying Lemma 1 with
b=k-'(Ju—v|+s/2), and inserting o <2s in Lemma 2, we obtain
L(@,y) = O((t| +s*)(jw—v| +5/2) ™)
O((|t] +s%)(|w—v| +8/2)~2|u —v|2-")
= O((|tllw—v|-2+5%(s/2)2)|[u—v[2-")
= O((tle=2+1)ju—v|*)

because |u—v|=p— [t| = 3p/4 on account of the hypothesis [f| <o/4. This
implies, as above, the estimates stated in (22) as well for n = 3 as for n=2.

The case s=p[2, 2|t| 2 o/2. Suppose first n>3. Since
ri, 2 ko, Z Eu—1|,
we obtain immediately by a very crude estimate

Lyxy) = (25)(r_ 2" —r ") = O(s7u—v>").
Inserting
(28) s < 2070 = 2007% = 8t~ = O(1+]tle?),

we get L(x,y)=0((1+ |tlo=2)|w —v|2-"), which is the estimate stated in
(22) for n=3.
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For n=2 we have

k=% lo_s < rfr_s < k40—,
and hence

(29) log(ry/r_s) = log(esfe-s)+0(1) .
It is easily verified that the ratio

o lu—v|+]s—1f

0_s N |l —v| + s+

attains its maximal and minimal values (as a function of s € R) at s= —¢
and s=t, respectively. Consequently,

(30) llog (es/0-s)l = log(o_i/e) = log(1+2|t[lu—v|~?).

Combining (28), (29), and (30), we obtain the estimate stated in (22) for
n=2 since 1=0(log(2+ 2|¢||u —v|1).

Having thus verified the uniform estimates (21) and (22) for K (x,y)
and L (x,y), we arrive at the following estimate for the majorant M,(z,y)
introduced in (8), § 2, the number 4 being any positive number < a:

O((1+ [tlo=?)|u —v|2—™ forn=>3
(3]‘) Mo(x’y) = ( -2 ) -1 -1

O(|tlo~2log (2 + 2t||w—v|~) +log (1 + |w—v|~1)) for n=2.
As before, g=|u—v|+|t|. In deriving (31) from (21) and (22), we have
used the estimate

log (2 + 2|t||u—v|™t) = log(|uw—v|™t)+1log(2|u—wv|+2]t)
< log(1+ |u—v|1)+log(6a)
= O(log(1+ [u—v|1) ,

valid because |t| <a, |u—v|=2a, and hence log (1 + |u—wv|-1) is bounded
from below. The resulting estimate (31) of M,(x,y) has been shown to
hold uniformly for x € &(B,), y € n(C,), provided d<a. Our task is to
prove that

| M@ )do@
£(Ba)

remains bounded for y € n(C,). Since do/du is bounded for u € B, it is
sufficient to verify that the following integrals over the ball B,=
{u e R*':|u| <a} are bounded functions of (v,t) for ve B, te[—a,a].
For n =3 the integrals in question are
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I, = f |lw—v|2" du ,
By

I, = f [tlo=%lu—v|*> " du .
B,

For n=2 the ball B, reduces to the segment [ —a,a], and the integrals
in question are

I, = flog(1+|u——v|—1) du ,

I, = f]tlg—z log (2 + 2Jt|[u—v| L) du .

—a

In the integral I, we replace the ball B, by the ball of radius 2a about v.
This new domain of integration contains B, because |[v|<a. In I, we
replace B, by the entire space R*~1. Similarly, in I,, we replace the inter-
val [—a,a] by the interval [v—2a,v + 2a], which contains it; and in I,
we integrate instead over the entire real line. Denote the four integrals
derived in this manner from I,,...,I, by I,’,...,1,'. Since p=|u—v|+|t],
the point of integration » € R*~! enters only in the form of the distance
p=|u—v| from the point v. Moreover, in the four new integrals, the
domains of integration have rotational symmetry with respect to v.
Consequently, I,’,...,I," reduce to simple integrals with respect to p,
and we obtain, denoting by w,_, the total surface measure of the unit
sphere in Rn-1,

2a

L=I'= wn—lfp2_npn'2 dp = 2aw,_y,
0

I, S I = o [ H(p+ )PP p" 2 dp = oy,
0
2a
I, = 1) = 2flog(1+p—1) dp < oo,
0
I, < 1 = 2 [ [(p+1t)~* log (2+2{tlp~) dp
0

2f(q+ 1)-2log(2+2¢~1) dg < oo,
0

Math. Scand. 12 — 10
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where we have substituted p=|t|g in the last integral (under the as-
sumption ¢+ 0). Having thus shown that I,’,...,I," are finite constants,
and hence that I,,...,I, are bounded functions of (v,) in the cylinder
C,=B,x[~a,a], we conclude from (31) that @y(y)= [ p,M(x,y)do(x)
is indeed bounded for y=7(v,t) € 7(C,). Combining this result with the
result of § 4, we have proved the assertion formulated at the end of § 2,
and hence completed the proof of Theorem 1 and Propositions 1, 2, and
3,§ 1.

Notes.

1 Evans’ theorem can be generalized as follows. Let 1<p<n/(n—1). Suppose f is
subharmonic in £2, and denote by 2* an open set of compact closure 2* C Q. Then f
belongs to the class of Beppo Levi functions denoted in [3] by BLP(£*). This means that
[ is absolutely continuous along p-almost every rectifiable curve y < 2%, and the partial
derivatives of/ox; are of class LP(£2*). The assertion that f is absolutely continuous along
p-almost every curve y C Q2* means by definition (cf. [3], p. 187) that there is a lower
semicontinuous function F =0 of class LP(2*) such that f is absolutely continuous along
any rectifiable curve y C Q* for which SyF(x)ds<oo (with s=arc length along y). In
the proof of this extension of Evans’ theorem we may suppose, by virtue of the Riesz
representation theorem, that f is the potential of a negative measure —pu of compact
support. The convolution F(x)= |z|'~" * yu is obviously lower semicontinuous and of class
LP on compact subsets of R® for any p<n/(n—1) because the kernel |z|'~” has these
properties. It is easily verified by application of Evans’ method that f is absolutely
continuous along any rectifiable curve y < Q* for which syF(x)ds< oo.

2 This statement would hold for any smooth family of curves transversal to X. Actually,
it can be shown that f(z;) is absolutely continuous as a function of s € [ —d, §] for ¢-almost
every point € 2*. This follows easily from the generalization of Evans’ theorem men-
tioned in the preceding note.

3 Here, and elsewhere in the present paper, the factor n—2 should be replaced by 1
in the case n=2.

4 Tt is slightly more convenient to use the distance [u—v|+|s—¢| in R?~1x R instead
of the Euclidean distance (|lu—v|2+ ls—tlz)‘} to which it is equivalent.

5 Tt is at this step only that the hypothesis that the curves I'y be perpendicular to X
(and not just transversal to X) is used effectively.
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