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ON THE COHOMOLOGY OF SPACES WITH TWO
NON-VANISHING HOMOTOPY GROUPS

LEIF KRISTENSEN
1. Introduction.

The cohomology of Eilenberg—MacLane spaces K (7, n) has been studied
in great detail by Eilenberg—MacLane [7], Serre [14], and Cartan [2, 3].
A natural generalization of the problem of determining the cohomology
of spaces of type K(m,n) is the determination of the cohomology of
spaces with two non vanishing homotopy groups. This problem has been
considered by various authors, Cockroft [4, 5, 6], Hirsch [8, 9], and
Kristensen [10, 11]. The computation carried out in the present paper
includes a determination of the mod2 cohomology of such spaces pro-
vided the homotopy groups are finite dimensional vectorspaces over Z,
and the k-invariants are stable. These results were announced in Kri-
stensen [11].

In section 2 we shortly review the concept of secondary cohomology
operation, Adams [1], Kristensen [12], and in section 3 we study the
behaviour of these operations in spectral sequences. Let F - E - B
be a fibration, and let % € H*(F) be a transgressive class. The problem
considered in section 3 is to determine d,{Qu(%)}, where Qu is a secondary
operation defined on #. The main results in this section are stated in
theorems 3.2 and 3.3. Theorem 4.5 gives a clearer statement of theorem
3.2

Section 4 does not have any interest in itself, but only in connection with
the computations carried out in section 5. We shall call a finite product
of Eilenberg-MacLane spaces with finitely generated homotopy groups
a generalized Eilenberg-MacLane space. Let X be a generalized Eilen-
berg-MacLane space, and let us consider the fibration QX - LX — X,
where LX denotes the space of paths in X based at a point b. Let Y
be a generalized Eilenberg-MacLane space; then a mapping f: ¥ — X
induces a fibration QX — F — Y over Y. Any space £ which can be
obtained as total space in such a fibration we call a two-stage space.
In section 5 we are concerned with the determination of the cohomology
of certain two-stage spaces. To simplify the problem (and also to make
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the exposition clearer), we restrict ourselves to considering only two-stage
spaces induced from mappings between generalized Eilenberg-MacLane
spaces of a special type, namely, products of K(Z,,n)’s for various
integers n. The main result is stated in theorems 5.1 and 5.2. I see no
great difficulty connected with generalizing this result to a theorem about
arbitrary two-stage spaces replacing the condition about stable k-inva-
riants by a condition on the mapping f: ¥ — X determining the two-
stage space. It would also be desirable to obtain a description of the
modp cohomology of two-stage spaces in terms of secondary cohomology
operations. Since the loop-space of any two-stage space has “stable
k-invariants’, it might also be possible to get some information in the
general case. In his paper [13], C. R. F. Maunder has given an axiomatic
description of cohomology operations of arbitrary high orders. A con-
struction of these operations by means of cochain operations as it was
done in Kristensen [12] for secondary operations could possibly lead to
an evaluation of these operations in small dimensions. This problem is
within reach for tertiary operations, but seems somewhat more involved
in the general case. Also, such a description could possibly lead to a
determination of the cohomology of spaces of the third or even higher
stage.

I wish to thank Saunders MacLane for some very inspiring discussions
on the subject.

2. Secondary operations.

In this section we shall review the definition of secondary cohomology
operations as given in Adams [1] and Kristensen [12]. In what follows
we will be working in the category of css-complexes. Coefficient groups
will always be Z, (i.e. a field).

Let A denote the (mod2) Steenrod algebra. The subspace of A con-
sisting of all elements of excess larger than or equal to n is denoted by
E(n). The subspaces E(*) define a decreasing filtration of 4. We also put

(2.1) A(m) = AJEm+1) .
Let C, be a free A-module on generators c¢,", »=1,2,...,f, of certain
specified degrees. Let
(2.2) Cy = A(m)®. .. DA(m,)
with generators ¢y, j=1,2,...,7, and m;=degcy/. Then C, is a left

A-module. Let n=min;{deg(c,’)}, and put
(2.3) deg(ey)) = n+pu(j) = m, .
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Let a homogeneous mapping

(2.4) d: C,—~C,

be given by

(2.5) d(e) = Y ajed,  a € A(n+u(j)) -
j=1

Then, of course deg(c,")=deg(a;")+n+u(j). All degrees depend on n.
We shall allow n to vary among all positive integers. The mapping (2.4)
we shall also denote d(n): Ci(n) — Cy(n). We have an isomorphism
o: Cy(n+1) - Oy(n) defined by o(c,"(n+ 1))=c,’(n). This is a mapping
of degree —1. Let ‘
(2.6) z = >, €Cyn)

v=1

be a d-cycle. This means that
(2.7) a0’ =0 An+pu(j) forallj.

Sometimes we shall denote the image o¢%(z) € Cy(n—s), s=21,+2,...,
by =.

Associated with the pair (d,z) there are some secondary cohomology
operations (definition below). Let Qu=Qu@%9 be associated with (d,z).
Then for any css-complex K, Qu is defined on all homogeneous 4-module
mappings
(2.8) e: Cy(n) > H*K),

or what is the same thing, on t-tuples (e(col),. . .,e(c,)), with ed=0
provided z € ker(d(n)). Furthermore,

(2.9) Qu(e) € H*4(K)[Ind(n,(d,2)) ,

where ¢=deg(x,a,")+ u(j)—1=deg(z)—1—mn, and where the indetermi-
nacy subgroup is given by

(2.10) Ind(’n, d,2)) = o, HHdese) (K)

Let m, 1 <m < oo, be such that 2 eker(d(n)) for all n<m. Then the
operation Qu is additive for n <m—1. This is shown in [12] for t=1,
and the deviation from additivity for n=m—1 is also given there. The
proof, however, immediately generalizes to several variables. In [12] it
is also shown that the difference between any two operations associated
with (d,z) for n<m—1 is a stable primary operation, and for n=m—1
a sum of products of stable primary operations. Let {z,} be a finite set
of homogeneous elements in the kernel of d (see (2.4)) and let z= 3¢, z,,
¢, € A, be homogeneous. Let Qu™ be operations associated with z,. Then
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there is an operation Qu associated with z, such that modulo the total
indeterminacy

(2.11) Qu(e) = Z¢,Que)

for each ¢ on which the operations are defined.

Finally we recall the definition of secondary operations given in [12].
Let n={1,7T} be the symmetric group on two letters, and let W be the
standard z-free resolution of Z,. In each dimension ¢=0 W has two
(Z,-) generators e; and Te;,

o(e) = o(Te;) = (1+T)e;y,

e(eg) = e(Tey) = 1.

Let f: K — L be a css-map, and let C*(K,f) denote the (non-normalized)
chain-complex of K with coefficients in Z, and increasingly filtered by

chain-complexes of inverse images of skeletons in L. It is well-known
that there exists a natural m-equivariant chain-transformation

(2.13) ¢ WRC,—C®

(2.12)

preserving filtration and augmentation. The action in C,® is by permu-
tation, in Cy it is trivial, and in WQ®UC,, it is diagonal. The filtration in
W is by dimension. The filtration of W®C, and C,® is the usual filtra-
tion of tensorproducts of filtered modules. Explicitly the filtration of
WRC0, is given by F (WQC,)=3W,QF;(Cy), i +j=1p.

The transformation (2.13) gives rise to a dual transformation
(2.14) p: W®,00-C,

where C denotes the normalized cochain functor of css-complexes. In
Kristensen [10] we studied the properties that ¢ inherits because ¢’ is
filtration preserving. At a single point in this paper we shall make use
of these properties. The transformation ¢ in (2.14) we shall assume to
be fixed in what follows.

Let sq* be the cochain operation (see [12]) defined on the n-dimensional
cochain z by )

57i(2) = Ple_ @+, 1, O200) .

Let F be the free associative algebra generated by sg¢, ¢>0, and let R
be the ideal generated by the Adem relations. Then we have the exact
sequence
(2.15) 0O-R-F—->4-0.

Since z € kerd(n), n<m, there are elements b; € E(m+ u(j)), such that
in 4
(2.16) ' S,x0a+b; =0 forallj.
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Let &,, d;”, and 5; be cochain operations in F' mapping onto «,, a;’, and b;

respectively, and with the excess of b ; larger than or equal to m + u( 9)
By theorem 3.3 of [12] there are cochain operations ; with

(2.17) A0; = 3,5,4;+b; forallj.

Let &: Cy—~ H*(K) be as in (2.8), and let u; be a (n-+ pu(j))-cocycle
representing £(c,’). Then there are cochains w, with

(2.18) ow, = 3;4;(u;)  forallw.

A secondary cohomology operation associated with the pair (d,z) is then
represented by the cocycle

(2‘19) 23 6](”’ )+E,,(X (w +Z d((xv: (ul drv(ur)) >

where the cochain operation d is defined in lemma 2.3 of [12].

3. Secondary operations and transgression.

It is a well-known fact that primary operations commute with trans-
gression. In this section we shall examine to what extent this theorem
can be generalized to secondary operations.

Let f: B —~ B be a css-mapping with fibre ¥, over a base point b.
Then C4(E) is filtered by inverse images of skeletons in B. Therefore,
associated with f there is a cohomology spectral sequence. The spectral
sequences we shall consider below are all assumed, in the usual way, to
have the property
(3.1) B(f)y** ~ H*B)QH*(F,) .

Lemma 3.1. Let x; € B0+ and y; € E,n+0+1:0 4n the spectral se-
quence {E.,d.} associated with a css-mapping f: E — B. Let x; be trans-
gressive, and let d,, ., ;)11{2;} ={y;}. Let u; be a cochain in E representing
x; such that du;=v; e f¥(C(B)), where v; is a representative for y;. Let
k; € F be of degree i —u(j). If H"+(E)=0, and if 3;k;(y;) =0 (considering
k; as a cohomology operation) in H"+i(B), then there exist cochains a and
b with b € f¥(C(B)) such that

Proor. Let b be a cochain in f#C(B)) with 6b= —3;k;(v;). Since

6(ij,-(u,-)+b)=0, and since in F any (n+¢)-dimensional cocycle is a
coboundary, there is a cochain a with da=3;k;(u;)+b.

We use the setup and notation from section 2. In the choices made in
the construction of secondary operations we shall, however, avoid one
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ambiguity, namely, in the choice of b, in (2.17). Since b; € E(m + u(3)),
we can choose (provided m is finite)
(3.2) ?)j = sqgl Uk (Ej) + Zj ,

h(j) = m+u(j)+deg (By),

LU5), k() = (Z97R(j), . - -, 2h(5), k(5)) ,

where B]- is a sum of admissible monomials (possibly zero) of excess less
than or equal to m+pu(j), and where the excess of {; is larger than
m+u(j). In the following we shall only consider operations with this
specific choice of cochain operations 3 j- It is then clear (cf. theorems 4.8
and 4.9 of [12]) that the difference between two operations associated
with (d,z) coincides with a primary operation in the entire domain of

definition. The statement of the following theorem is somewhat com-
plicated. A clearer statement of the same theorem is given in theorem 4.5.

TaEOREM 3.2. Let {E,d,} be the spectral sequence associated with a
css-map f: E — B satisfying (3.1), and let (d,z) be a pair as defined in
section 2. Let

u; € B om0 and v € Ere0L0, =1, 7.
Let u; and v; be cochains representing u; and v; respectively such that
du; = v; € fHCO(B)) .
Further, let w, and w,’ be cochains such that
(3.3) ow, = 3;4;(w;)+w,, v=1,...,¢,

where w,’ € fH(C(B)). Let us consider the class qu(dy,. . .,4,) € B%"+ of
the cochain
(3.4) ¢ = 3;0;(u;)+ 3, &,(w,) + zvd(&ﬁ ay'(uy),. .. ,d:(uz)) +

+2vd(&v; wvliawv) M

This class clearly maps into a representative of Qu(dy,. . ., %,) in H*{(F,).
If n<m—1, then qu(¥y,. ..,%,) ts transgressive, and
(35) dn+i+l{qu(al’ et 7ﬁt)} = {qu(ﬁl" . ’51)} ’
where
(3'6) qu(gl’ s ’T_}‘r) = {Zj 0](”}) +Zv&v(wv') +2vd(&v; C31(’01)? e ’dr(vt))}
e E2n+i+1,0 .

If n=m—1, m<oo, let p be the least 1(j) (see (3.2)) with f;+0, and let
(3.7) I§j’ —_ sqL(l(j)—P»h(j))(gj)
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such that

(3.8) I;j = sqL(p,%)(gj') + Ej

with x=2"P(n+1+2). Then qu(%y,...,%,) persists till B, s=(1—-2"P)
(n+i1+2), and

(3.9) dfqui@y,. . .. %)} = {6/ (@;) B; (@)1},

where B denotes the cohomology operation corresponding to Ej’. For p=1
we therefore have

(3.10) ds{yi} = {85 @)NZ;87 @)}

where
1= qu(ﬂ’_l’ L) >ﬁ1) +zkﬁ],(aj)'ﬁk,(ak) )
<
and for p>1

(8.11) dslypt = {(Zi87 @))(Z;8/ ()}
with
Yp = qu(y,. .., u,) .

Furthermore, in the case n=m—1 we have for p=1 that

(3.12) & = (71+(z;iﬁj'(aj))2)(zjﬁj’(ﬁj))(zjﬁj'(aj))

s transgressive with

(3.13) d &) = {qv¥(@y,....5,)}, r=3}n+i+2)-2,
and for p>1 that

(3.14) &y = vp(ZiB5 @))(ZB7 (5)* 1

18 transgressive with
(3.15) d,{&,) = (g (@y,.. ., 7)), v = (1+2P)(n+i+2)-2,

where 2’ =3, (Sq"+i+1x )c,”, and the cohomology class qu®(vy,. . .,T,) repre-
sents a secondary operation associated with (d(m),z’).

Proor. Let us consider the cochain ¢ in (3.4). An easy computation
gives

(3.16) dc = 3,0,(0;) + 5,8, (w,) +3,d(3,; 4 (@1), - - .,4.7(0,)) + Z;bi(uy) -
Then, in case n<m—1,
n+u(j) = deg(u;) < e(b;)—1, forallj.
Hence zj?;,.(u,.)zo. Since by (3.3)
(3.17) dw, = 35, (v;)
the formula (3.16) implies (3.5).
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In case n=m—1, then
zjaj(uj) = ngj(uj) = ZjSQL<p’")(I§j'(uj)) = Zjlgj,(uj)'/gj,(vj)zp~1 8
where »=2"P(n+1+2). Since in the expression (3.16) for dc all other
terms are in f#(C(B)) (because v;,w,’ € f{C(B))) this proves (3.9). The
equation (3.10) follows easily from (3.9) since
ds({,% By (@) i (@)}) = {%’ B’ (@;) B’ (0)}
i<k J
= {338/ @))(Z;B/ ()} — {2387 @) B; (7))} -
For p>1 we must make sure that in £, the class of
(Zgﬁ] (u )(23/3_1 v; ))27) 1 _23/33 )ﬁ] )21’ 1

determines the zero element. An easy computation, however, gives this
assertion. We prefer not to carry out this computation here.

To prove (3.13) and (3.15), let us consider the relations sqm+¢+1sqL®» 3 i
x=2"P(n+1+2). Let v be a cochain operation such that

(3.18) A'P — sqn+i+lsq§(n+i+2)

with the properties stated in theorem 3.9 of Kristensen [12]. Then the
cochain operation y; =ysql®-1 ">,§,.’ has the property

(3.19) Ay, = sqrritiggle g forallj.
By (3.16) we have
(3.20)  §(sgm+i+(c))

sqm i (y + 3,b5(uy))
= sqntitl(y)+ 3;8q"+i+1b,(u;) + Od(sqnritl; y, dc) +
+ 0d(sqn+itt; gl(ul),. . .,5,(u,))
+d(sqn+itl; 21(01),. .. ,5,(1),)) ,
Yy = 3,0,0,)+3,&,(w) + 3,d(&,; 4 (vy), . . .,d4.(v,)) .
8 Sy;u;) = z«pj(vj>+28qn+i+13j(u,-) :

Together with (3.20) this yields
(3.21) 82 = Z;p;(v) +sqniti(y) + d(sgn+i1; by(vy), . . ., b, (v,)
where

2 = sqHH(c) + Zy5(u;) + d(sgn i+ y,80) + d(sqm i+ by(uy), ., B(u,)) -

where

Also

Now we shall draw some conclusions from (3.21). From the definition of
the cochain operation d (lemma 2.3 of [12]) we notice that the filtration



ON THE COHOMOLOGY OF SPACES ... 91

of the two last terms in 2z is larger than s=(1—2-?)(n+14+ 2) which is
the filtration of dc, i.e. éc € F,. By theorem 3.9 of [12] and the methods
for computing filtrations given in [10] we see that the filtration of
p;(u;) is larger than s except for p=1, where y)j(uj)——ﬁj’(uj)"'ﬁj'(vj) is of
filtration larger than s. Since dz € f#(C(B)) and sq+i+1(c)=cdc, we con-
clude that the class of

(3.22) qu(@y, . . ., u,) (zjﬂj'(ﬂj)ﬁf'(?_’j))"2;‘5;"(%)3,31'(5;')’ p=1,
qu(®y,. . . .,4,) (Zjﬂj,(ﬁj)ﬁj’(ﬁj)zp_l) > p>1,

is transgressive, and that it hits the class of dz in E,2®»+i+D.0_ Ap element-
ary argument shows that the class in (3.22) determines the same class
as {,, in E,. Therefore we have that {, is transgressive with d,{{,} equal
to the class af dz. All that is left then is to compare §z with a representa-
tive cocycle of Qu”(vy,...,7,).

Since the relations we are dealing with are r;=3,(s¢"a,)d, +s¢'C;,
where A=7n4-141, we must find cochain operations y; with dy;=r;". A
convenient operation with this property is

(3.23) 1 = 8q°0; +d(sq’; &qd,. . e ) +v;

where y; is given in (3.19).
A cocycle representative of qu®(%,,. . .,o

,) is
(3'24) ZJ Xg(”y) + Zﬂsql&v(wv,) + Zvd(sql&v; clil”(vl)’ LI ’drv(v't)) .

Since

3, 89°%,(w,) + 3¢ (y) ~ sg/(Z,5,(w,) +y)+
+d(sq’; 31(Zi01(v;)s - - -5 (Z541(v)), Zjaj(vj))
~ zj'sqlej(vj) +ZVSQ‘d(&; a,"(v4)5- - - >drv(”1)) +
+d(sgh; ry(v1)s- - 70Ny - M) +
+d(s9"; 34(Z;41v))), - - - 0(Z;4(vy)), 23‘37'(”5)) s

where
N, = &»(Zjdj"('”j))—Zj%djv("’j) »
and since (by an obvious generalization of corollary 3.5 of [12])
d(sq*x,; 4y"(vy), - - - 4. (v,) +sg'd(&,; 4,’(vy), - . .,6.(2,))
~ d('gql; &vdlv(vl)’ e 7&vd1v(vr))+d(8ql; &n(Zdev(v]))’ z;a'vd](v])) ’

we get that the difference between dz and (3.24) is cohomologous

(in f5(C(B))) to
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Ejd(sq’ 5 %810;),. . ., &dHv;),b; A- (v;)) +d(sq*; 31('01),. . .,7),(’0,))+
+d(sq'; 3(Z581), - - -, ou(S50/(0)), Ziby(v) +
+ Z,d(sq s 0,4, (0), - -, O‘vdz”(”r)) +
+d(3qA; (1), - o 700), M :77:)"‘
+3,d(sq'; &,(3;4,(v))), 3,847 (v))) -

By an argument similar to the proof of corollary 3.5 of [12] it follows
that this cochain is a coboundary. This completes the proof.

In case H*(E) is trivial, we shall give a slightly different statement
of Theorem 3.2.

In F, we define a new operation Qu associated with a pair (d,z) as
before. Qu is defined on t-tuples (%y,...,%,), %; € H*+#0(Fy), n<m,
provided #; is transgressive for all j, and provided there are ;e
Hr+e)+1(B) with

(3.25) By ruipalls} = {7}

2;a;(v;) = 0.
The indeterminacy is smaller than before. It is
(3.26) Ind, = 3, H" 0 (F)

where H%(F,) denotes the transgressive elements in H5(F;). The defini-
tion is as follows: Let 40;=r;, and let u; € C(E) be such that i¥(u;)
C(F,) represents %; and du; € f(C(B)). Let dw,=3;d;(u;)+w,’ with
w, € f“(C’(B)). From 2153 assumptions it is clear that such cochains
exist. Now we define Qu(%,,...,%,) to be represented by

(3.27)  ¥(3;0,(u) + 3,5,(w,) + 3,d(&,; 4 (wy),. . ., 4.7 (w,))) -

This cochain defines a well-determined class in H*+i(F,)/Ind.

THEOREM 3.3. Let {E,d.} be the spectral sequence associated with a
css-map f: B — B (see (3.1)), where H*(E) is trivial. Let (d,z) be a pair
as previously defined, and let an associated operation Qu be defined on the
v-tuple (Uy,. . .,%,), @; € H"0(F).

If n<m—1, then for any qu(,. . .,u,) representing Qu(u,,. . .,%,) there
18 a qu(Ds, . . .,7,) representing Qu(v,,. . .,,) for some operation Qu assoctated
with (d,z) such that

dn+i+1 qu(ul’ e !'Er)} = {qu(ﬁly e ’77r)} ’

where v; 1is as in (3.25).
If n=m—1, let p be the least I(j) (see (3.2)) with ;%0, and let ;' =
SqlCGrp RO (B.) such that
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b; = SqgF®:9(B,") +;
with x=2"Pn+1+2). Then any qu(®,,...,%,) persists till E, s=
(1—2-?)(n+1+2), and
d{qu@y,. . ., m,)} = {38/ (@;) B ()} .
Therefore we have

d{7p} = {(ZiB5 @) (2385 @))F 1},

where
F1 = quy,. . ., @)+ 3,6, (@) By (@) ,
summation over pairs (j,k) with j<k, and
Pp = qu(ty,...,u,), for p>1.

In the case n=m—1 we also have that the class 5,-, where

§1 = (7t (S5 )P (S8 @)NE61 )

Ep = PSP/ @))ZB/ @) p> 1,
18 transgressive with

d &} = g (®y,...,8,), 1= (1+2P)(n+i+2)-2,

for some representative qu” (%, ...,D,) of a secondary operation associated
with (d(m),2"), 2 =3, (Sq*++1a,)cy” .

This theorem follows easily from the definition of Qu and Theorem 3.2.

4. Lemmas about the Steenrod algebra.

In the following we shall often make use of certain vector spaces derived
from the Steenrod algebra. Therefore it is convenient right away to
introduce special notation for these vector spaces. As before H(n+1) is
the subspace of 4 consisting of all elements of excess larger than n and
A(n)=A|E(n+1). Let d=d(n): Cy(n) > Cy(n) be as defined in (2.4)
and (2.5) with m;=n+u(j). This means that

Coy(n) = A(n+p(1))®. .. @A(n+u(7))

with generators cy/(n)=c,’. The degrees (positive) of these generators
and of the generators ¢,"(n) =¢," of Cy(n) are

wy  dee(e) = ne(),
' deg(c,(n)) = deg(a;)+n+pu(j)  foranyj.
We put

(4'2) Oo(",d) = CO/Q’m(d) H
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(4.3) Cy(n,d) = K|K n (E(dege, ). . .DE(degcy) ,
where
(4.4) K = K(n) = ker(d(n)) .

We have that C,, C;, Cy(n,d), and C,(n,d) are all in an obvious fashion
left A-modules, and d a mapping of A-modules. Let us consider mappings

S-'n =8: Cl(n) g Ol(n) H

(4.5) 8, = 8: Co(n) > Cy(n),

defined on homogeneous components by

S(a) = Sqi-a for a e (C,);,

4.6
(£6) S(b) = Sqgi-b  for be (C,); .

The mapping S induces a mapping
(4.7) S: Cy(n,d) - Cy(n,d) .

The mapping S: Oy - C, (4.5) is monic. To see this let b=3,(3;x)ci €
ker (8), where «,7 is an admissible monomial of excess less than or equal
to n+u(j). Then S(xJcy’) = (S¢%)cy’, where a=mn+ u(j) + deg(«;7). We
see that Sq%,7 is admissible and of excess n+u(j). Therefore, S(b)=0
implies b=0.

We define an increasing filtration F, in Cy(n,d) by

Fy(Cy(n,d)) = ker 8/,

(48) F(Co(md)) = Co(nyd)

where S’ denotes the j-th iteration of §. There is a mapping
o: Cin+1) > Cy(n), ¢=0,1, of degree —1 defined by o(cf(n+1))=
¢;®(n). Then, clearly

0
v
Oy(n+1)-25 Oy(n+1)
(4.9) |e Vo
Cy(n) —— Cy(n)
v v
0 0

is commutative and has exact vertical rows. There are induced mappings

o: Cl(n+ lad) - Ol(n,d) s

(4.10) g: Cy(n+1,d) - Cy(n,d) .

The sequences
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@11) ow&nﬂ)f» Coln+ 1)—“—: Coln) >0,
Co(n+1,d) — COy(n+1,d) — Cy(n,d) - 0

are exact. In both cases it is obvious that the composition ¢S is zero. Let
a = 3; ;100 (n+1) e ker(o) € Oy(n+1);

with all «; ; admissible monomials of excess less than or equal to
n+ 14 u(j). Since .
O'(CL) = Ej’k(xj'kCO](n) = 0 5

it follows that «; ; must be of excess n+1+u(j). Therefore, any «; ;
can be written Sq°B; ;, where §; ; is admissible and

28 = n+1+u(j)+dega; 5, = 4.

For i odd, @ must therefore be zero and is consequently in the image of S.
For I even, we have

@ = 8¢° 3 185,100 (n+1) = 8(Z; 185,10 (n+1))

deg(B;, o’ (n+1))=dega; ,—s+n+1+pu(j)=i—s=s.

because

This proves exactness of the first sequence. The exactness of the second
sequence now follows from the commutative diagram
Cyn+ 1)%‘* Cy(n)
2 4], .
N 4
Con+1)—> Cy(n+1)—— Cy(n) .

1

For each j=1,2,...,00 choose a set of elements {x}, x7 € F,Cy(n+1,d)
such that for any s the set {o(x;/) | j < s, all 1} is a basis for o(F Cy(n +1 ,d)).
Then

Levma 4.1, The set of elements

{o(x) |all i, 1 £j £ oo}
18 @ basis for Cy(n,d).

Proofs will be given later in this section.
Levma 4.2. The set of elements
{SteJ |all i, 1£j< 00, 0St<y}
is @ basis for Cy(n+1,d).

Let us choose representatives for z/ in Cy(n+1). It is convenient
also to denote these by z/. Let y, € Ci(n+1) be such that



96 LEIF KRISTENSEN

(4.12) dyd) = Siad), 1sj<oo,
and let {z}, z,€ K(n+ 1)< Cy(n+ 1), be a set of elements such that their
images in
(4.13) Dy(n+1,d)
= Kn+1)/K(mn+1)n (E(deg(cll(n)))@. . .@E(degcl’(n)))

give a basis for this vector space. We denote the projection K(n+1) -
Di(n+1,d) by n. Since ¢S=0 and d commutes with o (4.9), it follows
from (4.12) that o(y/) € ker(d(n)), and therefore determines an element
wi e Cy(n,d), 1<j<oco. Then we have

LemmaA 4.3. The set {wj,0(z,)} is a basis for Cy(n,d).

Let
(4.14) S =8 Cin+1)—>Ciyn+1)

be a mapping defined by 8'(a) =8g¢*-1-a for a € (C,);. We get an induced

mapping
(4.15) 8 Cin+1,d) > Ciy(n+1,d).

The element S'(y,f) is in the kernel of d: Cy(n+1) — Cy(n+1), since for
k=2i-1 deg(x;)
A(S'(y?) = Sq*-18¢HS (=) = 0,

according to the Adem relation Sq?¢-1S8g¢*=0. It follows for 2> 0 that
(S"Y(y) determines an element in C;(n+ 1,d). This element we also
denote (8")(y,).

LeMMa. The set of elements
{(8)(ys), h>0; (8')(z,), £ 2 0}
18 a basis for Ci(n+1,d).
Proor or Lemma 4.1. From the choice of z/ it is clear that the

o(z)’s are independent. Since o: Cy(n+1,d) — Cy(n,d) is onto (see
(4.11)), they also span Cy(n,d).

Proor or LEmmA 4.2. First, let us show that the elements in
{S%7 | 0<t<j} are independent. Let

SAHS S =0, AfteZ,,
be a (finite) relation in Cy(n+1,d). Since 6S=0, we get
(4.16) Z}'ij’ oa(xij) = 0 € Co(n,d) .
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The set {o(x;)} is independent so that we can conclude 1,5-°=0. The
equation (4.16) then becomes

S(EAFS1) = 0,  1<t<j.
Assume that 1/!=0 for t<p, then

Sp(ZA5t8-Pxd) =0, p<t<j.
Hence
A58 re e F Cyn+1,d) .
This implies
TipPo(@)) € o(F,Ch(n+1,d)) .

Therefore each A/ Px7e F,Cyn+1,d). From the definition of the fil-
tration F, we conclude 4,7 8?x=0 € Cy(n+1,d). Since p<j, it follows
that 2,5-» =0. This proves that the elements {S%; | t <j} are independent.
To show that they span Cy(n+1,d) we argue by induction on degree in
Co(n+1,d). We assume that the statement is true in dimensions less
than p. Let ae Cy(n+1,d),. By Lemma 4.1 we get that o(a) can be
written as a sum Y o(x;/) where the summation is over some subset of
the index set. Then the element b=a -3z has the property o(b)=0.
It is enough to show that & can be written as a sum of elements from
{Stx | t <j}. By the exactness of (4.11) there is an element ¢ € C(n+ 1,d)
with S(c)=b. By the induction hypothesis ¢ is a sum of elements from
{Stxj | t<j}. Since Sx7=0, the same is true for S(c). This completes
the proof.

Proor or LEMma 4.3. Let us put
Cy(n) = Cy(n)/E(deg(c,}(n)))®. . . DE(deg(cii(n))) .
Then the sequence
(4.17) 00 (n+1) ) (n+1) "> 0y (n) > 0

is exact. The mappings in (4.17) are induced by S’ (see (4.14)) and o.
The exactness of (4.17) follows from (4.11) by shifting the dimensions
in C," down by one.

Let
(4.18) SAiwi +3A0(z) = 0

be a relation in C)(n,d). This relation implies that
(4.19) ,3 = Zlijyij+z:lszs S Cl,(n+ 1)

is in the kernel of . First, let us consider the coefficients 1,7. Since the
dimension of y;/ is even, they are clearly zero in case § is odd dimen-

Math. Scand. 12. — 7
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sional. The exactness of (4.17) implies that § is in the image of S’. Since
the image of 8’ is of odd dimension, we get in case g is of even dimension

SAfyl+3 A2, € E(deg(cll(n+ 1)))6—). . .@E(deg(clf(n+ l))) ,
considering y;/ and z, to be in Cy(n+1). By an exact sequence similar
to (4.11) we get
(4.20) 22y + 2z = SqPa+y,  p = deg(x),
for some « € Cy(n+1) and

y € B(dege,Y(n+ 1)+ 1)®. . .@E(dege,f(n+1)+1) .

The formula for d(n+ 1) shows that d(y)=0. Applying d to (4.20) and
using (4.12), we therefore get

(4.21) SA/ 8% = 8(d(x)) € Cy(n+1)
or
SAF8 1z —d(x) = 0.

Lemma 4.2 now implies that 17=0.

Now we are left with a relation of the form Y1 0(z,)=0 € C,(n,d).
By (4.17) this gives the relation Y4,7(z,)=0 in Dy(n+1,d) (see (4.13)).
This implies A,=0 and proves the independence of {w/,a(z,)}.

Secondly, we must show that {w;/,o(z,)} span C,(n,d). Let b € Cy(n,d).
There is an element a € Uy(n+ 1) such that the class of ¢(a) in C,(n,d)
is b. Since o(da)=d(o(a))=0, there is an element « in Cy(n+1) with
S(x)=da. This equation tells us that the class of & in Cy(n+1,d) is in
F,Cy(n+1,d). Therefore, by Lemma 4.2

X = ES’"lx,’—}-dy ,

where the summation is over some subset of the index set. Let us con-
sider the element

(4.22) B =a-3y7—8yeCyn+1), (for definition of § see (4.5)).

Since df =0, 8 determines an element {#} in D,(n+1,d). By the choice
of the element z, we get
(4.23) g =23z,+c¢,

where c e E(deg(cll('n +1))— 1)@. . .®E(deg(c(n+1))— 1). From (4.22)
and (4.23) we get )
b = 2w +3o(z,) .

This completes the proof.
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Proor or LEMMA 4.4. First we must show that the elements in the set

{(8"™ys), (8)z,); h>0,t2 0} are independent. Let
ZAMIS My) +Z2H8 Y (zg) = 0
be a relation in Cy(n+1,d). Suppose that 1,»9=2=0 for h,t <q. Then
(SNYZAMIS =2y ) +ZAHS")z,)) = O
Therefore, by (4.17)
(4.24) SIS Uyd) + 2448 (zg) = 0.
Applying o to (4.24), we get
SALIwi+3230(2,) = 0€ Cy(n,d) .

By Lemma 4.3, 1,27=0 and 4,2=0. This proves the independence.
Next, we shall prove that {(S')*(y/), (S){(z,)} span Cy(n+1,d). Assume
this is true in dimensions less than ¢, and let b € C;(n + 1,d) be of dimen-
sion q. Let a € C;(n+1) be a representative of b. By the definition of z,
we get n(b) =3 n(z,) € Dy(n+1,d) (see (4.13)). Let us consider b—3z €
C,'(n+1); then clearly a(b—32,)=0. By (4.17) there is a € Cy(n+1)
such that
(4.25) b—3z, = 8'{¢}eC/(n+1).

Then obviously ¢dS’(=0¢e Cy(n). This implies Sed{=0. Since S is
one-one, we get ¢d{=0 or
(4.26) dt = Sa

for some « € Cy(n+1). Hence {x} € F,Cy(n+1,d) so that by Lemma 4.2
{o} = T8z .
Considered in Cy(n+ 1) this gives
(4.27) x—381gi = dy
for some y € Cy(n+1). Now (4.27) implies
t—3y/—Sycker(d(n+1)).

This element therefore determines an element in C;(n + 1,d) of dimension
less than ¢q. By the induction hypothesis

{{-Zyi =8y} = T8y + 2 (8)(z,) .
Since 8'Sy =0 (Adem relation), we get the following equation in C'(n +1):
8'{C} = S8y + 28y + (8 ) (z,) -
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Combining this with (4.25) we get the following equation in C;(n+ 1,d):
b =38y +2(8)V My + 32, + Z (8 (z,) -
This completes the proof.
We conclude this section by restating Theorem 3.2.

THEOREM 4.5. Let {E,d,} be a spectral sequence associated with a
css-map f: E - B (see (3.1)), and let z € ker(d(n)), where d(n): Cy(n) —
Co(n) is a mapping as defined in (4.1). Let the assumption be as in Theorem
3.2. Let ¢,: Co(n) > H¥F) and ¢,,,: Cy(n+1) - H*(B) be defined by
e(ce?’) =7; and &, .,4(cy) =7;.

If o1(z) € ker(d(n+ 1)), then qu*(e,) is transgressive, and

ds{quz(en)} = {qur](Z)(£n+1)}’ s = deg(z) .
If dn+1)(o~Y(2))=8%, xeCyn+1), then qu(e,) persists tll E,,
r=(2'—1)-deg(x), and
d (v} = {o(@)(en) (2lens))1)

where x(e,.1)==¢€,41(x), and where for t=2, vy, equals qu*(e,), y, equals
qu(e,) plus a product of primary operations on &,.
Furthermore, in this case we have that &, is transgressive with

A (&) = {@v% P (e,,0)), g = (20+1) degz—2,
where
& = (y1+(0x)(£n)2) (O'x)(sn)'x(en-fl) ’

El = yt(ax)(en)x(8n+l)2t_l .

5. Computations.

Let us in this section call a space a generalized Eilenberg-MacLane
space if it is a finite cartesian product

(5.1) B = XjK(Zz,n(j))

of Eilenberg-MacLane spaces with the non-vanishing homotopy group
isomorphic to Z,. In B we have one basic cohomology class %; e H"9(B, Z,)
for each factor in the product (5.1).

From generalized Eilenberg—MacLane spaces we construct two-stage
spaces. Let B and K be generalized Eilenberg—MacLane spaces, and let
f: B— K be a mapping. The homotopy type of this mapping is de-
termined by the set {k,} of cohomology classes

(5.2) k, = f*®,) e H"(B) ,
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where b, € H*(K) is a basic class in K. Since K is base space in the
fibering QK -~ LK — K, where QK and LK denote the loop-space and
the space of paths in K (based at a certain base-point), the mapping
f: B - K induces a fibration

(5.3) QK >E-*>B.

The total space E in this fibration we shall denote a two-stage space.
The homotopy type of the space £ is determined by the base space B and the
set {k,} of cohomology classes in H*(B). These cohomology classes are
the k-invariants of the space E. These k-invariants can be considered
as cohomology operations. We say that the k-invariants are stable if
these operations are stable (or rather can be extended to stable opera-
tions).

It is clear that p*(k,) =0 in H*(K). In case the k-invariants are stable,
we have
(5.4) k, = 30/ u; ,

where a;” is in the Steenrod algebra. Let us choose cochain operations
d;” (see [12]) representing a;”. Let %;, j=1,...,7, be the basic classes in
B, and let u; be cycles representing p*(%,). Then there are cochains w,
in C(E) with

(5.5) dw, = X4 (»;),

37 J

such that the restriction of w, to the fibre QK in the fibration & -~ B
gives a cocycle representing a basic class in that space. If we are given
cochains wu;, w, and cochain operations @;” with the properties stated
above, we shall say that E is oriented. We shall not exploit this notion
any further. We only need it as it is stated.

Associated with a two-stage space £ with stable k-invariants there is
a mapping
(5.6) d: C,—0C,

of the sort considered in section 2. The generators ¢,” of C; are in one to
one correspondence with the basic classes b, e H*(K) and deg(c,")=
dim (,). The generators c,’ of C, are in one to one correspondence with
the basic classes #; € H*(B) and deg(c,’)=dim (%;). Putting deg(c,/)=
n+ u(g), min;{u(j)}=0, we have

Co = A(n+u(1))D. .. DA(n+u(7)) .
The mapping d is given by (cf. (5.5))
(5.7) d(cy) = 3;acy .

There is also a mapping ¢, =¢: Cy ~ H*(E) given by &(cy’) = p*(u;).
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Let E be oriented with the orientation given by cochains u;, w,, and
cochain operations d;”. Let Qu be a secondary operation associated with
a d-cycle z=3«,c,” € C;. This operation is defined on &, and in Qu(e)
there is a specified class qu(e) given by the orientation. This class is
represented by the cocycle

(5'9) Z] By(uj) + Ev &v(wv) + Zd(&v; dlv(ul)? e ’d':(ut)) ’

where 0; satisfies (2.17) and , is a cochain operation representing o,
It is easy to see that qu(e) is independent of other choices than the ones
done by orientation. The loop-space QF is also a two-stage space. It is
determined by the mapping 2f: QB — QK. The k-invariants of QF are
therefore the same as the k-invariants of £ (considered as stable opera-
tions). The spaces with these particular k-invariants therefore depend
on a parameter which we for instance can choose to be the minimal di-
mension of the basic classes. We use the notation £ = E,,, n=min {dim%,}.
Then, of course, QE =E, _,. Now we are ready to state the main theorems
of this section.

THEOREM 5.1. Let E, be a two-stage space with stable k-invariants of
the form (5.4), and let E, be oriented. Let the mapping d: C; — C, be
associated with E,. If e(a;)Z24u(j) for all v and j, where dim (u;)=
n+p(j), min, {u(j)} =0, then

{ai(e), qu?9e)}

forms a simple system of generators for H*(E). Here {a;}, a;€ C, and
{z(5)}, 2(j) € ker(d), are arbitrary sets such that the images of a; and z(j)
in Cy(n,d) and Cy(n,d) respectively (notation as in section 4) constitute a
basis for these vector spaces.

The algebra structure of H*(X) is contained in the following theorem.
We use the same notation as introduced in section 4.

THEOREM 5.2. Let E, be as in Theorem 5.1. Let {x;} be a set of elements
in Cy(n,d) as defined prior to Lemma 4.1. Let {y/,z,} be a set of elements
in Cy(n,d) as defined prior to Lemma 4.3. Then H*(E) as an algebra is
the tensor product of a polynomial algebra in {quSv®9(e,),qu*(c,), 2, (c,)}
and truncated polynomial algebras Z,[x/(e,),2'] of height 27, j<oo. Here
y(@.5)=y.

Proor. The proof of Theorems 5.1 and 5.2 is by induction on n.
First we show that Theorem 5.1, implies Theorem 5.2, ,,, and secondly
that Theorem 5.2,,; implies Theorem 5.1,,,. The condition e(a;") 2>
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24 u(j) on the k-invariants serves the purpose of making the start of
this induction obvious.
Theorem 5.1, = Theorem 5.2, ,,. Let us consider the fibration

(5'10) ‘QEn+1 _L> LEn+1 l_) En+1 .

Let d;” be cochain operations in F ((2.15)) representing a; € A. Let
E, ., be oriented by cocycles v; and cochains w,” with

6wvl = Ejdjv(’vj) .
Let the images of v; and w,’ in C(LE, ;) under n* be denoted by v;
and w,” also. Then there are cochains ; and w, in LE, ., with

ou; = v;

(5.11) . ,
ow, = 3;4; (u;) +w',

such that i*(u;), i*(w,) gives an orientation of E,=QF,,,.

Let us pick elements z/ € Cy(n+ 1,d) and y,J, 2, € C;(n + 1,d) as done in
section 4. Lemmas 4.1 and 4.3 and our hypothesis give that H*(QE,, ,,)
as a vector space is isomorphic to the exterior algebra in

(5.12) {o(@)(en), qui-De,), qu(ey,)}

where w(t,j)=w,/. We proceed by studying the behaviour of the gener-
ators (5.12) in the spectral sequence associated with the fibration (5.10).
By Theorem 4.5, qu°®9(¢,) is transgressive and the transgression is the
class of qu™(e,,,). Also, y(w/), y(wj)=quw®(e,) for j= 2, and p(w/)=
qu“ (e, )+ a product of primary operations on ¢, for j=1, persists
till B,, r=(2/—1) deg(z;), with

d,{ywd)} = {o(@)en) (@densa))¥ 1}
The element &(w,),

]
-
.

Ewy) = (y(wd) + (0 )(en)?) (02 )(en) 2 (ensy)  for j
E(wi) = y(w/) (o )(en) 2 (€041) for i z 2,

is transgressive, and
do{E(w)} = {qu¥¥(e,10)}

where y(i,j) =y, and ¢=(2/+1) degz,/ — 2.

Furthermore, we clearly have that o(x/)(¢,), j=1,...,00, is transgres-
sive and transgresses into the class of (¢, ;).

We review the situation in the following diagrams
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AN

qu*¥(ent1)

s

x> (en+1)

BN AN

i (ens1) (347(61“.1 27 1 qu‘s v, 7) (Ens1)

The technique used in sections 9-12 of [10] can also be applied here.
The spectral sequence of (5.10) splits up into a tensor product of very
simple spectral sequences, one for each z,, each z,*, and each z/, j < oo,
as the above diagrams indicate. Since (xi"(en+1))27= 0, it follows that the
algebra structure of H*(E, ,,) is as given by Theorem 5.2, ;.

Theorem 5.2, ,; = Theorem 5.1, ,;. This is very easy. Theorem 5.2, ,
and Lemmas 4.2 and 4.4 give Theorem 5.1, ,, for special generators. The
validity of Theorem 5.1, ,, for this special set of generators implies the
theorem for any other set of generators.

Finally, we only need to start the induction. By the assumptions,
however, the £, is of the same homotopy type as 2K x B for small =.
For these n the theorems follows from the computation by Serre [14].
This completes the proof.
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