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ON SECONDARY COHOMOLOGY OPERATIONS

LEIF KRISTENSEN

1. Introduction.

The concept of cohomology operation has in recent years proved very
fruitful. This is the case not only for ordinary cohomology but also for
extraordinary cohomology. The present paper is a study of cohomology
operations in the ordinary theory. This study is based on the presence
of a cochain functor in this theory.

In sections 2 and 3 below we develop a general theory of cochain
operations. A cochain operation of degree ¢ is a natural transformation

6. C-C

of the cochain functor C into itself augmenting dimension by 4.

These cochain operations are used in sections 4-6 to define secondary
cohomology operations. The most elementary properties of these opera-
tions are also derived in sections 4-6.

The secondary operations defined here are closely related to the opera-
tions defined and used by J. F. Adams in [1]. In some sense we consider
more operations here as we allow an additional unfactorized term b in
the relations 3, «,a,+0=0 considered. This, in fact, means that our
operations are in certain cases defined in a larger domain and have less
indeterminacy than Adams’ operations. This turns out to be of vital
importance to the application given in a subsequent paper [6].

Besides the definition of secondary operations the main result in the
present paper is an evaluation of secondary operations in low dimensions
(theorem 4.6). This theorem contains the evaluation of the operation y
on two dimensional classes done by Adams in [1].

In a second paper [6] the mod2 cohomology of two-stage Postnikov
systems with stable k-invariant will be computed. The algebra structure
of this cohomology will also be given. Some of the details about the
A-module structure, where 4 is the Steenrod algebra, are, however, still
unknown to the author.

A possible third paper will treat the Cartan formula for secondary
operations and give further applications.

Received February 8, 1963.



58 LEIF KRISTENSEN

The results contained in the present paper were announced in Kri-
stensen [5].

2. Preparations.

In the following we shall only be working over the groundfield Z,.
Coefficient groups are not mentioned any further in what follows.

Let n={1,T} be the symmetric group on two letters, and let W be
the standard n-free resolution of Z,. In each dimension =0 W has two
(Z4-) generators e; and Te;, and

1 o(e;) = 0(Te;) = (1+T)egy
(1) e(eg) = &(Tey) = 1.

Let & denote the category of css-complexes, and let Cy denote the func-
tor taking any css-complex K into its (non-normalized) chain complex
C4(K) with coefficients in Z,. 1t is well-known that there exists a natural
m-equivariant chain transformation

(2) ': WQC, - Cy®

preserving augmentation. The action of = in C,® is by permutation,
in C* it is trivial, and in W®C* it is diagonal. The transformation (2)
gives rise to a dual transformation

(3) p: W®,09-C,

where C' denotes the normalized cochain functor of css-complexes.
As in [2] and [4] we make the following definition. Let x € C*(K).
Then, for any integer ¢ we define

(4) 8q4(x) = (e, ;@2 +e,_; 4, @ ox) € C*H(K)
where e;=0 for i <0. Then

(5) dsq(x) = sq'(dx) .

In (4) we have defined a natural transformation

(6) sqt: C—=C

augmenting dimension by ¢. In general we make the following

DerintrioN 2.1. A cochain operation of degree i is a natural transfor-
mation
(7) 0: C-~C

augmenting dimension by 1.
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We do not assume 6 to be additive or to commute with coboundary.
The concept of cochain operation will be examined in some detail in
section 3.

Let A denote the Steenrod algebra, and let F be the free associative

algebra with unit 1 generated by sq¢f, 1=1,2,.... Let R denote the
kernel of the obvious mapping F —~ 4. Then we have the exact sequence
(8) 0O-R->F—->A4->0.

It is well-known that R is generated by the Adem relations

3n-1) -1 -
(9) sqzk—l—nsqn + (n ; ¢
t

with s¢®=1.
In F we define the excess of an element as follows: For a monomial
sqf=sq" . ..sq", I=(iy,...,1,), pub

) sqRh-1-tggh—n+t
=0

(10) e(sq?) = max;(i;—tj 3 —%j4p— .. —1,) .
For a sum 3;m; of monomials,
(11) e(Z;m;) = min,({e(m,)}) .

Since any element in F can be uniquely written as a sum of monomials,
the excess is well defined. According to Serre [7] an element a in the
Steenrod algebra 4 is said to be of excess larger than or equal to n if a
is zero on all cohomology classes of dimensions less than n. The subspace
of 4 consisting of elements of excess larger than or equal to », we denote
by E(n). The subspaces E(*) define a decreasing filtration of 4. It is
not hard to see that if « € F is of excess =, then its image in A is of excess
larger than or equal to ». In fact, we have

LEMMA 2.2. Let « € F be of excess n, then o(u)=0 if u is either a cochain
of dimension <n—2 or a cocycle of dimension n—1.

Proovr. Since « is a sum of monomials each of which is of excess larger
than or equal to n, it is clearly enough to prove the lemma for mono-
mials. Let & =sq!, I=(i4,%y,--.,%,), and let w € C™. Since e(x)=mn, there
is a j with

(12) Gj—tjy— ..~ = 7,
and hence we have, with J=(iy,...,t;;) and K =(i;,;,...,%,),
x(u) = sq” sq"1sg%(u)

= qu(q)(em-—n®(qu(u))2 + em—-n+1®'3qK(u) qu(au)) .
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If m <n—2, then both e,,_, and e,,_,., are zero since m—n and m—n+1
are negative, and it follows that «(u) is zero. If m=<n—1 and du=0,
o(w) is also seen to be zero.

This lemma will be used at a crucial point later in this paper.

Levma 2.3. Let ac F and x, € C*, t=1,2,...,k. Then there is a co-
chain operation d=d(a; xy,...,r,) depending on x; with the property
(13)  aZx;) = 3a(x;) +d(a; 6x,,0x,,. . .,0x,) +0d(a; xq,. . .,2) -

For a equal to a monomial sq?, I=(i,,...,s,), an explicit formula for d
is given inductively by

(14) d(sqi; TR ’xk) = z (p(en-i+1®xvxu+en—-i+2®6xvxu) ’

v<p
(15)  d(sqgisq?; xq,...,%;,) = sgid(sqT; xq,. .., %)+
+d(sq7'; 8q¥xy, . . ., 8q7x,, d(sq; 0y, . . ., 02,),0d(s¢7; Xy, - -, 7y)) ,

and for a equal to a sum Y, m, of monomials
(16) d(a; xq,...,%) = X, d(m,; Tq,...,%;) .

The proof consists in showing that the explicitly given d satisfies (13),
and this is an easy exercise. Lemma 2.3 gives examples of cochain
operations in several variables. We shall study this concept in section 3.

LemMA 2.4. For any x;€ O™ and any a € F, we have
d(e; 0,0,...,0,2,,0,...,0) = 0.

This follows easily for monomials from (14) and (15) by induction on
the length of the monomial. For arbitrary « it then follows from (16).

Let
(17) x: F->F

be the derivation of degree —1 in F defined by x(sq?)=sg*~! (» induces
a derivation in A4 ; this can be seen from the Adem relations, but it can
also be derived from lemma 2.5 and theorem 3.3). Then we easily prove

LemMA 2.5. For any cocycle x € C™ and any a € F, we have

d(a; z,x) ~ x(a)(x) .

LemmA 2.6. Let x and y be n-dimensional cocycles, and let a € F with
e(a)>n+1, then d(a; z,y)=0.
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Proor. Clearly we need to consider only the case where a is a mono-
mial. Let a =sq” sq?sq?, where j —degl >n+ 1. The proof is by induction on
the length of J. First, let the length be zero. Sincej> (n+degl—1)+1=
deg(d(sq’; z,y))+ 1, we get

sqd(sq"; xy) = 0,
and since (n+degl)—j+1<0, we get from (14)
d(sq; sq™,5q"y,0,0d(sq"; 2,y)) = 0.
Now the conclusion follows from (15). Let the conclusion be true for
8q” sq?sqf. We shall then prove it for a = sq*sq” s¢? sq?. Since sq” sq’ sq!(x) =
897 sq7sq(y) =0, this follows immediately from (15).

The corollaries 3.5 and 3.6 in the next section contain a little more
information about the cochains d(a; ;,. . .,x;).

3. Cochain operations.

Let @ denote the set of all cochain operations in one variable as de-
fined in 2.1. In @ we define the structure of a graded associative algebra
(over Z,) as follows

(1) (01 +05)(w) = 05(u)+0(u), 0,,0,€0
(0-9)(u) = O(p(u)), Oped

for all cochains . It is then clear that 0, + 0, and Oy belong to @ and
that the degree of §y is the sum of the degrees of 0 and y. In @ we define
a differential 4 by

(2) A6% = 66° + (—1)10%
= 00" 4 0% for 0t e O .

It follows easily that A4=0. The differential A is clearly additive.
The A-cycles in @ we shall call primary cochain operations. They are
denoted by Z(0).

Each element § € Z(0) commutes with the coboundary and therefore
maps cocycles into cocycles. In Lemma 3.2 below we shall show that
the cohomology class of 6(u) depends only on the cohomology class of
the cocycle u, so that 6 defines a cohomology operation ¢(f) which is
clearly stable. Hence

(3) e(0)({u}) = {0(u)} .

DerintrioN 3.1. A cochain operation in m variables and of degree ¢ s
a natural transformation
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0: A-C,
augmenting dimension by i, where A 1is the functor
AYMK) = CYK)PD...ACYK), m summands .
We do not assume 0 to be additive or to commute with coboundary.

The set of all cochain operations in m variables constitute a graded
vectorspace denoted by 0™. We define a differential in 0™ by

(4) (Ay)(zy,. . ., 2,) = Oyp(xy,. . .,2,) +p(0x,...,0x,) .
The cycles with respect to 4 we denote by Z(0™). As in the case of
one variable, each A-cycle 6 € Z(0™) maps a set (u,,...,%,,) of cocycles
into a cocycle. In lemma 3.2 below we will show that the cohomology
class of 6(u,,...,u,) depends only on the set of cohomology classes
(#y,- . ., %,,) Of (Uq,...,u,) so that 6 defines a cohomology operation ()
by
(5) e(0)(@ys. o s Tp) = {0(0g,. .., %y)} .

Lemma 3.2. In definition (5) the cohomology class &(0)(@y,. . .,%,,) 18

independent of the choice of representatives u, of the cohomology classes ;.

Proor. Let K(m,m) be the css-complex defined by Eilenberg and
MacLane [3]. Let X be a css-complex, and let u; and wu, + de; be represen-
tatives of w,e H*(X). Then there are unique mappings

(6) fo,i: X - K(Z2’n)i s
(7) f1,i: X - K(Zz’n)i ’
such that fy (z2,™)=u,;, f1 (2,™)=wu;+ de;, where 2, is the basic cocycle

in the i-th copy of K(Z,,n). The mappings f, ; and f; ; are homotopic.
These mappings induce mappings

fo:flz X — >=<1 K(Zz’n)z
by
(8) fO(Gq) = (fo, 1(Uq),fo, 2(Uq), .. ->fo, m(aq)) ’

fl("'q) = (fl,l(aq)ifl, 2(0g)s- - - J1, m(o'q)) .

The mappings f, and f, are homotopic. The induced cochain transfor-
mations f,* and f,* therefore are cochain homotopic by a homotopy .
Let the image of z;™ under the maps induced by projection on the j-th
factor X;K(Z,,n); ~ K(Z,,n); also be denoted by z;™. Then
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fof(z{™) =
(9) fiFz™) = u;+0e; .

Now we have

0(uy + Oeq,uy+ bey, . . . s Uy, + 0e,,) — O(Uq,ug, . . . U,,)
= O(f (™), ¥ (2e™), - L f1F (2,™)) — G(f of (1), foF(2™), . . .. f, ox(zm(n)))
= (=) 0,2, . . 2, ™)
= (6h+hd) 0(2,™,2,™,. . .,2,™)
= 8(hB(z, ™2™, . . .,2,™))

since hdl(z,™,...,z,™)=h0(52,",...,02,™)=0. This completes the
proof.

Any element (a,,a,,. . .,a,,) of the direct sum of m copies of the Steen-
rod algebra A*@PA*®...PA* is a stable cohomology operation in m
variables, acting by

(abaz: LU ,am)(al’am' . ’am) = al(al) +a2(272) +... +am(ﬁm) .

Since also any stable cohomology operation in m variables belongs to
A*PA*D...DA*, we obtain that ¢(6) € A*PA*D...DA* and that the
sequence

(11) Z(O™) > A*DA*D...DA* > 0
is exact. In case n=1, ¢ is an algebra homomorphism of Z(0) onto 4*,

TarEOREM 3.3. The sequence
(12) om 5 Z(0m) > A*QA*D. .. DA* > 0
is exact. The cohomology of (O™, A) is therefore A*@...PA*.

Proor. We only have to prove the exactness at Z(0™). First, let
r=A40, and let (u,,...,u,) be a m-tuple of cocycles. Then

e(r)({ug} {un}, . oy {t}) = {r(w,ttg,. . . uy)}
= {00(uy,Ug, . . ., Uyy,) + 0(0uy,0u,,. . .,0u,)} = 0.

Since this is true for all m-tuples (,,...,%,) and for all 6, we have
e4=0. Next, let r € Z(0™) with ¢(r)=0. Then we must prove the exis-
tence of 0 € O™ with A(0)=r. Elements in the kernel of ¢ we shall call
relations. In the proof we shall need the following lemma. It concerns
partially defined cochain operations. These cochain operations are, for
some dimension n, defined on all m-tuples of dimension less than =,
on all m-tuples of cocycles of dimension n, and on (0,0,...,0) in higher
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dimensions. For short we shall say that the operation is defined in di-
mensions less than n.

Lemma 3.4. Let re Z(O™) be a relation (i.e. e(r)=0) of degree t+1,
and let 6 be a cochain operation defined in dimensions less than n such that

(13) 00(uy,. « o, u,,) + 0(0uy,. . ., 0u,) = r(ty,. .., uy),

whenever this makes sense (i.e. for dimu, <n, or u, cocycles of dimension n).
Then there exists a cochain operation 6" on m variables defined in dimensions
less than m+ 1, such that

(40" ) (g, . -, %) = 7(Ugy. - 2y Uy) ,
whenever this makes sense, and such that
(14)  0'(up,tg,. . - Uy) = O(up,uy,. . .,u,), for dimu; < n-2,

(15)  0'(uy,ug,. . . Uy) = O(ug,us,. .., u,) +
+ 3. M, (wq,%g,. - ., %,) for dimw

and for u; n-dimensional cocycles

(16)  0'(up,Us,. - -, Up) = O(Uq,%g, . - -, %yy,) + Sp MUy, U, . . ., %,)
where each M, is an operation of degree ¢ of the form

(17) Mlc(ulfuz’ .o 7um) = sql(l)(uj(l)) Sql(z)(uj(Z)) e Sql(r(k))(uj(r(k)))

with 1(j)=1(j,k) admissible and of excess <mn, and r(k)=2 for each k.
Each M,' is derived from M, by replacing all but one of the sq@’s by
sqI08, e.g.

(18) M}/ (uy,uy,. . . %y,) = SQM)(“;’(D) SQI(Z)(éuj(z)) e SqI(T(k»(‘suj(rﬂc)))-

If n>1, M, is zero for all k and 0’ is an extension of 0.

Proor. Let L(n,n) be the css-complex introduced by Eilenberg—

MacLane [3]. Let
p: L(n,n) > K(z,n+1)

be the css-mapping induced by coboundary. Let us consider

3

L, = X L(Zyn), .
1

?

]

Then 6 is not defined on the m-tuple (¢,™,...,c,™) of basic cochains
in L,. As a first approximation to a definition of 6’ on (¢,™,...,c,™)
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let us choose an arbitrary cochain f(c,™,. . .,c,™) in L, with the property
that, restricted to m
K, = X K(Zyn); ,
i=1

it equals 6(z,™,...,z,™). Putting

(19) b = 80(c,™,...,cp®)—1(c,™,. .. c, ™),
we see that the restriction of b to K,, is zero and that
(20) 6b = r(ée,™,. .. 8¢, ™).

Since 7 is a relation, there exists a cochain « in K, ,,

m

n+1 X (Zzan'l’ 1

with
(21) O = r(z,™+D,. .., 2, m+D) .

The projection p: L, ~ K, ., has the property p*(z;®+V)=45(c;™).
Therefore

(22) op*(x) = r(de,®,. .., ¢, ™),
and by (20)

(23) d(b—pHx)) = 0.
Since L,, is acyclic, there exists a cochain e with
(24) de = b—pH(x) .

If i: K, —~ L, denotes the inclusion, we have
(25) di¥(e) = 0.
The cohomology of

= )_(1 K(Zy,m),

is isomorphic to the tensorproduct of m copies of the cohomology of
K(Z,,n). From the computations by Serre [7] and (25) we therefore have

(26) 7:#(6) ~ zN,jsqN(z;i(n)) + ZkMk(zl(m,‘ .- 7zm(n)) 9
where
27) Mz, . .2, ™) = sqTD(R,) sg7(D) - - - 87" ()

with I(j) admissible and of excess <n, and r(k)=2 for each k. If we
replace « and e by o’ = + 3 ;8¢V(z;m*V) and e’ = e+ 3y ;8¢7(c,™), respec-

Math. Scand. 12. — 5
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tively, in the previous equations, then (21) to (25) still hold true while,
for some cochain y in L,, (26) can be written

(28) %) — M2, ™,. . .,2,™) = 6i*(y).

Therefore, for some cochain 8 in L,

(29) oy = € =3, M(c,™,....c, ™)+

Then

(30) i*(g) = 0.

From (19), (29), and (24) (with the primes) we get

(31) 6[6(cl(n)’ e ’Cm(n)) +ﬂ +2k Mk(cl(n): L 7cm(n))]
= 7(c,™,. . .,c,™) +p¥a) .

We define

(32) 6'(z,™*Y,...,2,0+D) = &'

0'(c™,. . .,c,™) = 0(c,™,...,c, )+ B+ 3 M(c,™,. . .,c,™)

and extend the definitions to all m-tuples of (n+ 1)-cocycles and n-co-
chains, respectively, by naturality. Because of (30) this definition makes
(16) hold true. By (31) we get

(33) 60" (Uq,. . ., Uy) + 0'(0Uy,. . ., 0U,) = r(Uy,...,U,)
for all m-tuples of nm-cochains (uy,...,%,), and by (21)
(34) 00" (Ugy . v oy W) + 0" (0%, . . ., 0u,) = r(Uy,. .., u,)

for all m-tuples of (n+ 1)-cocycles.
Now, let (uy,...,u,,) be a m-tuple of (n— 1) cochains. Then we must
define 0'(u,,...,u,) such that

(35) 60" (ug,. . . uy) = 0'(0uy,. .., 0uy) +r(ty,. .., u,) .

Since the du;’s are cocycles, we apply (16) and see that the right hand
side of (35) is equal to

(36) 0(8ty,. . .,0u,) + ZpMi(duy,. .. 0u,) + r(uy,. .., u,)
= 8(0(uy,. . s y) + Zp My (uy,. . ., uy)),

where M,’ is as in (18). Putting
(37) 0" (Ugy. ooy Up) = O(Uy,. . %) + XMy (U, .. %,,) ,

we see that both (35) and (15) are satisfied.
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Let (uy,. . .,%,,) be of dimension (n—2). Then we must make a defini-
tion satisfying

(38) 00" (Uy,. - -y Uy) = 0'(Uy,. . ., 0u,,) +7(Uy,- - -, %,y,)
= 0(0uy,. .., 0u,) +r(ug,. .., u,)
= 00(Uq,- . . %y,) -

In this case and in dimensions less than n—2, we can therefore define
6'=0. This completes the construction of 6’. If n is larger than ¢, we
must have ¥, M,=0. If, namely, M, occurred, then the degree of
M, (uy,. . .,u,) on one hand is equal to n+ 1, while on the other it equals
> (n+degl(j)). This implies

(k)
> deg(I(j) < 0
=1
which is a contradiction. Therefore it is clear that in this case 6’ is an
extension of 6. This completes the proof.

Now we are able to complete the proof of theorem 3.3. We use an
acyclic model argument. The acyclic models are the products

L, = X L(Zyn) .
i=1

Choose n larger than ¢=deg(r)—1. Then we shall first construct a 6
defined in dimensions less than n with 46 =r whenever this makes sense.
Since r is a relation, there exists a cochain « in K, with du=
r(2,",. . .,2,™). Define

(39) O(z™,...,2,™) = «.

Naturality then gives us 0 in general in dimension ». In dimension n—1

we must define 0(c,™7,...,¢, " V) in L, ; such that

(40)  86(c,™Y,. . .,c,. 0 V) = 0(dc,»V,. .., ¢, V) +r(c,*V,. .., c, D)
= pHo) +7(e ™D, . 0™ Y)

where p is the projection L, _; - K,. The right hand side is a cocycle

8(pH(x) + (e, . . e, D)) = pH(x) + dr(c, @Y. . ., ¢, D)

= pH(r(zy™,. . .,2,™)) +dr(c,"D,. . .,¢, D)
= r(p¥2™,. . ., p¥2,™) + 0r(c;™V,. . ., c,,nD)
=0.

Therefore we can choose a cochain 6(c,*V,...,c,®Y) in L, ; making

(40) hold true. Naturality defines 0 on all m-tuples of (n— 1)-cochains.
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Continuing this argument a cochain operation 0 is defined in the desired
area with 40=r. Since n>1, lemma 3.4 enables us to extend 6 to all
dimensions such that A0=r. This completes the proof of theorem 3.3.

COROLLARY 3.5. For any two elements «, a € F there exists a cochain
operation 6 in two variables with

(40)(@,y) = G(x,y) +x(x)a(x) + x(x)a(y) ,
where G is defined from the cochain operation d of lemma 2.3 by

G(x,y) = d(aa; 2,y) +d(x; a(@),a(y))+d(x; a(x +y),a(@) +aly)) +
+ad(a; 2,9) +d(x; dd(a; x,9), d(a; 6z,8y)) ,

and x 18 defined in (17) of section 2. On cocycles therefore
G(x,y) ~ xx)a(@)+xx)a(y) .

Proor. First we note that AG=0. By theorem 3.3 there are cochain
operations b,¢c and 6 with b, c € F, such that

(40)(x,y) = G(z,y) +b(x)+c(y) -

This means that for  and y cocycles, G(z,y) + b(x) + c(y) is a coboundary.
Further, if we put y=0, then by lemmas 2.4 and 2.5 we get

b(z) ~ A(z,0) = d(x; a(z),a(x)) ~ »(x)(a(x)) .
A similar argument for ¢ concludes the proof.

COROLLARY 3.6. Let x and y be n-dimensional cocycles, and let a=
sq” sqisql, where I and J are sequences and j an integer with j—deg(l)=

n+1. Then
d(a; x,y) ~ sq’(sql(x)sq™(y)) .

Proor. By dimensional reasons sg’ sqlz=0. Therefore, by corollary 3.5

d(sq”sq’sq"; x,y) ~ sq7(d(sq?sq; x,y))

and
d(sg’sq?; x,y) ~ d(sq’; sq'x,sq"y) +

+d(sq’; sq¥(x +y),8q"(®) + 897(y)) + 897~ 1sq () +
+8q71sq(y)
sqX(x) sqX(y) + sqX(x +y) (sq’(x) + sqX(y)) +
+sqX(x) sq’ (%) +sq*(y) sq*(y)
~ sql(x) sq'(y) .

i



ON SECONDARY COHOMOLOGY OPERATIONS 69

The equality is obtained by using the explicit definition of d(s¢’; x,,,).
This completes the proof.

THEOREM 3.7. Let r € R, and let e(r)2n+ 1. Then there exists a cochain
operation 6 with AG=r and with the values

O(u) =0 when dim(u) £ n—2,
O(u) = 3,.5¢70(u) s¢gID(Su) . .. sg™*®(u) when dim(u) = n—1,
O(u) = 3,.5¢70(u) s¢(u) ... s¢"*®(u) u n-cocycle

for certain monomials sq™® and s(k)>1 for all k.

Proor. Let 0’ be a partially defined cochain operation with the value
zero on all n-cocycles and all cochains of dimension less than n. Then
A6’ =r whenever this makes sense. A continued application of lemma 3.4
yields 6.

For special kinds of relations we can do better than theorem 3.7. Let
sequences I be ordered lexicographically from the right, then we have

THEOREM 3.8. Let there be given a relation r (homogeneous) from R of
the form

y = 2 sqI(s)sqi(S)qu(s) + z (sqzx(n qu(n SqJ(t) + sqi(t) SqK(t)J(t)) +b,
teT

seS

where e(b) = n + 2; the sequence I(s) contains at least one odd component, and

j(s) = n+1+ deg(.](s)) ,
Jt) = n+ 1+ deg(J(t)),
i(t) = n+1 + deg(K(t)J(t)) .

Then there exists a cochain operation 6 with A0=r, with O(u)=0 for any
cochain of dimension less than n—1, taking on (n—1)-cochains the value

Ow) = 3 3 sqt7O(u) sqB/(du),
veSuT A<B
A+B=I(®)

where I(v)=2K(v) for ve T, and on m-cocycles the value

Ou)= 3 X sqO(u)sqB7(u) .
veSUy?T” A<B
A+B=1@)

Proor. First we shall show that the theorem follows if to each se-
quence I and each integer n there is a cochain operation K,! defined on
all n-cochains z and on all (n+ 1)-cocycles ¥ and having the properties
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sql(xox) = 3 sqi(x) sqP(dx) + 0K, I(x) + K, X(6x)
A+B=1
(41) sq'(yy) = 2 sqi(y) sqPy) + 6K, (y),

A+B=I

K, X(u) = 0 if » is an n-cocycle.

Let 0’ be the cochain operation defined in dimensions less than n+ 1
by the formulae

0'(w) = 0, % cochain, dim () <n—1,
0'(u) =3 > sq470(u) sgBI0)(du), w (n—1)-cochain ,

v A< B
0'(u) = 3 3 sq479(u) sqB7O(u) +

v A<B

+2 3 p(e1®@sg 47 (du) sqB7(u)) +

» A<B
+3 KJO\(sq7O(u)), u m-cochain ,

where m(v) =n+ deg(J(»)), and for » an (n+ 1)-cocycle

0'(w) =3 3 p(es®@sq47(u) sgP7O(w)) +
v A<B

+ 3 Kio(sq7O(w)) -

It is straightforward to verify that 46’ =r whenever this makes sense.
An application of lemma 3.4 now yields a 6 with the properties stated
in the theorem.

Now we only need to prove the existence of cochain operations K,
satisfying (41). This we do by induction on the length of I. In section
7 of [4] a transformation

H: WR(CRC)2~>C
was given with the property ((22) of section 7 in [4])

(42) sq*(xy) = 3 sq'(x) sq(y) + 6H(n) + H(),

=k
where z is a p-cochain, and y a g-cocycle, and where

N = €1 Q@ERY)? + 410111 V(EQY)R(62QyY) ,
&= ep+q—k+1®(5x®y)2 .

If I=(k) (that is length one), then (42) shows that if we put
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K, 0 H(e2n+1—k®(x®6x) + Con+2-£Q@@02)R( 593@5‘”))
Kn(k)(y) (e2n+2—k®y ) ’
then (41) is satisfied.

Now, suppose that K,! is defined such that (41) holds true. We shall
then consider the sequence J=(k)I. Put

KnJ(x) = quKnI(x) + z H(’?(AaB)) +
A+B=I

+d(sq"; sq?i(x) sg1(0%), . . .,sq"(x) sgP(d); dsq* K (), K, 1(dx)) ,
where for m=2n+1+degl —k

(A, B) = €,&(sq4(x)@sq%(6x))* +

+ €11 ®(59%(2) @595 (02)) @ (s94(02) @35 (62)) ,
and where (4,,B,),...,(4,,B,) is an ordering of the summands in
> sqx sqBiz,
K,7(y) = sg*K,(y) . g ; H(e,0119(594(y)®3¢5(1))?) +
+B=

+ d(sq*; sg(y)sq”(y), . - .57 (y) sg™(y), 6K ,1(y)) -
A straightforward computation shows that this K, 7 satisfies (41). This
completes the proof.
In a subsequent paper [6] we shall need a little more detailed in-
formation than is contained in theorem 3.8. This, however, is for a
more special type of relation

THEOREM 3.9. Let r=sq¥+esqntl+ (1 —¢)sqnthtlsgk+b be a relation
with e=0,1 and e(b)Zn+ 2. Then there exists a cochain operation 0 with
A0=r, and such that O(u)=0 when dim(u)<n-—2, for dimu=n—1,

0(u) = 3 sq"u sqdu

where the summation runs over all «,f with x <f and «+pf=2k+e, and
for dim (u) =n (same range of summation)

0(u) = Tsq™u sqg"u + S ple;®@sq"du sq”u) +
+ H(eotn 1941 @ (U@OU) + €5, 12, @ (uR0U) D (Su@0w)) +
+ Tsqli(u) sq"(0u) . .. sq’i(ou),
where deg (I;) <deg(l,) = ... sdeg(l,), 8> 1, and where H is the homotopy
of equation (42).

Proor Let 6 be defined in dimensions less than n+1 as follows:
6’(u) =0 on cochains of dimensions less than n— 1, on (n— 1)-cochains
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0'(w) = 3, psq"u sq°0u, a<f, a+p = 2k+e¢,
on n-cochains (same range of summation)
0'(u) = 3, 55¢°u 8¢°u + 3, so(e;@sq°0u sq’u) +
+ H(egn-141-@ (UB0U)? + €301y 13- @ (U@OU) B (Su@0)) ,
and on (n+ 1)-cocycles
0'(u) = H(egn—112-.@@@u)?) + 3, s(e;®@59"usq’u) .

An easy computation using (42) shows that 40’ =r whenever this makes
sense. An application of lemma 3.4 now yields the theorem.

4. Secondary cohomology operations.

Let
(1) r=3u«0a+beR, o,a,;beF .

Then by theorem 3.3 there is a cochain operation 0 with
(2) 40 = Sxa,+b =r.

Let K be a css-complex, and let » be a cocycle in K of dimension less
than e(b). Suppose also that for all » a,(u) is cohomologous to zero.
Choose cochains v, in K such that

(3) o, = au), all v .
Consider the cochain
(4) qu(w)o, g,y = qu'(w) = 0(u) + Z,x,(v,)
Actually, this cochain is a cocycle,
dqur(u) = §(0(u) + Z,5,(,)) = r(u) + T (a,(w) = b(u) = 0,

where b(u)=0 follows from lemma 2.2. Although it has not been made
clear in the notation, qu"(u) depends on the choices of 0 and v,. Any
other cochain operation 6’ satisfying (2) must be of the form 6'=0+y
with Ay =0. Therefore, by (4)

(5) qu(U)g, g,y — QU (), oy = P(W) -
Any other choice of cochains {v,'} satisfying (3) must be of the form
v,/ =v,+x, with dx,=0. We get
(6) qur(u’)ﬂ, {wptay} qur(u)ﬂ, {vy} = Zﬂ(o‘v(vv + xr) - “v(vv))
= zav(xv) +62ud(0‘y§ vi" xv) *



ON SECONDARY COHOMOLOGY OPERATIONS 73

We are also interested in the variation of qu’(u), when w is allowed to
vary inside its cohomology class. First, however, let » and w be cocycles
in K with dim (u)=dim (w) <e(b). Besides (3), let

(7) oy, = a,(w), all v .
Then, for z,=v,+y,+d(a,; w,w)

(8) dz, = a,(u+w), all ».
Then,

9) x,(2)—x,0,)—x,1,) ~ d(x,; a,(u),a,(w)) +
+ d(x,; a(w+w),a,w)+a,w) + «dia,; u,w)
- Gv(u7w) (0‘ a,; u:w) H

vy

where @, is the cochain operation defined in corollary 3.5 for a=u«,
and a=a, Relative to (2), (3), (7), and (8) we therefore get

(10) qu"(u—l—w)—qu’(u)—qu'(w) ~ ’/’(u:w) + Zva(”’:w) - d<b: 'U/,W) 5
where the cochain operation in two variables p is defined by
(11) y(@,y) = Bz +y)—0(2)—0(y)—d(r; 2,y) .

It is easy to check that Ayp=0. Hence, by theorem 3.3 there are elements
f>g € F and a cochain operator y such that for all pairs (z,y) of cochains

(12) )=, y) = v, y)+f(@)+9(y) .

If z is a cocycle, and y is zero, (12) shows that f(z)~0. This means
that f is a relation. Since also g is a relation, we see that y(x,y)~0 for
all pairs (z,y) of cocycles. Applying this and corollary 3.5 to (10),
we get

(13) qur(u+w)—qur(u) —qu (w) ~ 3,(x(x,)a,(u) +x(x,)a,(w)) — d(b; u,w)
~ d(b; u,w) .

Especially, if w=dx, then we can put y,=a,(x)

(14) (a,(@)) = a,(dz) = a,(w),

and since b(z)=0 (because dimzx <e(b)—1),

(15) quT(ox) = 0(dx) + 3, x,a,(x) = 0(dx) +r(x) = 60(x) .
Therefore, by (13), corollary 3.6, and lemma 2.6

(16) qu'(u+0x) —qur(u) ~ d(b; u,dx) ~ 0.

This implies that we can define a coboundary cohomology operation
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(17 Qur: D(n,r,K) > H**(K)/Ind (n,r, K)

associated with the relation r=3 x,a,+b of degree 1+ 1. The operation
is defined in all dimensions » less than e(b) on the subgroup D(n,r,K)=
D(n) of HYK) consisting of all classes # satisfying for all »

(18) e(a,)(@) = 0.
The indeterminacy of Qur is

(19) Ind(n,r,K) = 3,e(w,) H-1Hee@)(K) |

DrrFiNiTION 4.1. Let % € H*(K), n < e(b), be a class satisfying (18). Let u
be a cocycle representing u, and let v, be cochains satisfying (3). Let 0 be
a cochain operation satisfying (2). Then

(20) Qu (@) = {6(u)+3,(z,)} € H™+(K)/Ind (n

This definition is independent of the choices of v, and u. This is seen
from (6) and (16). From (5) follows

THEOREM 4.2. The difference between any two secondary operations as-
sociated with r is @ primary operation.

L e 4

8 defined on the n-dimensional classes u and v,
Qu(@+72) = Qu' (&) + Qur(v) if n <ed)—-1,
Quu+7) = Qu'(u)+Qu @) +{d(; u,0)}  if n=ebd)-1,

where w and v are arbitrary cocycles representing w and v. In the case
n=-e(b)— 1 the deviation from additivity can be computed from corollary 3.6.

THEOREM 4.3. Let Qu™ be associated with r=3,x,a,+b. Then, if Qur

This theorem is an immediate consequence of (13) and lemma 2.6.

THEOREM 4.4. The operation Qu', r=3,x,0,+b € R, is natural. This
means that for any css-mapping f: K — L, the diagram

D(n, L) ¥% H™(L)/Ind (n, L)
(21) L |
D(n,K) L% H™i(K)[Ind (n, K)
s commutative. A
Proor. That f *(D(n,L))gD(n,K ) and f *(Ind(n,L))gInd (n,K) fol-
lows from the definitions (18) and (19). The mapping f*: H*(L) - H*(K)
therefore induces the vertical mappings in the diagram (21). The com-



ON SECONDARY COHOMOLOGY OPERATIONS 75

mutivity of (21) follows immediately from the naturality of the cochain
operations 0,x,, a, used in the definition of Qu".

Let L be a subcomplex of K. Then, because of naturality any cochain
operation 0 will induce a mapping

9: O(K,L) - C(K,L),

natural with respect to mappings of pairs. It is not hard to see that
everything we have said so far in this section carries over word by word
to the relative case. In particular, the operations Qur are also defined in
the relative cohomology group.

THEOREM 4.5. Let 6*: H*(L) -~ H*+Y(K, L) denote the coboundary opera-
tor from the cohomology sequence, and let 4 € D(n,r,L). Then, if n+1<e(b),
the diagram

D(n,L) 9 H™(L)[Ind(n,L)
(22) ia' lat
Din+1,(K,L)) 2% YK, L)[Ind(n+1,(K, L))

18 commutative.

Proor. Since §* commutes with primary operations, it is clear that
6* induces the vertical mappings in (22). Let %@ € D(n, L) be represented
by the cocycle w. We choose ve C"(K) such that *(v)=u, where
t: L - K is the inclusion. Then, if j%: C(K,L) - C(K) denotes the in-
clusion, there is a cocycle y € C*+Y(K, L) with j*(y)=0dv. This cocycle y
is a representative of 6*(%). Let v, be a cochain in C(K) with §i*(v,)=
a,(u) for all ». Then there are cochains w, € C(K,L) such that j%(w,) =
a,(v)—6v,. It follows that dw,=a,(y). Let 0 be a cochain operation with
A(0)=r. Then, by definition the cocycles 0(y)+X,x,(w,) and 0(u)+
¥, o,(i%(v,)) represent Qu7(6*%) and Qu’(a@) respectively. Since

#(6(0) + Zo,(0,) + 2,23 5(w,),0(0,))) = 0(w) +3,,(:%(2,)) ,
8(0(0) +3,x,(0,) + 2,d(x,; 4(w,),6(v,))) = jH(0(y) +Z,0(w,)) ,
it follows that 0(y)+ 3, «,(w,) is also a representative of §*Qur(w). This

concludes the proof.

Operations defined in all dimensions and commuting with 6* are
usually called stable operations. Theorem 4.5 therefore states that Qu~
is a stable operation in case b=0. We conclude this section by evaluating
certain operations Qu’ in certain dimensions. Specifically we have
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THEOREM 4.6. Let there be given a relation r=3,x,a,+3,6,0,+b in R
with «,a, a monomial for all v and e(X,p,b,+b)Zn+2. Further, we as-
sume that 3 x,a, can be written in the form

S a0, = Zs 8q1® 5gi® 57 ®) 4 ET (8g2E O sqi® g7 O 1 570 5gKOIV) |
S€E te

where the sequence I(s) contains at least one odd component, and
i) = n+1l+deg(J(y), yeSuT, i) =n+1+deg(K()J(t)).
Then there is a secondary operation Qu™ associated with r taking the value
Qur(@) = 0

on classes % of dimensions less than n, and in dimension n the value

Qu@ =1y 3 3 Sqv9) 8¢% @),
yeSuT A<B
A+B=I®)

where I(y)=2K(y) for yeT.

Proor. To construct Qu” let us choose the cochain operation 6 with
Af=r given by theorem 3.8. Let uw he a cocycle representing #,
(dim (%) £ n), and let

= a,(u), Oow, = b,(u), all v and p,

then Qur(%) is represented by the cocycle
(23) e(u) + Zﬂ(xw(vv) + Eﬂﬁﬂ(wﬂ) M

Since e(x,a,)=n+1, it follows that either e(a,)=n+1 or e(x,)zn+1+
deg(a,). In the first case a,(u)=0, and hence v, a cocycle. In the second
case «,(v,)=0. Since the same can be said about £, we see that
>,0,(0,)+3,8,(w,) is a cocycle determining a cohomology class in the
indeterminacy subgroup of Qu”. The only term in (23) of interest there-
fore is 6(u). By theorem 3.8, however, 6(u) is equal to zero if the dimen-
sion of % is less than n, and equal to

2 2 sqO(u)sgBTW(u)

yeSuT A<B
A+B=I()

if % is n-dimensional. This completes the proof.
As an example let us consider the relation r=sq2?sq®+ sq*sq' + sq'sq?.

This relation is of the form considered in theorem 4.6. Accordingly
there is an operation Qu" with the values Qu*(%)=0 for @ € D(1), and
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a<<Lp
at+f=2

(24) Qur(m) = l S Sqm Sqﬁa} = (@}
for u € D(2). In section 6 we shall see that the operation Qu" coincides
with p used by Adams in the paper [1]. The computation (24) was also

carried out in that paper.

THEOREM 4.7. Let r=3,x,a,+b and s=3 x,a,+b" be elements in R,
and let e(b) and e(b’) both be larger than an integer m. Then there are oper-
ations Qu” and Qu® which coincide in all dimensions smaller than m. In
dimension m there is a sum of products of primary operations on @ such

h
el Qur(@) — Qu(@) = {Zp3¢" P (@) ... S¢' PP @)} .

Proor. It is clear that p=b—b' € R and that e(p) >m. Let us choose
a cochain operation y with Ay=p, with the value y(u)=0 on cocycles
in dimensions less than m, and the value

p(u) = 359"V (u) ... sq™® (u)

on m-cocycles. This can be done by theorem 3.7. Let A6=r. Then
A(0 —y)=s. We shall use 0 and 0—y to construct Qu" and Qu? respec-
tively. That Qu™— Qus is as stated in the theorem is obvious.

By theorem 4.7 the secondary operation associated with the relation
r=3 a,a,+b does not essentially depend on the choice of b provided we
stay inside the class ¢(b). Therefore, in the following it may sometimes
be convenient to choose b to be a sum of terms of the form s¢g¥(3,m,),
where each m, is an admissible monomial, K = L(j,k) = (2/-2k,292k,. . ., k)
for some integers j and k&, sg¥m, is admissible, and

e(sq®(Z,m,)) > e(Z,m,) .
It is clear that in the class (b) there is exactly one element of this form.

If b is written in this form, we shall say it is admissible.

THEOREM 4.8. Let r=3, a,0,+b and s=3,ab,+b be relations with

LA Il o

a,—b, € R for all v. Then there are operations Qu” and Qu® with Qu' = Qus.

Proor. Let v, be cochain operations with Ay,=a,—b,.
n-cocycle representing a class in D(n,r)=D(n,s). Let

(25) ov, = a,(u), ally.

Then, for all »
(26) (v, —w,(w)) = b,(w) .

Let u be a
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Let A6 =r, then an easy computation shows that if we define y by

1) = 0(z) + Z,009,(@) + Z,d(x,; (0,~b,)(x), b(2)) ,
then Ay=s. Relative to 0, y, (25), and (26) we have

qur(u) - qus(u) = O(u) - X(u) + Z(X’,(U,‘,) - z“v(”v - %’“’))
= 03 d(x,; 9, (u),0,—p, () ~ 0.

This completes the proof.

THEOREM 4.9. Let r=3 xa,+b and s=3,Ba,+b be relations with
«,—B, € R for all v. Then there are operations Qu' and Qu® with Qu"=Qus.

Proor. Let y, be cochain operations with Ay, =«,—f,, and let A0=r.
Then, putting @=0+3,y,a,, we have ADP=s. Let u be a n-cocycle
representing a class in D(n,r)=D(n,s), and let

(27) o, = a,(u), allv.
Relative to 6, @, and (27) we have

qur(u)—qus(u’) = 0(%)"@(%)"‘2,,06,(0”)—2,13,,(’0,,) = 621:1/’1:(’07) ~0.
This completes the proof.

Let r=3,a,a,+b, 1<v<¢, be a relation in the Steenrod algebra with
x,, @, and be A, then the above theorems show that we can associate
a secondary operation Qu" defined in dimensions less than m +1=e(b).
The theorems show how much any two operations associated with
differ from each other. It is convenient to use the algebraic setup
introduced by Adams [1]. Let C; be a free A-module on ¢ generators
¢, v=12,...,t. Let O, be the 4-module, 4(m)=A4/E(m+1) on one
generator ¢, (for definition of E(m+ 1) see section 2). The dimensions
of the generators are given to be dim¢y,=n=<m and dimc,"=n+deg(a,).
A mapping
(28) d: C;—-0C,

is given by dc¢,"=a,c,. Let 2=3,«,¢c,", then
d(z) = 3,00, = 1y = 0.

An operation associated with r will also be called associated with the
pair (d,z). In this algebraic setup it is easy to see how to generalize
secondary operations from one to several variables.

As before, let C, be a free A-module on generators ¢,”,»=1,2,...,t. Let

(29) Cy = A(m)DA(my)D. . . DA(m,)
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with generators ¢y, j=1,2,...,7. The dimensions of the generators of C,
are given to be
(30) dimey = n+pu(j) £ m;.

Then C, is a left A-module. As in (28) let there be given a mapping
d: Cy - C, by .
(31) d(cy’) = E ai'cy

J=1

where the right hand side is supposed to be homogeneous. To make d
homogeneous we put

(32) dime,” = dega;’ +n+ u(j) .
Let

i
2= a6’
v=1

be a d-cycle. This means that
(33) S,x,0 =0 A(m;) forallj.

Above the symbol n is supposed to be a parameter taking all
values such that n+ u(j) <m; is true for all j. Let K be a css-complex,
and let ¢: Cy — H*(K) be a homogeneous mapping. We shall define a
secondary operation associated with (d,z) defined on ¢, or what is the
same thing, on the set (e(cyl),. . .,&(c,")) of classes in H*(K) if and only
if ed=0. We do this as follows. Let b; € E(m;+ 1) such that in 4

(34) S,x,a+b; = 0.

Here «,, o, and b; are all in A, but let us choose representatives of these
elements in F. The representative of b; we choose so that it is of excess
larger than m;. We shall denote these representatives by the same
symbols. The relations obtained are denoted

(35) r; = X, n,0;+b, x,ab;eF,  e(b;)>m;.
Let u; be a (n+pu(j))-cocycle representing &(cy’), and let
(36) o, = X;a;"(u;) .
Let A40;=r;, then the cochain
qudA(uy,. .. u) = 3;0,(u) + ,0,(0,) + Z,d(x,; 01" (wy), - - -, 0 ()
is actually a cocycle and represents our operation

(37) Qu@A(e) = QueA(uy,. . .,u) e H(K)[Ind(n,(d,2),K),
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where i =degr; +u(j)—1, and
(38) Ind(n,(d,2),K) = 5,&,H%8%(K) .

The theorems in this section and their proofs are easily seen to generalize
to the case of several variables.

5. Properties of secondary operations.

The properties of secondary operations treated in this section are the
very elementary ones concerning manipulation of the relations associated
with the operations. Properties of more advanced character, e.g. the
behaviour of secondary operations in spectral sequences associated with
fibrations, are postponed to a subsequent paper (mentioned in the intro-
duction). The theorems in this section are stated in a very simple form.
They might, however, just as well be put into the form given to these
theorems by Adams in [1]. To indicate the method of proof, we shall
here give a proof of one of the theorems.

THEOREM 5.1. In any of the following three cases

(i) r=(sfa +Z,xa+b, s=(x)(fa) +Zxa+b,
(ii) r=alea+a’)+3,x,a,+b, §$ =oaa+oa' +Yx,a,+0,
(iii) r = (a+a)a+3,x,a,+0, s =o0at+u'a+>Sx,a,+b,

there are operations Qu”, Qus, such that for classes W on which both opera-
tions are defined _ _
Qu(u) = Qu*(w)

modulo the total indeterminancy itnvolved.

THEOREM 5.2. Let r=3Y,0,a,+b, s=3,x,(a,c)+bc be relations, and let

(A s

Qu™ be associated with r. Then there exists an operation Qus, such that for
any u on which Qus is defined

Qur(cu) = Qus(a)
modulo the total indeterminacy of Qus.
THEOREM 5.3. Let r,=3,xtat+ b be a finite set of relations, and let
r =3, (¢x)a,! + 2(cD) .

Let Qu™ be operations associated with r,. Then there is an operation Qur
such that for any @ on which Qu™ is defined for all t

20" Qu(u) = Qu'(w)

modulo the total indeterminacy involved.



ON SECONDARY COHOMOLOGY OPERATIONS 81

Proor or THEOREM 5.3. Let 0, be a cochain operation associated with

r,. Then
! 0 = 3,(c0,+d(c'; xitart,agfag. . . b) +d(ct; 0,50,)

is associated with r. Let we C™ be a cocycle representing #, and let
det=al(u) for all » and ¢t. Then

Zictqu(u) — qur(w)
= 3¢ (0,w) +3,0,(,)) — (Zyct 0(w) + Zyd(c'; ayta(w),. . ., bi(w)) +

+zt,vct‘xvt(evt)) .
Since b{(u)=0, and

c0u) ~ c(0,(w)+ 2,0, () +c(Z,0,/(e,))) ,
we get

Zctqu(u) — qur(u)
~ TS () = Zd(ct; atar(w),. . ., bl(u) = 3y, el (e))) ~ 0.

This completes the proof.

6. Comparison with operations of Adams.

In [1] Adams considered operations @ associated with relations
r=>u,a, with no unfactorized term. These operations are characterized
by the following axioms:

Axtom 1. For any w € HY(X), n arbitrary, @(%) is defined if and only if
a(m) =0 forally.
Axiom 2. If @(u) is defined, then
®(w) € H*+{(X)/Ind (r,n) ,
where i=deg(r)—1, and Ind(r,n)=3,«, H" s (X)),
Axrtom 3. The operation @ is natural.

Axtom 4. Let (X, 4) be a pair of topological spaces, and let v H*(X, A)
be a class such that @ is defined on j*(¥) € HMX). Let w,e H*(A4) be

classes such that
0*(w,) = a,() forally.

Then, in H*+(A4)[i*(Ind (r,n)) we have
i*(b(j*(ﬁ)) = {Evo‘v(wv)} *
Axtom 5. The operation @ commutes with suspension o: Hi(X) —
Hi+v(SX).

Math. Scand. 12. — 6
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THEOREM 6.1. Any operation Qu™ associated with the relation r=3, u a,
(with no unfactorized term) satisfies the axioms 1-5 of Adams.

Proor. Axioms 1-3 are obvious. To prove axiom 4, let ve C(X,A4)
represent ¥ and choose cochains e, in C(X) such that {i*e,}=w, and
de,=a,(v). Let 0 be a cochain operation with 40=r. Then i*Qu’(j*(TJ))
is represented by

#(0(0) +Za,(e,) = 0(1%(v)) + S, (6%e,)

= zav(iﬁev) M

This cochain also represents 3, «,(w,). Axiom 5 follows immediately
from commutation with the coboundary operator from the cohomology
sequence (theorem 4.5). This completes the proof.
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