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SOME PROPERTIES OF PROXIMITY AND
GENERALIZED UNIFORMITY

OLAV NJASTAD

The collection of all uniform structures on a set E and the collection
of all proximity structures on K are organized to complete lattices by
the order relations “finer—coarser””. In the paper [2] E. M. Alfsen and
the present author showed that these lattice operations are generally
not compatible, i.e., the least upper bound (greatest lower bound) of a
family of uniform structures need not be compatible with the least upper
bound (greatest lower bound) of the family of corresponding proximity
structures. Further it was shown that the collection of all generalized
uniform structures on E—which were introduced in this paper—is also
organized to a complete lattice by the order relation ‘‘finer—coarser’,
and that in this case the lattice operations are compatible with those on
the collection of proximity structures.

In the present paper we utilize these results to establish the existence
and compatibility of initial (resp. final) generalized uniform structures
and tnitial (resp. final) proximity structures (cf. [4, § 2]).

Further we study the relation between wuniform convergence with
respect to a generalized uniform structure (defined in an obvious way)
and the concept of convergence in proximity introduced by S. Leader in
[5, p- 214]. We show that the latter coincides with uniform convergence
with respect to the corresponding totally bounded uniform structure.
Moreover we prove that for a generalized sequence with linearly ordered
index set, uniform convergence and convergence in proximity coincide;
a generalization of Leader’s result for proper sequences (cf. [5, 214]).

1. Preliminaries.

We first recall that a generalized uniform structure on a set K is a
collection % of sets U < B x E, which satisfies the following requirements
[2, p. 239]):

(G.U.L) 4= {(zz)|zeE} <NygU.
(GU2) Ue U<V = Ve4.
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(G.U.3) For every U € % there exists a V € % such that V-1=V<cU.
(G.U.4) For every U € % there exists a ¥V € % such that V2 U.

(G.U.5) If A;<E, U;e ¥, are arbitrary for i=1,...,n, there exists a
single U € % such that U(4;)<U,4,) for i=1,...,n.

The associated proximity structure & is defined in the customary way
by the relation

(L.1) ACB (#) < 3U e %UA)<B).

We list some properties of generalized uniform structures and proxim-
ity structures, which we shall need in the sequel (cf. [2, p. 239]).

An order relation (‘“finer—coarser’’) between generalized uniform
structures on a set E is defined in the obvious way: “%, coarser than
U, means %,<U, 'To every proximity structure & is associated a
unique totally bounded structure #%,, which is the coarsest generalized
uniform structure compatible with £ (cf. [1, p. 354], [2, p. 240]; the
subscript w always denotes the associated totally bounded structure).—
A subset V of ExE is said to be entourage-like relatively to £ if it
admits a sequence {V,},.; ., . of symmetric subsets of  xE such
that V2<V, V,.,2<V,, ACV, (A) (£), for all A=S and n=1,2,....
A generalized uniform structure % is called total if all entourage-like sets
with respect to its associated proximity structure are entourages of %.
To every proximity structure £ is associated a unique total structure
%,, which is the finest generalized uniform structure compatible with &
(cf. [2, p. 241], [2, p. 242]; the subscript « always denotes the associated
total structure). Further, a proximity structure £, on E is said to be
coarser than another proximity structure &, on E provided that

ACB (#) = ACB (P,).

This is equivalent to the conditions: The (unique) totally bounded uni-
form structure %, associated with &, is coarser than the corresponding
structure %,, associated with &,, or: The (unique) total generalized
uniform structure %, associated with &, is coarser than the correspond-
ing structure %,, associated with &,. The collection of all proximity
structures on £ and the collection of all generalized uniform structures
on E are both organized to complete lattices by these order relations.
The lattice supremum and the lattice infimum will in both cases be denoted
by the symbols V and A, respectively. The notations sup and inf will be
used for the lattice operations on the collection of all proper uniform
structures on E.
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Let {#%;};,.s be a family of generalized uniform structures on E, with
corresponding proximity structures {Zs},.p. Then V; ;2 is the proximity
structure associated with Suppep%,, Where %,; denotes the totally
bounded structure determined by %,. Further

(1.2) VocsUp = Upes U5 U SUPgep Uy »
hence V%, is the proximity structure corresponding to V, %, By
duality it follows that Ay &, is the proximity structure corresponding
to Agep .

Now let f be a mapping of a set £ into a set F, and let % be a generalized

uniform structure on . Set g=(fxf). The image of # by f is defined
as the collection

(1.3) g() = {V<F | 3Ucu(V=g4())}.

Similarly, if ¥” is a generalized uniform structure on F, the inverse
image of ¥~ by f is defined as the collection

(1.4) g ¥) = {U<E | IVe¥ (g (V)= U)}.

ProrositioN 1. Let f be a mapping of a set K into a set F. The inverse
wmage g~Y¥") by f of a generalized uniform structure ¥~ on F is a generalized
uniform structure on E. The inverse image of a totally bounded structure
18 totally bounded, and if ¥1 and ¥, are p-equivalent, (i.e. determine the same
proximity structure) then g=1(#7) and g=1(¥3) are p-equivalent. (Cf.[2, p. 246].)

Proor. If ¥~ is a generalized uniform structure, then clearly g—1(¥")
satisfies the axioms (G.U.1)-(G.U.4). For A,<E, g Y(V,)eg(¥),
1=1,...,n, there exists a ¥V € ¥” such that

V(f(4y)) < Vif(4)), i=1...m.
Now (g4 (V)(4:) =f(V(f(4,)) and (g-1(V))(A) =f*(V(f(4,))), hence
(@ TNA) < (gVA),  i=1,...n.
That is g~Y(¥") satisfies (G.U.5). Further, obviously, if ¥ is totally
bounded, so is g~}(¥") since

7 (U dex 49) = U240 <5-44)

1=1
(cf. [2, p- 246]). And if W(f(4))< V(f(4)), then (g2 (M)A) =(g7UV))(A),
which implies
AE€B (97'(¥)) = ACB (971(7) -
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This means (9-1(¥)),<g-(¥,). Evidently (9-1(¥")),>¢9-1(¥,), so we
conclude

(1.5) @) = 9747 -
This completes the proof.

It follows that we may define the inverse image f-1(2) of a proximity
structure 2 by means of an arbitrary generalized uniform structure 7~
compatible with 2. Now we recall that a mapping f of Z into F is a
proximity mapping with respect to the proximity structures & and 2
if and only if
(1.6) ACB (9) = [A)EFYB) (?)

(cf. e.g. [6, p. 550]). It is easily seen that this is equivalent to the require-
ment: f-1(2) coarser than &. Hence the following

CoroLLARY. 4 mapping of E into F is a proximity mapping with respect
to the proximity structures P and 2 if and only if it is uniformly continuous
with respect to the corresponding totally bounded structures %, and ¥,
equivalently if and only if it is uniformly continuous with respect to the
corresponding total structures %, and ¥, (cf. [2, p. 246]).

ProrostioN 2. Let f be a mapping of a set E into a set F. For every
generalized uniform structure % on E there is on F a finest generalized
uniform structure g(%)* contained in g(%). If U, and U, are p-equivalent,
then g(U,)* and g(%,)* are also p-equivalent.

Proor. Let {#;};. be the family of all generalized uniform structures
on F such that ¥y <g(%). Clearly g=1(¥;) <% for all f e B. As g—l("f;ﬂ)
is totally bounded (prop. 1), it follows that g“l(%ﬁ)cﬂilw, hence Vs <
g(%,). Now let Ve ¥ap, 1=1,...,n. According to the previous result,
Vi,eg#,), i=1,...,n. Now %, is a proper uniform structure, and con-
sequently g(%,) is closed under finite intersections. Hence

sup 7, < 9(%,) < 9(¥) .

BeB
This implies Vg ¥ <g(%), that is g(%)* =V, ¥; has the required prop-
erty. Now we have seen that a totally bounded structure is contained
in g(%) if and only if it is contained in g(%,). Consequently g(%,)* and
g(%,)* determine the same totally bounded structure if %, =%,,, which
completes the proof.

2. Initial and final structures.

We now introduce initial and final structures, in accordance with the
usual terminology (cf. [4, § 2]).
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Let E be an arbitrary set, {F,}, . a family of sets, and for each y e I'
let f, be a mapping of ¥ into F,. Let 7, be a generalized uniform struc-
ture on F,, with associated proximity structure 2,. A generalized uni-
form structure % on X is called an initial generalized uniform structure on E
for the family {F,,¥,.f,},., if (and only if) for every set E’, every gener-
alized uniform structure %’ on E’, and every mapping % of E’ into E
the following condition is satisfied:

Vy € I' (f,oh uniformly continuous with respect to %’ and %))
(2.1) e v . v
<> (h uniformly continuous with respect to %' and %).

A proximity structure & on E is called an initial proximity structure
on F for the family {F,,2 [} . if (and only if) for every set E’, every
proximity structure &' on E’, and every mapping & of K’ into E the
following condition is satisfied:

(2.2) Vy € I' (f,oh proximity mapping with respect to 2’ and 2,)
) <> (h proximity mapping with respect to &' and %).

Similarly, let F be an arbitrary set, {E,},. a family of sets, and for each
y € I' let f, be a mapping of E, into F. Let %, be a generalized uniform
structure on K, with associated proximity structure Z,. A generalized
uniform structure ¥~ on F is called a final generalized uniform structure
on F for the family {E,%,,[,},.r if (and only if) for every set F’, every
generalized uniform structure ¥” on F’, and every mapping h of F into
F’ the following condition is satisfied:

Vy € I' (hof, uniformly continuous with respect to %, and ¥™)

(2.3) <> (h uniformly continuous with respect to ¥~ and 7).

A proximity structure 2 on F is called a final proximity structure on
F for the family {£,2,,f,},.r if (and only if) for every set F', every
proximity structure 2’ on F’, and every mapping A of F into F’ the
following condition is satisfied:

Vy € I' (hof, proximity mapping with respect to &, and 2)

(2.4) vy PO PUTS )
<> (h proximity mapping with respect to 2 and 2’).

TaEOREM 1. Let B be an arbitrary set, and for each y of an index set I let
[, be a mapping of E into a set F, provided with a generalized uniform
structure ¥, and corresponding proximity structure 2,. Then the family
{F .7, f,},cr determines a (unique) initial generalized uniform structure U
on B, and the family {F,, 2., f,},.r determines a (unique) initial proximity
structure P on E. The latter coincides with the proximity structure asso-
ciated with %.
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Proor. The uniqueness follows from the general theory of initial
structures [4, p. 27]. Let g,=(f, xf,). As g,7(¥,)) is a generalized uni-
form structure on E, the structure % =V, g,7(¥,) is evidently the coars-
est structure on K for which all f, are uniformly continuous. Now let
E’ be an arbitrary set with an arbitrary generalized uniform structure
U'. Let b be a mapping of E’ into E, uniformly continuous with respect
to %’ and %. Then clearly all f, o h are uniformly continuous with respect
to %' and ¥,. Conversely, let all f, ok be uniformly continuous with re-
spect to %' and ¥,. Then for each y,

(fyebxfyob)X(h) = ¥,
thus g, (%) < (h xh)(%’). Consequently g,~1(¥,)< (kb x h)(%')*, hence
U = Vyerg, (%) < (Wxh)U')* < (hxh) ') .

This implies (b xh)XY%)<%', and so h is uniformly continuous with
respect to %’ and %.
In the same way it is shown that

Vyel"(gy—l(%‘))m = Su? (g_l(/%;))w

is the initial structure on E for the family {F,, Yy fy}yer- From the
characterization of proximity mappings in the corollary to proposition 1,
it immediately follows that the proximity structure & determined by
V,er(9,74(%)), actually is the initial proximity structure on E for the
family {F,,2,,f,},cr- (This structure might also be defined directly in
terms of proximity (see formula 2.6 of [1]), but we shall make no use of
that fact.) & is also the proximity structure determined by %=
V,erg, (¥,) since %,=sup,,. P(gy—l(fy’))w. This completes the proof.

If in particular =TT, F, and f,=pr, (the projection of ¥ onto F),
the initial structures % and & may be called the (initial) products of the
original generalized uniform and proximity structures, respectively.
From theorem 1 we get immediately:

ProrostTION 3. Let {F,}, ., be a family of sets, each F., provided with a
generalized uniform structure ¥, and corresponding proximity structure 2,.
Then an (initial) generalized wuniform product structure and an (initial)
proximity product structure may be defined on I1,.,F, and the latter
coincides with the proximity structure determined by the former.

If all the structures ¥, of theorem 1 are proper uniform structures,
there exists an initial proper uniform structure for the family {F,,%,.f,},cr-
The associated proximity structure is in general strictly finer than the
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initial proximity structure determined by the family {F,2,.f} .,
Consider for example a class of uniform structures {%,},., of p-class &
on a set B. It is easily seen that the entourages of %, coincide with the
uniform neighbourhoods of the diagonal 4 < E x E with respect to the
corresponding proper uniform product structure %, x%,. So all these
products %, x U, are of different p-classes (cf. [1, p. 359]). But the
generalized uniform product structures are of one and the same p-class,

that of the (proper or generalized) product #%,x%,, of the totally
bounded structure in the class.

THEOREM 2. Let F be an arbitrary set, and for each y of an index set I'
let f, be a mapping into F of a set K, provided with a generalized uniform
structure %, and corresponding proximity structure &P, Then the family
{E,, U, [,},er determines a (unique) final generalized uniform structure ¥~
on F, and the family {E,,2,,f,},.r determines a (unique) final proximity
structure 2 on F. The latter coincides with the proximity structure asso-
ciated with ¥

Proor. The uniqueness follows from the general theory of final struc-
tures [4, p. 34]. According to proposition 2, for every y € I" there is a
finest generalized uniform structure ¥, for which f, is uniformly continu-
ous. Moreover, the corresponding proximity structure 2, is the finest
proximity structure for which f, is a proximity mapping. It follows that
¥ =N, .7, is the finest structure for which all f are uniformly continuous.
Let F’ be an arbitrary set with an arbitrary generalized uniform structure
¥”'. Let h be a mapping of F into F’, uniformly continuous with respect
to ¥~ and ¥”. Then clearly all hof, are uniformly continuous with
respect to %, and ¥”'. Conversely, let all hof, be uniformly continuous
with respect to %, and ¥”'. For each y,

(hof,xhof) V)<= %,,
thus (hxh)"Y(¥")<g,(%,). Hence
(hxB)XV") < g(U,)* = 7,

and consequently (& x h)"Y(¥"')=A,. ¥, Thatis: k is uniformly continu-
ous with respect to ¥~ and ¥"'.

In the same way it is shown that A, .7, is a final generalized uniform
structure for the family {£,, OZ/w ,J,}yer- From the characterization of
proximity mappings it follows that the proximity structure 2 determined
by A,,e r¥a, actually is the final proximity structure for the family
{E,2 j;,}ye . As 2 also is the proximity structure associated with
A ‘// the proof is completed.

yel’
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If all %, are proper uniform structures, we may easily define a final
proper uniform structure for the family {E,%,f,},.r- In general its
associated proximity structure is strictly coarser than the corresponding
final proximity structure. (Let for example all £, =F, all f, = the iden-
tity mapping, and {%,},., a class of uniform structures such that
N,er?, is of strictly finer p-class than inf, %, (cf. [2, p. 237])).

We define quotient structures of generalized uniform structures and
of proximity structures in the customary way. From the results above
we immediately get:

ProrosiTioN 4. Let R be an equivalence relation on the set H, and let
be provided with a generalized uniform structure % and corresponding
proximity structure P. Then there exists a generalized uniform quotient
structure and a proximity quotient structure on E|R, and the latter coincides
with the proximity structure derived from the former.

3. Uniform convergence and convergences in proximity.

Let E be an arbitrary set, F a set provided with a generalized uniform
structure % and corresponding proximity structure &£, and let {f,},.a
be a generalized sequence of mappings of E into F. We define uniform
convergence in the obvious way: {f,},.. converges uniformly (with
respect to %) to the mapping f if and only if for every U € % there exists
an o, € A such that o >«x, (where > is the order relation of A) implies
(fux), f(x)) e U for all x € E. We shall say that {f,},., converges in
proximity (with respect to &) to f if and only if for every G<Z and
every H < F, where f(G)CH (%), there exists an «y € A such that « >«
implies f, ()< H; or equivalently: for every G<E and every H<F,
where f(G)EH(Z), there exists an «ye A such that o>, implies
FAGEH(P) (cf. [5, p. 214]).

ProrosiTION 5. Let % be a generalized uniform structure on F with
corresponding proximity structure P. If the generalized sequence {f,},.a of
mappings of the set E into F converges uniformly to f with respect to %,
it converges in proximity to f with respect to P.

Proor. Let {f,},.n converge uniformly to f with respect to #. If
f(@)EH(P), there is a U € % such that U(f(G)) =H. Now choose &, € A
such that «> o, implies (f,(x), f(x)) € U for all € E. For every z € @
we thus have f,(x) € U(f(@)), hence f,(G)<H.

In particular it follows that uniform convergence with respect to %,
implies convergence in proximity. We now state
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THEOREM 3. A generalized sequence {f.},.n of mappings of E into F
converges in proximity to the mapping f with respect to the proximity
structure & if and only if it converges uniformly with respect to the corre-
sponding totally bounded structure %,.

Proor. It remains to prove that convergence in proximity implies
uniform convergence with respect to %,. Now, suppose that {f,},.. is
not uniformly convergent with respect to #,. Then there exist a
Ve, a cofinal subset A, of A and for each « € A; an z, € E such that

(falza) fl2,) & V.

We may choose a W e %, such that W2<V and W=U?_ (4,xA4,),
where {A4;};,.; .. , is a p-covering of E ([1, p. 353]). Now for at least
one i <n, say i, there is a cofinal subset B of A, such that fy(z,) € 4,
for g € B. Set @={x, | p € B}, andlet x,, z, € G. Assume (f,(z,), f(z,))e W.

As
(fd(xd)’ fy(x‘y)) € Aio XA’L'() < W b
this implies (fy(x,), f(x,)) € W2<V, contrary to hypothesis. Conse-
quently we have
(o), flxs)) & W .
Hence f,(z,) ¢ W( f(G)), that is for all § € B we have

fo@) & W(f(@).

But then {f,};.s, and a fortiori {f,} ., does not converge to f in proximity.
This completes the proof,

ReMARk. The concept uniform convergence of a generalized sequence
with respect to a proximity structure & introduced by Leader in [5, p. 214]
is nothing but uniform convergence with respect to the corresponding
total structure %, (cf. [2, p. 241]).

It follows immediately from theorem 3 that convergence in proximity
implies uniform convergence in the case that & admits only one uniform
structure. (In this case %, =%, (cf. [2, p. 241]).

Leader has shown that if {f,},.. is a proper sequence, uniform con-
vergence and convergence in proximity coincide. We shall now prove a
generalization of this result.

THEOREM 4. Let {f,},.. be a generalized sequence of mappings of the set
E into the set F, and assume that the ordering of the index set A is linear.
Then if {f,}.ca converge in proximity to the mapping f with respect to a
proximity structure P on F, it also converges uniformly to f with respect to
an arbitrary generalized uniform structure compatible with 2.



56 OLAV NJASTAD

Proor. Assume that {f },.. is not uniformly convergent with respect
to %. Then there exists a U €  and a cofinal subset B of A such that
for each § € B there is a 2, € E with (fy(x,), f(x,)) ¢ U. Choose a symmet-
ric W € % such that W< U. We now make use of the following lemma,
the proof of which is found in [3, p. 254]:

Lemma. Let U and W be subsets of a Cartesian product F x F, and as-
sume that W is symmetric and contains the diagonal A, and that W< U.
Moreover, let (x4,Y4)s.8 be some generalized sequence with a linearly ordered
index set B, and assume that (x4,y,) & U for peB. Then there exists a
cofinal subset I' of B such that (x,,y,) &€ W whenever y and & both belong
to I

From this lemma it follows that there exists a cofinal subset I" of B
such that (f,(x,), f(x,)) € W for y,6 e I. Now let @={, |y € I'}. Then

fx,) € W(f(&))

for all y € I. This means
L&) & W(f(&))

for all y e I. Hence {f,},.,, and a fortiori {f,},.a, does not converge in
proximity to f with respect to the proximity structure & associated with
. 'This completes the proof.

ReMark. Uniform convergence with respect to a generalized uniform
structure is generally not a topological convergence. But given a struc-
ture % on F, there always is a finest topology on the set of mappings of
E into F for which all uniformly convergent generalized sequences are
convergent (namely the least upper bound of the uniform convergence
topologies of all proper uniform structures, or all pseudometrizable
structures, coarser than %).
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