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ON COMPLETE GRAPHS
AND COMPLETE STARS CONTAINED
AS SUBGRAPHS IN GRAPHS

G. A. DIRAC

1. Introduction.

All graphs considered in this paper are finite and have no multiple
edges and no loops. A complete k-graph, denoted by (k), is a graph
having k vertices and $k(k— 1) edges, in particular a single vertex con-
stitutes a (1). A complete k,x-star, denoted by (k,»), is a {(k—1) to-
gether with » further vertices each joined to every vertex of the (k—1);
k and x are to be positive integers. A (k) is thus the same as a {(k,1),
and a {(k,2) is the same as a (k+1) with a single edge missing. Graphs
will generally be denoted by Greek capitals. If I" is a graph then n,
will denote the number of vertices of I" and e, the number of edges of I
The number of edges incident with a vertex is called the valency of the
vertex in the graph.

P. Turan [2], [3] and K. Zarankiewicz [4] have found sufficient condi-
tions for a (k) to be contained as a subgraph in a graph:

TURAN’S THEOREM. Ifn,2 k2 3,andif np=(k— 1)t +r,wherel <r<k—1,
and if
er > tm2—r3)(k—2)/(k—1)+ir(r—1),
then I'2(k). If equality holds then there exists a wunique graph which
satisfies the conditions of the theorem and does not contain a (k) as a
subgraph.

ZARANKIEWICZ'S THEOREM AS IMPROVED BY L. FINKIELSZTEIN. If
np2 k23 and if each vertex has valency =np(k—2)/(k—1) and at least one
vertex has valency >mnp(k—2)/(k—1), then I'=2{k).

Zarankiewicz’s theorem follows directly from Turan’s [3].

The object of this paper is to improve Zarankiewicz’s theorem —the
new theorem is not implied by Turan’s theorem—and to obtain condi-
tions for (k,»)’s to be contained as subgraphs in graphs.
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2. Stronger theorems of Zarankiewicz’s type.

If I' is a graph, then #°(I') denotes the set of vertices of I. If
a € ¥ (I') then ¥, denotes the set of vertices to which a is joined, I',
denotes the subgraph of I" spanned by these vertices, and v(a, I") denotes
the valency of @ in I If « is a real number, then ¥"(I', 2 x) denotes
the set of vertices having valency =« in I The sets ¥ (I, >«),
Y (I, 2x), ¥ (I', <) are defined analogously. Obviously ¥ (I, >«)<
Y (I', Z2«) etc. The number |¥'(I', 2«)| is denoted by V(I', Z«) ete.
In this notation Zarankiewicz’s theorem is as follows: If n,2k23,

V(L znp(k—-2)/(k—1)) = n,
and

V(I >npk—2)/(k—1)) 2 1,

then I'2 (k). The following stronger result holds:

TaEOREM 1. If k23,

p V(T znp(k—2)/(k=1)) 2 np(k—2)/(k-1),
- V(I >np(k—2)/(k—1)) 2 1,

then each vertex of ¥ (I',>np(k—2)/(k—1)) is joined to more than
np(k—3)/(k—1) vertices of ¥ (I, 2np(k—2)/(k—1)), and if A is any (I)
with 1<1<k—1 contained in I" and such that

p V(4) € VI, znp(k—2)[(k—1))
“w > o, ) > ng(k—2)/(k—1) + =,
zey (4)

where x ts an integer =0, then I' contains a (k—1) A and a {k,x+1) ®
such that

V() € V(T zn(k—2)/(k—-1) and TI'286>5A424.

Nortes. 1. The conditions of Theorem 1 imply, since the valency of
every vertex is <n,—1, that n,—1>n,(k—2)/(k—1), that is, n, 2 k.

2. From V(I', 2np(k—2)/(k—1))2np(k—2)/(k—1) it follows that if
np<2k—3, then I'={n,). Forif n,<2k—3,thenn(k—2)/(k—1)>n,—2.
Therefore at least n,—1 vertices have valency n,—1, consequently
I'={n;). So Theorem 1 is more significant for n,.= 2k —2.

3. Theorem 1 implies that if a is any vertex the valency of which is
>np(k—2)/(k—1), then I'2(k) €a. (Take A=a(l=1) and x=0.)
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Proor oF THEOREM 1. Let a denote any vertex of

V(I > nk—2)/(k—1)) .
Then

[V o n VT, 2np(k—2)[(k—1))| 2 v(a, )+ V(I 2n(k—2)/(k—1)) — np
> 2np(k—2)[(k—1)) — np
= np(k—3)/(k—1).

The existence of a (k—1) A in I" with the required properties will be
proved by reductio ad absurdum: Suppose that no such (k—1) exists.
Then I <k—2. Let m denote the greatest integer with the property that
I' contains an (m) @ such that ¥(0)< ¥ (I, Z2n(k—2)/(k—1)) and
©24; obviously m exists and I<m=<k—2.

Let e¢(®) denote the number of edges of I' having one end in ® and
one end in I'— 6. Clearly

e0) = 3 (v, I)—(m~1))

zey (@)
= Y o)+ > val)—mm-1)
xey (4) 2ey (O)—y(4)

> Inp(k—2)/(k— 1)+ (m —np(k — 2)/(k— 1) —m(m ~ 1)
= npm(k—2)/(k—1)—m(m—1).

Now suppose that in ¥°(I")—¥"(0) there are n, vertices having valency
<np(k—2)/(k—1) in I" and n, vertices having valency 2np(k—2)/(k—1)
in I. Each of the latter is joined to at most m— 1 of the vertices of O,
since otherwise the maximal property of m would be contradicted. Con-
sequently

e(0) = mny+(m—1ny = (m—1)(ng+n,)+n,.

Also ng+n;=np—m and ny,<ny/(k—1), therefore

e(@) £ (m—1)(np~m)+np/(k—1).
From

npm(k—2)/(k—1)~m(m—1) < e@) = (m—1)(np—m)+ng/(k~1)

it follows that m(k—2)<(m—1)(k—1)+1, that is, m>k—2, whereas
m<k—2. This contradiction proves the existence of a (k—1) A in I
with the properties mentioned.

Let e(A) denote the number of edges of I" having one end in A and
one end in I'—A. Clearly
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ed) = 3 (v@I)-(k-2)

zey (4)
=S o@D+ 3 o@D)-(k=1)k—2)
zey (4) zey (D)—y (4)

> Inp(k—2)/(k—1)+x+ (k— 1 —l)np(k—2)[(k— 1) — (k— 1)(k—2)
= (np—(k—=1))(k—2)+2 .

Therefore at least x+1 of the n,— (k—1) vertices of I'— /A are joined to
all vertices of /. Consequently I" contains a {k,» + 1) @ with the required
properties as a subgraph.

REMARKS. Theorem 1 is primarily significant with »=0 as a criterion
for the existence of one or more (k)-s as subgraphs in a graph. In this
respect the theorem is best possible:

(a) I V(I', >np(k—2)/(k— 1))=0, then I" need not contain a (k) at
all even if every vertex has valency np(k—2)/(k—1). This is shown, for
example, by a graph whose vertices are partitioned into k£ — 1 mutually
disjoint sets of 7 vertices, 7=2, any two vertices being joined by an
edge if and only if they do not belong to the same set.

(b) If V(I', 2np(k—2)/(k—1)) <np(k—2)/(k—1), then I' need not con-
tain a (k) at all even if V(I', >ny(k—2)/(k—1))2 (n,—1)(k—2)/(k—1),
this is shown, for example, by a graph whose vertices are partitioned
into k— 1 mutually disjoint sets, k— 2 of which contain 7 vertices, 7= 2,
and the remaining set v+ 1, any two vertices being joined by an edge
if and only if they do not belong to the same set.

Theorem 1 is significant in the second place with »=1 as a criterion
for the existence of (k,2)-s as subgraphs in a graph, because a (k,2) is
the same as a {k+ 1) with a single edge missing. I have proved elsewhere
[1] that the conditions of Turan’s theorem actually imply the existence
not only of a (k) but of a (k,2) as a subgraph in the graph, even though
the theorem is best possible. The conditions of Theorem 1 with »=0
do not always imply the existence of a {k,2) as a subgraph in the graph
(see the remarks after the proof of Theorem 2). However, we can prove
(cf. Note 2 after Theorem 1)

TuporEM 2. If np2k+124, V(I', 2np(k—2)/(k—1)) > np(k—2)/(k—1)
and V(I', >np(k—2)/(k—1))2 1, then I'>(k,2) except only if k=3, np=4
and I' consists of a {(3) together with a fourth vertex joined to exactly one
vertex of the (3).

The proof of Theorem 2 will require the following two simple results:
(1) If ¥ is a graph and w is any vertex of ¥, then if a vertex of ¥,
has valency =2 in W, it follows that ¥ 2 (3,2).
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For if, for example, (z,y), (x,2) € ¥,,, then w, x, y, z span a {3,2) or
a {4) in V.

(2) If ¥ is a graph and (p,q) is an edge of ¥ and at least two vertices
of ¥ are joined to both p and q, then ¥2(3,2).

For if, for example, » and s are joined to both p and ¢, then p, ¢, r, s
span a (3,2) or a (4) in V.

Proor or THEOREM 2 FOR k=3 AND np=4. Let ae ¥ (I, >2), then
v(a,[)=3. Further, e, =1 because V(I',z22)z3. If er,z2, then
I'2¢3,2) by (1). If e, =1 then I" consists of a (3) together with a vertex
joined to exactly one vertex of the (3).

Proor or THEOREM 2 FOR k=3 AND 0DD n, by reductio ad absurdum.
Suppose that the graph I" has an odd number of vertices and satisfies
the conditions of Theorem 2 with k=3, but I'2{3,2).

(3) I' contains no vertex of valency > inp+4%.

For otherwise I' would contain a vertex a of valency = in,.+ 3 and so,
by Theorem 1 with k=3, A=a and =1, I'2(3,2).

Therefore I' contains at least In,+% vertices of valency in,+ 3.
Each of them is joined to at least one vertex of valency in,+ % by an
edge. Let a and b denote two vertices of valency in,+} joined by an
edge. At least one vertex of I' is joined to both a and b because v(a, ") +
v(b,I")=nr+1, and only one vertex of I is joined to both ¢ and b by (2).
From this and (1) (2) it follows that

(4) Exactly one vertex, ¢ say, is joined to both a and b, exactly half the
vertices of I'—a—b—c are joined to @ and not to b, the remaining half are
joined to b and not to a, and c is joined only to a and to b.

Since V(I',inp+ ) = np+ 4 = 3, the notation can be chosen so that at
least one of the vertices of ¥,—b—c, say d, has valency in,.+4% in I
By (1) and (4)

(5) d 1s joined to exactly one vertex of ¥,—b—c, say d’, and to all vertices
of ¥,—c.

From (5), (2) and (4) it follows that

(8) e, =1 and d' is joined to mo vertex other than a and d.

From (4), (5) and (6) it follows that {d'}u7;—ac¥ (I, <in.), so
VI, <inp)zdnp+ 3 contrary to V(I inp+3)=4n,+4%. This proves
Theorem 2 for k=3 and odd n.

Proor orF THEOREM 2 FOR k=3 AND EVEN %2 6 by reductio ad absur-
dum. Suppose that the graph I" has an even number of vertices = 6 and
satisfies the conditions of Theorem 2 with k=3, but I'$(3,2).

(7) I contains no vertex of valency >3np+1.
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For otherwise I' would contain a vertex a of valency =3in,.+2 and
80, by Theorem 1 with k=3, A=a and x=1, I'2(3,2).

I contains at least one vertex of valency in,+1, let a denote such a
vertex.

(8) No vertex of ¥, has valency > inp in I', and at least two vertices of
¥, have valency $np in I

For if (a,a’) € I' and v(a’,I") > in, then v(a,I")+v(a’,I") >np+1, so at
least two vertices of I" are joined to both ¢ and a’, consequently I'> (3,2)
by (2). At least two vertices of ¥, have valency 3}n. in I' because
V([ z3np)2inp+1 and v(a, )= inp+ 1.

Let b denote a vertex of ¥, with valency 3n,in I'. At least one vertex
of I' is joined to both a and b because v(a,I")+v(b,I")=n,+1, and only
one vertex of I"is joined to both @ and b by (2). From this and (1) and
(2) it follows that

(9) Exactly one vertex, ¢ say, s joined to both a and b, exactly jnp—1
of the vertices of I'—a—b—c¢ are joined to a and not to b, the remaining
dnp— 2 vertices of I'—a—b—c are joined to b and not to a, and ¢ is joined
only to a and to b.

By (8) and (9) at least one of the vertices of ¥, —b—c, say d, has val-
ency 3np in I. It follows from (1) and (9) that d is joined to exactly
one of the vertices of ¥ —b—c, say d’, and to all vertices of ¥, —c. From
this, (2) and (9) it follows that

(10) ey, =1, and d' is joined to mo vertex other than a and d.

Consequently {d'}u¥;—ac? (I, £4np—1), so VI, =4n,—1)=4n,
contrary to V(I', 2 n;) 2 dnp+ 1. This proves Theorem 2 for k=3 and
even np2 6.

Proor or THEOREM 2 FOR k=4 AND n,=>5. In this case ny=2k—3,
so I'=(5) (see Note 2 after Theorem 1).

Proor oF THEOREM 2 FOR k=4 AND n,= 6. In this case np(k—2)/(k—1)
=4, so at least one vertex has valency 5 and at least five have valency
2 4. Let a denote a vertex having valency 5 in I. Then V(I',, 23) =4,
80 by Theorem 2 with k=3 and n,=5, I',>(3,2). Adding a we have
that I'>(4,2).

The rest of the proof of Theorem 2 will require the following two results:
(11) Let ¥ denote a graph with the property that

V(¥ zny(k' —2)/(k' - 1)) >ng(k' —2)/(K' —1),

where ny2 k' 23, and let b denote a vertex of valency =ny(k' —2)[(k'—1).
If x € ¥, and v(x, ¥)=v+ny(k' —2)/(K' —1), then

0@, ¥y) 2 v+ gy (K —3)| (k' —2) .
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For clearly

o, W) 2 v(@, ¥)— (np—ny) = v—ny/(k'—1)+ny, .
Also

Ny, Z ng(k'—2)[(K'—1), so mny/(k'—1) < n.f,b/(k'—2) .

Consequently
(@, V) Z v+ny (K —3)/(k-2).

(12) V(¥ ;n.l,b(k'—3)/(k'—2))>n%(k’—3)/(lc'-—2).
For by (11) with =0

V(¥ 2 ny, (k' —3)[(k' —2))
Now
Yo n V (P, 2nu(k' —2)[(k' = 1))| 2 ny,+ V(¥, Zny(k —2)/(K' = 1))~ n,
> Ny, —nyf(k'—1)
2 ny, (k' —3)[(K'-2) .

fin

¥ 0V (P, 2ng(k' —2)/(k' — 1)) .

Proor oF THEOREM 2 FOR k=4 AND n,=7. Let a denote a vertex
having valency >mnp(k—2)/(k—1) in I', and let b denote a vertex of
valency =n (k—2)/(k—1) joined to a. (By Theorem 1 a is joined to
vertices of valency =n.(k—2)/(k—1).) Clearly np(k—2)/(k—1)>4, so

(13) np,25.

By (11) with ¥’ =4

(14) v(a,I}) > ing,.

By (12) with k' =4

(18) V(I3 24np,) > dnp,.

By (13), (14), (15) and Theorem 2 with k=3, we get I, =2¢3,2). Add-
ing b we have that I'>{4,2).

Proor or THEOREM 2 FOR k=5 by induction over k. Suppose that
k=Fk' 25 and that Theorem 2 is true if k=%"—1. Let I' be a graph which
satisfies the conditions of Theorem 2 with k=£k'. Let a denote a vertex
having valency >np(k'—2)/(k'—1) in I', and let b denote a vertex of
valency 2np(k'—2)/(k'—1) joined to a (by Theorem 1, a is joined to
vertices of valency =np(k'—2)/(k" —1)).

(16) np 2 k'

For

Np,

2 n (K = 2)J(k' 1) 2 (& + D)(E —2)/(F = 1) = K —2/(k' ~ 1),
and k' = 5.

(17) v(a,Iy) > np (k' —3)/(k' —2)
by (11), and
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(18) V(I'y, 2 np, (K —3)/(k' —2)) > np, (k' — 3)/ (k' —2)
by (12). By (16), (17) and (18) I, satisfies the conditions of Theorem 2
with k=£k"— 1= 4, therefore I'y>(k’—1,2) by the induction hypothesis.
Adding b we have that I'> k', 2).

Thus, Theorem 2 is true for k=%"'>5 if it is true for k=k'—1. The
theorem has been proved for k=3 and for k=4, so it is true generally.

Remarks. Let the graph £ be defined as follows:

Y (Q) = {ag,..,0,1,b1,. . ., 0,14},
where y =2, and

E2) = {(a;,0)), (a1,0,14), (b,,0,41)), ¢ =1,...,y=1, 5 =1,...,7,

v(a,2) = Ing+1, and V(Q, = in,)=in,, but 22(3,2). This example
shows that in Theorem 1 with »=1 the existence of an () 4 such that
> v, ) > Inp(k—2)/(k—1)+1

zey ()
must be stipulated, if only
> v, ) = Inp(k—2)/(k—1)+1
zey(4)
holds (for one or more (I)-s) then I' need not contain a {(k,2) as a sub-

graph at all (in our example 2 take A=a,). The above example also
shows that in Theorem 2

V(I 2np(k—2)[(k—1)) > np(k—2)/(k—1)

must be stipulated; if = holds instead of >, then I" need not contain a
(k,2) as a subgraph.
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