ON COMPLETE GRAPHS AND COMPLETE STARS CONTAINED AS SUBGRAPHS IN GRAPHS

G. A. DIRAC

1. Introduction.

All graphs considered in this paper are finite and have no multiple edges and no loops. A complete k-graph, denoted by $\langle k \rangle$, is a graph having k vertices and $\frac{1}{2}k(k-1)$ edges, in particular a single vertex constitutes a $\langle 1 \rangle$. A complete k, \varkappa -star, denoted by $\langle k, \varkappa \rangle$, is a $\langle k-1 \rangle$ together with \varkappa further vertices each joined to every vertex of the $\langle k-1 \rangle$; k and \varkappa are to be positive integers. A $\langle k \rangle$ is thus the same as a $\langle k, 1 \rangle$, and a $\langle k, 2 \rangle$ is the same as a $\langle k+1 \rangle$ with a single edge missing. Graphs will generally be denoted by Greek capitals. If Γ is a graph then n_{Γ} will denote the number of vertices of Γ and e_{Γ} the number of edges of Γ . The number of edges incident with a vertex is called the valency of the vertex in the graph.

P. Turán [2], [3] and K. Zarankiewicz [4] have found sufficient conditions for a $\langle k \rangle$ to be contained as a subgraph in a graph:

Turán's theorem. If $n_r \ge k \ge 3$, and if $n_r = (k-1)t + r$, where $1 \le r \le k-1$, and if $e_r > \frac{1}{2}(n^2 - r^2)(k-2)/(k-1) + \frac{1}{2}r(r-1)$,

then $\Gamma \supseteq \langle k \rangle$. If equality holds then there exists a unique graph which satisfies the conditions of the theorem and does not contain a $\langle k \rangle$ as a subgraph.

Zarankiewicz's theorem as improved by L. Finkielsztejn. If $n_{\Gamma} \ge k \ge 3$ and if each vertex has valency $\ge n_{\Gamma}(k-2)/(k-1)$ and at least one vertex has valency $> n_{\Gamma}(k-2)/(k-1)$, then $\Gamma \ge \langle k \rangle$.

Zarankiewicz's theorem follows directly from Turán's [3].

The object of this paper is to improve Zarankiewicz's theorem—the new theorem is not implied by Turán's theorem—and to obtain conditions for $\langle k, \varkappa \rangle$'s to be contained as subgraphs in graphs.

Received March 12, 1962.

2. Stronger theorems of Zarankiewicz's type.

If Γ is a graph, then $\mathscr{V}(\Gamma)$ denotes the set of vertices of Γ . If $a \in \mathscr{V}(\Gamma)$ then \mathscr{V}_a denotes the set of vertices to which a is joined, Γ_a denotes the subgraph of Γ spanned by these vertices, and $v(a,\Gamma)$ denotes the valency of a in Γ . If α is a real number, then $\mathscr{V}(\Gamma, \geq \alpha)$ denotes the set of vertices having valency $\geq \alpha$ in Γ . The sets $\mathscr{V}(\Gamma, > \alpha)$, $\mathscr{V}(\Gamma, \leq \alpha)$, $\mathscr{V}(\Gamma, < \alpha)$ are defined analogously. Obviously $\mathscr{V}(\Gamma, > \alpha) \subseteq \mathscr{V}(\Gamma, \geq \alpha)$ etc. The number $|\mathscr{V}(\Gamma, \geq \alpha)|$ is denoted by $V(\Gamma, \geq \alpha)$ etc. In this notation Zarankiewicz's theorem is as follows: If $n_{\Gamma} \geq k \geq 3$,

$$V\big(\varGamma, \, \geqq \, n_\varGamma(k-2)/(k-1)\big) \, = \, n_\varGamma \; ,$$

and

and

$$V(\Gamma, > n_{\Gamma}(k-2)/(k-1)) \ge 1$$
,

then $\Gamma \supseteq \langle k \rangle$. The following stronger result holds:

Theorem 1. If $k \ge 3$,

T7/ T7 >

$$Vig(\Gamma,\geqq n_{arGamma}(k-2)/(k-1)ig)\geqq n_{arGamma}(k-2)/(k-1)$$
 ,
$$Vig(\Gamma,>n_{arGamma}(k-2)/(k-1)ig)\geqq 1$$
 ,

then each vertex of $\mathscr{V}(\Gamma, > n_{\Gamma}(k-2)/(k-1))$ is joined to more than $n_{\Gamma}(k-3)/(k-1)$ vertices of $\mathscr{V}(\Gamma, \geq n_{\Gamma}(k-2)/(k-1))$, and if Δ is any $\langle l \rangle$ with $1 \leq l \leq k-1$ contained in Γ and such that

$$\begin{split} \mathscr{V}(\varDelta) &\subseteq \mathscr{V}\big(\varGamma, \geq n_{\varGamma}(k-2)/(k-1)\big) \\ &\sum_{x \in \mathscr{V}(\varDelta)} v(x,\varGamma) \, > \, ln_{\varGamma}(k-2)/(k-1) \, + \, \varkappa \; , \end{split}$$

and

where \varkappa is an integer ≥ 0 , then Γ contains a $\langle k-1 \rangle$ Λ and a $\langle k, \varkappa+1 \rangle$ Φ such that

$$\mathscr{V}(\Lambda) \subseteq \mathscr{V}(\Gamma, \geq n_{\Gamma}(k-2)/(k-1))$$
 and $\Gamma \supseteq \Phi \supset \Lambda \supseteq \Delta$.

Notes. 1. The conditions of Theorem 1 imply, since the valency of every vertex is $\leq n_r - 1$, that $n_r - 1 > n_r(k-2)/(k-1)$, that is, $n_r \geq k$.

- 2. From $V(\Gamma, \geq n_{\Gamma}(k-2)/(k-1)) \geq n_{\Gamma}(k-2)/(k-1)$ it follows that if $n_{\Gamma} \leq 2k-3$, then $\Gamma = \langle n_{\Gamma} \rangle$. For if $n_{\Gamma} \leq 2k-3$, then $n_{\Gamma}(k-2)/(k-1) > n_{\Gamma}-2$. Therefore at least $n_{\Gamma}-1$ vertices have valency $n_{\Gamma}-1$, consequently $\Gamma = \langle n_{\Gamma} \rangle$. So Theorem 1 is more significant for $n_{\Gamma} \geq 2k-2$.
- 3. Theorem 1 implies that if a is any vertex the valency of which is $> n_{\Gamma}(k-2)/(k-1)$, then $\Gamma \supseteq \langle k \rangle \in a$. (Take $\Delta = a$ (l=1) and $\kappa = 0$.)

Proof of Theorem 1. Let a denote any vertex of

$$\mathscr{V}(\Gamma, > n_{\Gamma}(k-2)/(k-1)).$$

Then

$$\begin{split} |\mathscr{V}_a \cap \mathscr{V} \big(\varGamma, \geq n_\varGamma(k-2)/(k-1) \big) | \; &\geq \; v(a,\varGamma) + V \big(\varGamma, \geq n_\varGamma(k-2)/(k-1) \big) - n_\varGamma \\ &> \; 2n_\varGamma(k-2)/(k-1)) - n_\varGamma \\ &= \; n_\varGamma(k-3)/(k-1) \; . \end{split}$$

The existence of a $\langle k-1 \rangle$ Λ in Γ with the required properties will be proved by reductio ad absurdum: Suppose that no such $\langle k-1 \rangle$ exists. Then $l \leq k-2$. Let m denote the greatest integer with the property that Γ contains an $\langle m \rangle$ Θ such that $\mathscr{V}(\Theta) \subseteq \mathscr{V}(\Gamma, \geq n_{\Gamma}(k-2)/(k-1))$ and $\Theta \supseteq \Lambda$; obviously m exists and $l \leq m \leq k-2$.

Let $e(\Theta)$ denote the number of edges of Γ having one end in Θ and one end in $\Gamma - \Theta$. Clearly

$$\begin{split} e(\Theta) &= \sum_{x \in \mathscr{V}(\Theta)} \!\! \left(v(x, \varGamma) - (m-1) \right) \\ &= \sum_{x \in \mathscr{V}(A)} \!\! \left(v(x, \varGamma) + \sum_{x \in \mathscr{V}(\Theta) - \mathscr{V}(A)} \!\! v(x, \varGamma) - m(m-1) \right) \\ &> ln_{\varGamma}(k-2) / (k-1) + (m-l)n_{\varGamma}(k-2) / (k-1) - m(m-1) \\ &= n_{\varGamma} m(k-2) / (k-1) - m(m-1) \; . \end{split}$$

Now suppose that in $\mathscr{V}(\Gamma) - \mathscr{V}(\Theta)$ there are n_0 vertices having valency $< n_\Gamma(k-2)/(k-1)$ in Γ and n_1 vertices having valency $\ge n_\Gamma(k-2)/(k-1)$ in Γ . Each of the latter is joined to at most m-1 of the vertices of Θ , since otherwise the maximal property of m would be contradicted. Consequently

$$e(\Theta) \ \leq \ m n_0 + (m-1) n_1 \ = \ (m-1) (n_0 + n_1) + n_0 \, .$$

Also $n_0 + n_1 = n_T - m$ and $n_0 \le n_T / (k - 1)$, therefore

$$e(\Theta) \leq (m-1)(n_r-m) + n_r/(k-1)$$
.

From

$$n_{\Gamma}m(k-2)/(k-1)-m(m-1) < e(\Theta) \le (m-1)(n_{\Gamma}-m)+n_{\Gamma}/(k-1)$$

it follows that m(k-2) < (m-1)(k-1)+1, that is, m > k-2, whereas $m \le k-2$. This contradiction proves the existence of a $\langle k-1 \rangle$ Λ in Γ with the properties mentioned.

Let $e(\Lambda)$ denote the number of edges of Γ having one end in Λ and one end in $\Gamma - \Lambda$. Clearly

$$\begin{split} e(\varLambda) &= \sum_{x \in \mathscr{Y}(\varLambda)} \!\! \left(v(x,\varGamma) - (k-2) \right) \\ &= \sum_{x \in \mathscr{Y}(\varLambda)} \!\! v(x,\varGamma) + \sum_{x \in \mathscr{Y}(\varLambda) - \mathscr{Y}(\varLambda)} \!\! v(x,\varGamma) - (k-1)(k-2) \\ &> ln_{\varGamma}(k-2)/(k-1) + \varkappa + (k-1-l)n_{\varGamma}(k-2)/(k-1) - (k-1)(k-2) \\ &= (n_{\varGamma} - (k-1))(k-2) + \varkappa \; . \end{split}$$

Therefore at least $\varkappa+1$ of the $n_{\Gamma}-(k-1)$ vertices of $\Gamma-\Lambda$ are joined to all vertices of Λ . Consequently Γ contains a $\langle k, \varkappa+1 \rangle \Phi$ with the required properties as a subgraph.

REMARKS. Theorem 1 is primarily significant with $\kappa = 0$ as a criterion for the existence of one or more $\langle k \rangle$ -s as subgraphs in a graph. In this respect the theorem is best possible:

- (a) If $V(\Gamma, > n_{\Gamma}(k-2)/(k-1)) = 0$, then Γ need not contain a $\langle k \rangle$ at all even if every vertex has valency $n_{\Gamma}(k-2)/(k-1)$. This is shown, for example, by a graph whose vertices are partitioned into k-1 mutually disjoint sets of τ vertices, $\tau \geq 2$, any two vertices being joined by an edge if and only if they do not belong to the same set.
- (b) If $V(\Gamma, \geq n_{\Gamma}(k-2)/(k-1)) < n_{\Gamma}(k-2)/(k-1)$, then Γ need not contain a $\langle k \rangle$ at all even if $V(\Gamma, > n_{\Gamma}(k-2)/(k-1)) \geq (n_{\Gamma}-1)(k-2)/(k-1)$, this is shown, for example, by a graph whose vertices are partitioned into k-1 mutually disjoint sets, k-2 of which contain τ vertices, $\tau \geq 2$, and the remaining set $\tau+1$, any two vertices being joined by an edge if and only if they do not belong to the same set.

Theorem 1 is significant in the second place with n=1 as a criterion for the existence of $\langle k,2\rangle$ -s as subgraphs in a graph, because a $\langle k,2\rangle$ is the same as a $\langle k+1\rangle$ with a single edge missing. I have proved elsewhere [1] that the conditions of Turán's theorem actually imply the existence not only of a $\langle k\rangle$ but of a $\langle k,2\rangle$ as a subgraph in the graph, even though the theorem is best possible. The conditions of Theorem 1 with n=0 do not always imply the existence of a $\langle k,2\rangle$ as a subgraph in the graph (see the remarks after the proof of Theorem 2). However, we can prove (cf. Note 2 after Theorem 1)

Theorem 2. If $n_{\Gamma} \ge k+1 \ge 4$, $V(\Gamma, \ge n_{\Gamma}(k-2)/(k-1)) > n_{\Gamma}(k-2)/(k-1)$ and $V(\Gamma, > n_{\Gamma}(k-2)/(k-1)) \ge 1$, then $\Gamma \supseteq \langle k, 2 \rangle$ except only if k=3, $n_{\Gamma}=4$ and Γ consists of a $\langle 3 \rangle$ together with a fourth vertex joined to exactly one vertex of the $\langle 3 \rangle$.

The proof of Theorem 2 will require the following two simple results: (1) If Ψ is a graph and w is any vertex of Ψ , then if a vertex of Ψ_w has valency ≥ 2 in Ψ_w , it follows that $\Psi \supseteq \langle 3, 2 \rangle$. For if, for example, $(x,y), (x,z) \in \mathcal{\Psi}_w$, then w, x, y, z span a $\langle 3, 2 \rangle$ or a $\langle 4 \rangle$ in $\mathcal{\Psi}$.

(2) If Ψ is a graph and (p,q) is an edge of Ψ and at least two vertices of Ψ are joined to both p and q, then $\Psi \supseteq \langle 3, 2 \rangle$.

For if, for example, r and s are joined to both p and q, then p, q, r, s span a $\langle 3, 2 \rangle$ or a $\langle 4 \rangle$ in Ψ .

PROOF OF THEOREM 2 FOR k=3 AND $n_{\varGamma}=4$. Let $a\in\mathscr{V}(\varGamma,>2)$, then $v(a,\varGamma)=3$. Further, $e_{\varGamma_a}\geq 1$ because $V(\varGamma,\geq 2)\geq 3$. If $e_{\varGamma_a}\geq 2$, then $\varGamma\supseteq\langle 3,2\rangle$ by (1). If $e_{\varGamma_a}=1$ then \varGamma consists of a $\langle 3\rangle$ together with a vertex joined to exactly one vertex of the $\langle 3\rangle$.

PROOF OF THEOREM 2 FOR k=3 AND ODD n_{Γ} by reductio ad absurdum. Suppose that the graph Γ has an odd number of vertices and satisfies the conditions of Theorem 2 with k=3, but $\Gamma \not \supseteq \langle 3,2 \rangle$.

(3) Γ contains no vertex of valency $> \frac{1}{2}n_{\Gamma} + \frac{1}{2}$.

For otherwise Γ would contain a vertex a of valency $\geq \frac{1}{2}n_{\Gamma} + \frac{3}{2}$ and so, by Theorem 1 with k=3, $\Delta=a$ and $\varkappa=1$, $\Gamma \geq \langle 3,2 \rangle$.

Therefore Γ contains at least $\frac{1}{2}n_{\Gamma} + \frac{1}{2}$ vertices of valency $\frac{1}{2}n_{\Gamma} + \frac{1}{2}$. Each of them is joined to at least one vertex of valency $\frac{1}{2}n_{\Gamma} + \frac{1}{2}$ by an edge. Let a and b denote two vertices of valency $\frac{1}{2}n_{\Gamma} + \frac{1}{2}$ joined by an edge. At least one vertex of Γ is joined to both a and b because $v(a, \Gamma) + v(b, \Gamma) = n_{\Gamma} + 1$, and only one vertex of Γ is joined to both a and b by (2). From this and (1) (2) it follows that

(4) Exactly one vertex, c say, is joined to both a and b, exactly half the vertices of $\Gamma - a - b - c$ are joined to a and not to b, the remaining half are joined to b and not to a, and c is joined only to a and to b.

Since $V(\Gamma, \frac{1}{2}n_{\Gamma} + \frac{1}{2}) \ge \frac{1}{2}n_{\Gamma} + \frac{1}{2} \ge 3$, the notation can be chosen so that at least one of the vertices of $\mathscr{V}_a - b - c$, say d, has valency $\frac{1}{2}n_{\Gamma} + \frac{1}{2}$ in Γ . By (1) and (4)

(5) d is joined to exactly one vertex of $\mathcal{V}_a - b - c$, say d', and to all vertices of $\mathcal{V}_b - c$.

From (5), (2) and (4) it follows that

(6) $e_{P_h} = 1$ and d' is joined to no vertex other than a and d.

From (4), (5) and (6) it follows that $\{d'\} \cup \mathscr{V}_b - a \subseteq \mathscr{V}(\Gamma, < \frac{1}{2}n_{\Gamma})$, so $V(\Gamma, < \frac{1}{2}n_{\Gamma}) \ge \frac{1}{2}n_{\Gamma} + \frac{1}{2}$ contrary to $V(\Gamma, \frac{1}{2}n_{\Gamma} + \frac{1}{2}) \ge \frac{1}{2}n_{\Gamma} + \frac{1}{2}$. This proves Theorem 2 for k = 3 and odd n_{Γ} .

(7) Γ contains no vertex of valency $> \frac{1}{2}n_{\Gamma} + 1$.

For otherwise Γ would contain a vertex a of valency $\geq \frac{1}{2}n_{\Gamma}+2$ and so, by Theorem 1 with k=3, $\Delta=a$ and $\varkappa=1$, $\Gamma \supseteq \langle 3,2 \rangle$.

 Γ contains at least one vertex of valency $\frac{1}{2}n_{\Gamma}+1$, let a denote such a vertex.

(8) No vertex of \mathscr{V}_a has valency $> \frac{1}{2}n_{\Gamma}$ in Γ , and at least two vertices of \mathscr{V}_a have valency $\frac{1}{2}n_{\Gamma}$ in Γ .

For if $(a, a') \in \Gamma$ and $v(a', \Gamma) > \frac{1}{2}n_{\Gamma}$, then $v(a, \Gamma) + v(a', \Gamma) > n_{\Gamma} + 1$, so at least two vertices of Γ are joined to both a and a', consequently $\Gamma \supset \langle 3, 2 \rangle$ by (2). At least two vertices of \mathscr{V}_a have valency $\frac{1}{2}n_{\Gamma}$ in Γ because $V(\Gamma, \geq \frac{1}{2}n_{\Gamma}) \geq \frac{1}{2}n_{\Gamma} + 1$ and $v(a, \Gamma) = \frac{1}{2}n_{\Gamma} + 1$.

Let b denote a vertex of \mathscr{V}_a with valency $\frac{1}{2}n_{\Gamma}$ in Γ . At least one vertex of Γ is joined to both a and b because $v(a,\Gamma)+v(b,\Gamma)=n_{\Gamma}+1$, and only one vertex of Γ is joined to both a and b by (2). From this and (1) and (2) it follows that

- (9) Exactly one vertex, c say, is joined to both a and b, exactly $\frac{1}{2}n_{\Gamma}-1$ of the vertices of $\Gamma-a-b-c$ are joined to a and not to b, the remaining $\frac{1}{2}n_{\Gamma}-2$ vertices of $\Gamma-a-b-c$ are joined to b and not to a, and c is joined only to a and to b.
- By (8) and (9) at least one of the vertices of $\mathscr{V}_a b c$, say d, has valency $\frac{1}{2}n_{\Gamma}$ in Γ . It follows from (1) and (9) that d is joined to exactly one of the vertices of $\mathscr{V}_a b c$, say d', and to all vertices of $\mathscr{V}_b c$. From this, (2) and (9) it follows that
 - (10) $e_{\Gamma_h} = 1$, and d' is joined to no vertex other than a and d.

Consequently $\{d'\} \cup \mathscr{V}_b - a \subseteq \mathscr{V}(\Gamma, \leq \frac{1}{2}n_{\Gamma} - 1)$, so $V(\Gamma, \leq \frac{1}{2}n_{\Gamma} - 1) \geq \frac{1}{2}n_{\Gamma}$ contrary to $V(\Gamma, \geq \frac{1}{2}n_{\Gamma}) \geq \frac{1}{2}n_{\Gamma} + 1$. This proves Theorem 2 for k = 3 and even $n_{\Gamma} \geq 6$.

PROOF OF THEOREM 2 FOR k=4 AND $n_{\Gamma}=5$. In this case $n_{\Gamma}=2k-3$, so $\Gamma=\langle 5 \rangle$ (see Note 2 after Theorem 1).

PROOF OF THEOREM 2 FOR k=4 and $n_{\Gamma}=6$. In this case $n_{\Gamma}(k-2)/(k-1)=4$, so at least one vertex has valency 5 and at least five have valency ≥ 4 . Let a denote a vertex having valency 5 in Γ . Then $V(\Gamma_a, \geq 3) \geq 4$, so by Theorem 2 with k=3 and $n_{\Gamma}=5$, $\Gamma_a \supset \langle 3,2 \rangle$. Adding a we have that $\Gamma \supset \langle 4,2 \rangle$.

The rest of the proof of Theorem 2 will require the following two results:

(11) Let \(\P\) denote a graph with the property that

$$V\!\left(\varPsi, \geqq n_{\varPsi}(k'-2)/(k'-1)\right) > n_{\varPsi}(k'-2)/(k'-1) \ , \label{eq:power_power}$$

where $n_{\Psi} \ge k' \ge 3$, and let b denote a vertex of valency $\ge n_{\Psi}(k'-2)/(k'-1)$. If $x \in \mathscr{V}_b$ and $v(x, \Psi) = v + n_{\Psi}(k'-2)/(k'-1)$, then

$$v(x, \Psi_h) \ge \nu + n_{\Psi_h}(k'-3)/(k'-2)$$
.

For clearly

$$v(x, \Psi_b) \, \geq \, v(x, \Psi) - (n_{\Psi} - n_{\Psi_b}) \, = \, v - n_{\Psi}/(k'-1) + n_{\Psi_b} \; .$$

Also

$$n_{\Psi_b} \ge n_{\Psi}(k'-2)/(k'-1)$$
, so $n_{\Psi}/(k'-1) \le n_{\Psi_b}/(k'-2)$.

Consequently

$$v(x, \Psi_b) \ge v + n_{\Psi_b}(k'-3)/(k'-2)$$
.

(12)
$$V(\Psi_b, \ge n_{\Psi_b}(k'-3)/(k'-2)) > n_{\Psi_b}(k'-3)/(k'-2)$$
. For by (11) with $\nu = 0$

$$\mathscr{V}\big(\varPsi_b, \geqq n_{\varPsi_b}(k'-3)/(k'-2)\big) \leqq \mathscr{V}_b \cap \mathscr{V}\big(\varPsi, \geqq n_{\varPsi}(k'-2)/(k'-1)\big) \ .$$

Now

$$\begin{split} |\mathscr{V}_b \cap \mathscr{V} \big(\varPsi, & \geq n_{\varPsi}(k'-2)/(k'-1) \big) | \geq n_{\varPsi_b} + V \big(\varPsi, \geq n_{\varPsi}(k'-2)/(k'-1) \big) - n_{\varPsi} \\ & > n_{\varPsi_b} - n_{\varPsi}/(k'-1) \\ & \geq n_{\varPsi_b}(k'-3)/(k'-2) \; . \end{split}$$

PROOF OF THEOREM 2 FOR k=4 AND $n_{\Gamma} \ge 7$. Let a denote a vertex having valency $> n_{\Gamma}(k-2)/(k-1)$ in Γ , and let b denote a vertex of valency $\ge n_{\Gamma}(k-2)/(k-1)$ joined to a. (By Theorem 1 a is joined to vertices of valency $\ge n_{\Gamma}(k-2)/(k-1)$.) Clearly $n_{\Gamma}(k-2)/(k-1) > 4$, so

(13)
$$n_{\Gamma_h} \ge 5$$
.

By (11) with k'=4

(14) $v(a, \Gamma_b) > \frac{1}{2} n_{\Gamma_b}$.

By (12) with k'=4

 $(15) \ V(\Gamma_b, \textstyle \geq \frac{1}{2} n_{\Gamma_b}) > \textstyle \frac{1}{2} n_{\Gamma_b}.$

By (13), (14), (15) and Theorem 2 with k=3, we get $\Gamma_b \supseteq \langle 3, 2 \rangle$. Adding b we have that $\Gamma \supset \langle 4, 2 \rangle$.

PROOF OF THEOREM 2 FOR $k \ge 5$ by induction over k. Suppose that $k=k' \ge 5$ and that Theorem 2 is true if k=k'-1. Let Γ be a graph which satisfies the conditions of Theorem 2 with k=k'. Let a denote a vertex having valency $> n_{\Gamma}(k'-2)/(k'-1)$ in Γ , and let b denote a vertex of valency $\ge n_{\Gamma}(k'-2)/(k'-1)$ joined to a (by Theorem 1, a is joined to vertices of valency $\ge n_{\Gamma}(k'-2)/(k'-1)$).

(16)
$$n_{\Gamma_h} \geq k'$$
.

For

$$n_{\Gamma_h} \ge n_{\Gamma}(k'-2)/(k'-1) \ge (k'+1)(k'-2)/(k'-1) = k'-2/(k'-1)$$
,

and $k' \ge 5$.

(17)
$$v(a, \Gamma_b) > n_{\Gamma_b}(k'-3)/(k'-2)$$

by (11), and

(18) $V(\Gamma_b, \ge n_{\Gamma_b}(k'-3)/(k'-2)) > n_{\Gamma_b}(k'-3)/(k'-2)$

by (12). By (16), (17) and (18) Γ_b satisfies the conditions of Theorem 2 with $k = k' - 1 \ge 4$, therefore $\Gamma_b \supset \langle k' - 1, 2 \rangle$ by the induction hypothesis. Adding b we have that $\Gamma \supset \langle k', 2 \rangle$.

Thus, Theorem 2 is true for $k=k'\geq 5$ if it is true for k=k'-1. The theorem has been proved for k=3 and for k=4, so it is true generally.

Remarks. Let the graph Ω be defined as follows:

$$\mathscr{V}(\Omega) = \{a_1, \dots, a_{\nu-1}, b_1, \dots, b_{\nu+1}\},\,$$

where $\gamma \ge 2$, and

$$\mathscr{E}(\Omega) = \{(a_i, b_i), (a_1, b_{\nu+1}), (b_{\nu}, b_{\nu+1})\}, \quad i = 1, \dots, \gamma - 1, \ j = 1, \dots, \gamma,$$

 $v(a_1,\Omega) = \frac{1}{2}n_{\Omega} + 1$, and $V(\Omega, \geq \frac{1}{2}n_{\Omega}) = \frac{1}{2}n_{\Omega}$, but $\Omega \not \equiv \langle 3, 2 \rangle$. This example shows that in Theorem 1 with $\kappa = 1$ the existence of an $\langle l \rangle \Delta$ such that

must be stipulated, if only

$$\sum_{x\in\mathscr{V}(\varDelta)}v(x,\varGamma)\,=\,ln_{\varGamma}(k-2)/(k-1)+1$$

holds (for one or more $\langle l \rangle$ -s) then Γ need not contain a $\langle k, 2 \rangle$ as a subgraph at all (in our example Ω take $\Delta = a_1$). The above example also shows that in Theorem 2

$$V(\varGamma, \ge n_\varGamma(k-2)/(k-1)\big) \, > \, n_\varGamma(k-2)/(k-1)$$

must be stipulated; if = holds instead of >, then Γ need not contain a $\langle k, 2 \rangle$ as a subgraph.

REFERENCES

- G. A. Dirac, Extensions of Turán's theorem on graphs, Acta Math. Acad. Sci. Hungar., to appear.
- P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436-452.
- 3. P. Turán, On the theory of graphs, Colloquium Math. 3 (1954), 19-30.
- K. Zarankiewicz, Sur les relations symétriques dans l'ensemble fini, Colloquium Math. 1 (1947), 10-14.

UNIVERSITY OF HAMBURG, GERMANY