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ON THE PERMANENT OF A BISTOCHASTIC MATRIX

HELGE TVERBERG

1.

For any (n,n)-matrix 4= {a,}, the permanent, per(4), is defined by
(1) per(A) = Y ay;, a9, ...y, »
where the sum is extended over all permutations (jy,. . .,j,) of (1,...,n).

A is said to be bistochastic if the conditions

n n
(2) a; = 0, Zaﬁ =1, Zaﬁ =1, ,j=1...,m,
J=1 =1

are fulfilled.

Let 2, denote the set of all bistochastic matrices of order ». It is
often identified with a set of points in n2-dimensional space, by means
of the correspondence

A o (011,019, - - -, Wpy) -

As (2) implies a;;=1, 4,j=1,...,n, it is seen that 2, is a closed and
bounded subset of n?-space, and there thus exists, by continuity,

A, , € 2, such that
per(4, ,) = P, = inf{per(4) |4 Q,}.

Konig [1] proved that 4 € 2, = per(4)>0. Thus P, =per(4, ,)>0.
Van der Waerden [4] raised the problem, which has not yet beensolved,
of determining P,. Clearly P,=1!/11; it is easy to see that P,=2!/22;
and it was proved by Marcus and Newman [2] that P;=3!/33. The con-
jecture in [4] was that P,=n!/n*=per(Y,), where ¥, ={n"'} is the
matrix whose entries are all 1/n. It was proved in [2] that P,=>
(n?—mn+ 1)~ and it was also proved that if P, is assumed by a matrix 4
having only positive elements, then A=Y,. In [3], Marcus and Newman
proved that if A€, is symmetric and positive semi-definite, then
A+Y, = per(A)>n!/n®. The contents of the present paper are as
follows.

We first transform the problem into a discrete one, concerning k-ma-
trices. A k-matrix is an (n,n)-matrix, having non-negative integers as
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elements, for which the row- and column-sums all have the value kn,
where k is an integer. In Section 2 we prove a theorem that asserts the
possibility of dividing any k-matrix in t almost equal 1-matrices, the
differences being only those which result from the fact that not all
integers are divisible by k. By means of this theorem we formulate in
Section 3 a conjecture which is a little stronger than the one given in [4].
This conjecture has the interesting feature that there exists a very ex-
plicit decision procedure for it. In Section 4 we describe a combinatorial
approach to the discrete version of our problem, stressing the interpreta-
tion of sums of products of non-negative integers as cardinal numbers
of unions of product-sets. In Section 5 we introduce the function per;(4)
which is, by definition, the sum of the I’th order subpermanents of 4.
Van der Waerdens conjecture on per,(A4) extends in a natural way to
per;(A4), and so does the combinatorial approach to his conjecture. The
purpose of Section 5 is to try out this approach on the case =2, in order
to learn something about what ought to be done when ! > 2. In Section 6
the result obtained in Section 5, and the corresponding result for =3,
are proved in another way.

The reader may be interested in having a proof of Koénig’s result, as
this is the real basis of the problem treated here. Such a proof comes out
as a by-product of our proof of the theorem on k-matrices.

2.

If A€, is given, we can, by making a small “correction”, obtain
A’ € 2,, such that A" has only rational elements and is as close to 4
as we wish. Assume that a,, > 0. We correct the irrational a;; for which
i <mn, j<n by subtracting positive numbers. The elements on the right
and lower edge (except a,,) must then be corrected by adding non-
negative numbers so as to get the correct value of the row- and column-
sums, and by making the first corrections small enough, o', , will be >0
and A’ will be as close to 4 as we wish. By continuity we find that it is
sufficient to consider rational matrices if we want to prove that per(4)=
per(Y,) for A Q,. As per(4) is a homogeneous polynomial in the a;,
this inequality is equivalent to per(knA)z=per(kn¥,) for any positive
integer k. If A is rational, we let k£ be a common denominator of the
fractions occuring, and we thus see that it is sufficient to consider
k-matrices.

Let us call a 1-matrix AV an admissible component of a k-matrix 4
if the conditions

(3) [k tay] < ay;® < klay+1, j=1,...,n,



ON THE PERMANENT OF A BISTOCHASTIC MATRIX 27

are fulfilled. If a;=0 (modk), the only possible value for a;® is then
k-'a;;, while otherwise there are two possible values. We shall make
some use of the following

THEOREM. A k-matriz can always be written as a sum of k admissible
components.

It is convenient to prove first the
Lemma. A k-matriz has at least one admissible component.

Proor. If all elements of 4 are =0 (mod k), the matrix {k—1a,;} is the
only admissible component of 4. Let N(A4) denote the number of elements
of A which are =0 (modk). Then the case N(4)=0 is just covered, and
we can proceed by induction on N(4). If N(4)>0, we can find a se-
quence of elements a,;==0 (modk), the corresponding sequence of pairs
of indices being as follows:

(il’j1)> (il’jz)’ (i2’j2)’ (i27j3)7 (7:3’.7.3)" AR

As no row, or column, of 4 can have only one element =0 (modk), we
can assume that ¢, ., +%,, jmi1FJm- We conclude that for some s<t,
u<v, i,=1 and j,=j,. Choosing the differences {—s and v—u as small
as possible and assuming that ¢t —s<v—wu, s=1 (these restrictions are
inessential), we conclude further that in the sequence

(4) L BRI N )

1727 iafe? Tigdar ¢ itdy 2

no element occurs twice. Let r be the least and R the greatest of the
residues modk of the elements in (4), and let g=inf(r,k— R). Then
O0<p<k. If p=r we choose an element from (4) which is =p (modk),
subtract ¢ from that element, add p to its neighbours in (4), subtract o
from its second neighbours etc. If p=+r we choose an element
= —p (modk), add ¢ to that element, subtract ¢ from its neighbours in
(4) etc. In both cases, leaving unchanged the elements which do not
belong to (4), we arrive at a new k-matrix A’. At least one element of 4’
is =0 (mod#k) while the corresponding element of A4 is %0 (modk), and,
furthermore, a;;'==0 (modk) = a;;=0 (midk). Thus N(4')<N(A4) and
by the hypothesis of induction, A’ has an admissible component 4®,
If a;;=0 (modk), then a;/' =a,;, and a;;V=k1a;/'=k1ay; If a;=ak+0,
0<b<k, and a; +a;, then
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and accordingly a<a;¥<a+1. Thus AY is an admissible component
of 4.

The theorem, which is obviously true for k=1, is now proved by
induction on k. Let k> 1, and let AD be an admissible component of 4.
Put 4"=A4-A4Y. We find, using (3), that the elements of A’ are non-
negative, and hence A" is a (k—1)-matrix which, by the hypothesis of
induction, can be written as a sum A®4 ... + A® of admissible com-
ponents of A”’. We must finally check that A®, say, is also an admissible
component of 4. Let a;;=ak+b, 0=sb<k. If >0, then a<a;Y<a+1
and

a(k—1)

IA

< a(k—1)+b—1
=ak+b—(a+1) £ 0 £ ak+b—a
= a(k—1)+b < (a+1)(k—1).

Thus e <a;P<a+1. If b=0, then a;V=a, a;;/'=(k—1)a and a;@=a.
Thus A® is really an admissible component of 4, and the proof of the
theorem is complete.

Now, let A be a bistochastic matrix. We see that no row (or column)
of A can have exactly one element which lies strictly between 0 and 1.
Thus, if A4 has got at least one element different from 0 and 1, we can
repeat the reasoning that led to the sequence (4), and obtain a sequence
like (4), having only positive elements. If g is the least one of these ele-
ments, we can subtract and add p, alternatingly, and obtain a new
bistochastic matrix A’. A’ has all the zeros of 4, and in addition at
least one more (=g¢—yp). If per(4)=0, then per(4’)=0. If A’ has at
least one element different from 0 and 1, we can repeat the procedure,
and obtain A", If per(4)=0, then per(4”’)=0. Continuing like that,
we must finally arrive at a bistochastic matrix with n%—n zeros and =»
ones, a so-called permutation matrix. But the permanent of such a
matrix is 1. The assumption per(4)=0 thus leads to a contradiction
and we have proved Konig’s result, as promised in the introduction.

In view of the close connection between Konig’s and our own theo-
rem (referred to as I and II respectively), that has just been revealed,
it is tempting to try do deduce II from I. In fact, by I, we can con-
clude that, given a k-matrix, there exists a permutation matrix P,
such that 4—P, >0 in all places. As A—P, is (kn—1) times a bistoch-
astic matrix, I shows again the existence of a permutation matrix P,
such that A—P;—P,>0 in all places. Continuing like that we get
A=P,+...+P,,. But I can not see how the P’s can be put together
n by n so as to give k admissible components of 4.
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Let P and @ be polynomials in #,,%,,...,2;. Then P 2@ is sometimes
defined as meaning that each coefficient of P is = the corresponding
coefficient of . Let A=AV 4+ AP+ . + A® be an admissible decom-
position of the k-matrix A. Letting = have the meaning described

above, we make the following
CONJECTURE. per (2,4 + ... +x,A®) 2 per((x;+ ... +x,)n¥,).

As before, Y, ={n-1}. It is seen that this conjecture is stronger than
that of van der Waerden; put x,=...=x,=1. The conjecture may be
found a little unmotivated at this point. It is based on the considera-
tions of the next two sections, but it is placed here, as it is only dependent
on our theorem for its formulation.

Let n be given and assume that the conjecture has been found to hold
for k<n. Let k>mn, and let us consider the two coefficients of a mono-
mial M.

As the polynomials in question are of degree n, not more than n
variables can occur in M, and it is no restriction to assume that
M=x".. .2, The two coefficients of M are not affected if we put
Zpy1=...=%,=0, and so we can look at them in the polynomials
per(z A0+ .. +x,4,™) and per((®m +ay+ ... +x,)nY,). But these
polynomials are those of the conjecture, in the case k=mn, A=
AV 4 .+ A™ (note that AV + ... +A™ is an admissible decomposition
of AV ... +A™, By our assumption, the coefficient of M to the left
is = the one to the right, and we are through.

Thus the conjecture needs only to be verified for k<n. It would be
easy to give an explicit bound for the necessary amount of calculations,
but we shall not do so, as our observation is probably only of theoretical
interest.

4.

Let S be a collection of kn? objects, let A= {a;;} be a k-matrix and let
D(8,A) be a distribution of § in n? boxes B,; such that the box B;; con-
tains a;; objects. Consider a subset o of S, containing n objects, belonging
to By;,.-»Bis. H (i,...,8,) and (jy,...,J,) are permutations of
(1,...,n), we say that ¢ is a proper n-tuple. Let C’n(D(S,A)) denote the
set whose elements are the proper n-tuples. As one gets a,;ay;,...a

niy
proper n-tuples by picking one object from each of the boxes By, ,. .., B,;
(provided (iy,...,i,) is a permutation of (1,...,n)), it is seen that the

cardinal number of C,(D(S,4)), |C.(D(S,4))|, is given by per(A4). We
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want to prove that per(knY,)=<per(4), that is, ]On(D'(S',knY,L))I <
IO'n(D”(S”,A))I, when D’ and D" are any distributions associated with
knY, and A. D" and D" can be chosen in many ways, and we may hope
that by making the proper choice, we can prove the inequality by con-
structing an injective function

i Co(D'(S',knY,)) ~ C,(D"(8",4)

(injective means that x =y = ¢(x) +@(y)). It is natural tolet S'=8" =4,
as both of these sets are subjected to the sole condition of having kn?
elements, and we shall, in what follows, describe a way of making D"
dependent on D',

Let us start with the case k=1. We let S, consist of objects «;,
i,j=1,...,n, and D(8,,nY,) is obtained by placing the object «,; in B,;.
If A is a 1-matrix, and a;;=0, we move «,; from B;; to some B,; , where
J1 is chosen such that a; >1. As 37 ,a,=n, we can arrange these
moves so that if a;; > 1, exactly a;;—1 objects are moved into B,;. Thus,
after having done the moves, we have arrived at a distribution D(S,,4).
With it, we associate a certain permutation f: S, - S, having the
following properties: If « is placed in the same box under D(S,,4) as
under D(8y,nY,), f(x)=«. If « is moved from B,; to By; , f(«) is moved
from B, ; to B,; for some i;,j,. It is convenient in the last case to
think of f(x) as the object which must be removed from the j,’th column,
in order that « may be moved into that column. The possibility of
constructing an f as described is granted by the fact that the column
sums in 4 are the same as those in »Y, (namely z).

We now assume that for each 1l-matrix A4 a definite distribution
D(S,,4) and a corresponding permutation f: S, > S, have been con-
structed as described above. Choose for each k-matrix 4 a definite
representation AV + . .. +A® by admissible components. Make & copies
8y .., 8y of the set S, by putting S,={x;;*}. It is convenient to think
of the superindices as “colours’ put on the objects «;;. The distribution
D(Syu...u8,,knY,)=D(S,knY,) is now obtained by placing «;*® in
B,;. If the k-matrix A is given, and AV 4 ...+ A4® is the chosen
representation of A, we define D(S,4) by the rule: If « is placed in By
by D(S,,A¥), then «f is placed in B; by D(S,4). A permutation
f: 8 > 8 is defined by: f(«®)=(f,(x))*. Here f, denotes the permutation
on S, which is associated with D(S,, A®).

In the next section we shall need the following properties of f: § - S
The objects z and f(x) always have the same colour. The equation
f(x)==z holds if and only if z is not moved by the construction of D(S,A4)
from D(8,knY,). We shall also need a certain property of this construc-
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tion, which is most simply stated as: A box does not at the same time
receive and give away objects. This is a consequence of (3). If an
object «;;® is moved from B;; to B,; under the transition from D(S,knY,)
to D(S,4), then a,®=0. But then, by (3), a;<k, and a;/=<1 for
t=1,...,k. But this again means that no object is moved to B;; under
any of the £ transitions D(S,,nY,) - D(S,,4%), and thus no object is
moved to B;; under the transition D(S,knY,) — D(S,4).

As we have now constructed everything we need, we shall simplify
the notation in what follows. Thus « is no longer an object in the auxiliary
set S, but an element of S=8;u... U8, and On(D(S,A)) is replaced by
C,(4). We shall also make use of two names of «, namely « and o'
according to whether we have D(knY,) or D(A) in mind. Thus “«’
belongs to the fifth column” means “By D(4), « is placed in a box B,;”.
The meaning of “x’ and « are always in the same row, while «" and f(«)
are always in the same column’ should then be clear. These two facts
are also among the ones that are important to keep in mind for the next
section.

Consider now («,f,...)e C, (knY,). If (o,f8,...) € C,(A), it feels
natural to put ¢(x,f8,...)=(«',p',...). But what is to be done if, say,
«' and § are in the same column, and thus («',8',...) ¢ C,(4)? Then
the permutation f seems to be our hope of rescue, because it points
to other candidates for ¢(x,f,...). The next section is devoted to trying
out this point of view on a simple analogue of our problem.

If AeQ, and 1=1=<n, then per,(4), the sum of the I’th order sub-
permanents of A4, is positive. In fact we know that, say, a;,as. . .a,, >0,
and this implies that at least (}) of the I’th order subpermanents of 4
are >0. In the previous sections we have discussed per(4)=rper,(4),
but we might just as well have treated per;(4) for some fixed value of {.
Especially we are led to the definition of Cj(4) when 4 is a k-matrix,
and to the question of finding an injective mapping ¢: C;(knY,) — C(A).
(Each element of C)(4) is a subset of S consisting of ! objects, no two
of which are placed in the same row or in the same column by D(4)).
We shall now treat the case =2, and we start by recommending the
reader to make his own illustrations while following the essentially
easy argument.

Let («,8) € Cy(knY,) and consider the sequence

(5) (.B), (&',8), (f(2), £(B)), (f(«)', F(BY), (£*(2), F¥B)), - - -
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Consider the statements “f"(x)’ and f7(8)" are in different columns” and
“fr(x) and f7(B) are in the same row”’, each of them concerning half of
the couples occurring in (5). The first one is true for r=wv—1, where
% (v) is the length of the cycle to which « () belongs in the permutation f.
This is so because f“-1(x)" (f“w-1(8)’) belongs to the same column as
=) (f*0(B)), but fo(x)=a (f*(B)=p), and « and f are in different
columns, as («,f) € Cy(kn¥,). Thus there is a first couple in (5) for which
the appropriate statement is true.

Consider first the case when this “first couple” is of the type (f7(«x)’,
f7(B)'), r=0. Then f7(x) and f(8) are in different rows, as (f7(x), f7(B))
precedes (f7(x)’, f7()") in (5). This implies that f7(x)" and f7()’ are in
different rows, and since they are also in different columns, we can put
(p(oc,ﬂ) :(fr((x)', fr(ﬂ)’)

If we look at an image element (y',6") obtained by this partial defini-
tion, we can find («, ) =¢@1(y’,d") by going backwards in (5), determining
the least ¢ = 0 for which f(y) and f~4d) are in different columns. Thus
@ is injective so far. We note that f-1(y)" and f-1(J)’ are never in the
same box, while, as we shall see shortly, for the image elements (y’,§’)
obtained in the case when the “first couple” is of the type (f7(x), f7(8)),
it will be true that f-1(y)" and f-1(6)" are always in the same box.

This second case is conveniently divided in two subcases. The first
one occurs when, say, f(¢)=«, but f(f)+p. Then (5) is (x,6), («',5'),
(. f(B), (&', f(B)),- ., and, as («',§’) is supposed not to be the “first
couple”, &’ (and «) and g’ are in the same column. This column is then
different from the one to which f(8)" belongs (as f(B) + B), and accordingly
«' and f(B) are in different columns. As («’, f(8)’) is supposed not to
be the “first couple”, (x, f(f)) must be it, and so « and f(p) are in the
same row (and in the same box). An object ¢ is now defined by : ¢ belongs
to the same box as 8 and has the same colour as x. We put ¢(x,8)=
(¢, f(B)"). As p and f(B) are in different rows, & and f(8)" will also be.
As to the columns, it is to be noted that f(¢)=¢ because § has moved
into that box to which ¢ belongs. Thus f(8) moves out from the same
column in which ¢ remains; thus ¢ and f(8)’ are in different columns.

If (y',8') is arrived at by the definition just given, then f-1(y)’ and
f7Y(8)" are in the same box. One of the objects, say §, is moving, while
the other is not. If ¢(x,8)=(y’,d’), then §=f-1(6) while « is the object
which belongs to the same box as 6 and has the same colour as y (we have
denoted by f the moving object in the couple ¢~1(y’,8")). Thus g is still
injective.

The second subcase is when f(«)=+«, f(f)+ 8, (now all possibilities are
exhausted, as f(«x)=«, f(8)=p implies that («’,p’) is the “first couple”).
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Then f-}(«)’ and fr-1(8)’ are in the same column, but in different rows.
We choose an arbitrary one of the two objects « and 8, say «, and put

@(x,8)=(f"(x)",¢'), where ¢ is the object which is in the same box as
J7Y«)" and has the same colour as 8. It is clear that f7(x)’ and &’ are in
d]fferent rows, and they are also in different columns by the same
reasoning as that given in the preceding case. The reconstruction of
the “first couple” is also made in a similar way as in that case, and as
the “first couple” in (5) determines («,f) uniquely, we are through with
the verification of the injectivity of ¢ as soon as we note that also in
this second subcase f"l(f'(oc))' and f-1(¢)’ are in the same box.

Thus we have obtained what we wanted; the combinatorial approach
works nicely in the case [=2. The construction of ¢ may seem to
be a complicated process, but then it must be taken into account
that our problem probably is a difficult one. (This belief is based on
statements by Erdds and van der Waerden, on the consideration of
Marcus’ and Newman’s work on the problem and on the author’s own
experience.)

It is interesting to notice that if (x,f) consists of, say, one blue and
one green object, then we never looked at anything but blue and green
objects, and, especially, ¢(«, ) consists of one blue and one green object.
If A+ ... +A4% is the decomposition of A used for constructing D(A4),
this observation can be expressed by the inequality

pery((@y+ . . . +2,)nY,) < pery (2, AV+ ... 42, A®)

in the sense of Section 3. The coefficient of x,x; to the right is the same
as the number of couples in C,(A4) consisting of one object of colour no. ¢
and one of colour no.j. A similar interpretation is valid for the coeffi-
cients to the left, and for the coefficients of ;2 etc. The conjecture given
in Section 3 is an extrapolation from the inequality above, based on the
hope that the considerations in this section will turn out to be the clue
to the solution of our problem also when I> 2.

6.
We shall now prove

(6) Ae, & A+Y, & 1<l<4 = per(4)>per(Y,).
By definition, we have
(7) 3'Per3(A) = zapqa’rsatw PFrEtEp gFsFukq.

Keeping p, ¢, r, s fixed and summing the last factor over ¢ and u, we get

Math. 8cand. 12. — 3
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Eatu = z (l_atq_ats) = n_z—(l'—apq_arq)—(l'—aps_a’rs)
=N—4+Ap,+ 0, +0,+a,;.

Thus (7) splits into five sums, of which the first one is 2(n— 4) per,(4).
We have

2pery(A) = 3 Gpelps = D ay(l—ay,)
pEr, ks p*r

= 2 ap(n—1-(1 —ayy))
=(n—2) p+ D ay% = (n—2)n+0,.
The second sum is
D Oyt by = 2 api(l—ay,)
P*T,q*s pET

=Y a,2(n—2+a,) = (n—2),+0; .
The third one is

D Opglrslyg = 2 Gpglpg(l—0yp)
pET, q¥s pET

=Y (l—a,)a,,(l—a,) = n—20,+0;.

By symmetry, the fourth (fifth) sum equals the third (second) one. Thus

(8) 2 pery(4) = (n—2)n+o0,,

(9) 6 perg(4) = n®—6n2+10n+3(n—4)o,+ 405 .

Now if r>1, the sum x,"+x,"+ ... +2,” has a single minimum in the
domain ; +Z,+ ... +x,=1, (%;,%,,...,2,)=(0,0,...,0). The minimum
is assumed as the domain is closed and bounded, and it is assumed for
Zy=%y=...=x,=1[n. Thisis an immediate consequence of the fact that

0<z=zc & z+ic = a"+(c—2)" > 2(}c)".

We then see that (8) and (9) imply (6) if » =4, because g, and o, each
is a sum of » sums of the type just treated. If n=3, it suffices to remark
that one finds, using Lagrange multipliers, that 4(x,®+ 2, +x%) —
3(x,2+ 2,2 +2,%) has its only minimum in the domain x;+x,+2,=1,
(@4, %5,24) 2(0,0,0), for ;=x,=x;=}. Thus we have verified van der
Waerden’s conjecture in the case n =3, by a method completely different
from the one used by Marcus and Newman in [2].

One can find formulae similar to (8) and (9) for per;(4), I > 3, but the
simplicity seems to disappear, mainly because other terms than pure
power sums occur.
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