REMOVABLE SINGULARITIES
OF CONTINUOUS HARMONIC FUNCTIONS IN \mathbb{R}^m

LENNART CARLESON

1.

Let E be a compact set of m-dimensional Euclidean space \mathbb{R}^m. If $h(x)$ is harmonic and bounded in a neighbourhood of E, and if the $(m-2)$-capacity of E vanishes then $u(x)$ can be extended as a harmonic function to E. We say that E is removable for the class of bounded harmonic functions. On the other hand, if E is a smooth closed surface, that is a $(m-1)$-dimensional set, there exist harmonic functions with arbitrarily high smoothness, which cannot be extended to E. Our aim here is to prove a theorem which connects the above mentioned two results.

Let D be a domain bounded by a smooth outer surface Γ and a compact set E and denote by H_α the class of harmonic functions in D which satisfy a Hölder condition of order α, $0 < \alpha < 1$, in D:

$$|u(x) - u(x')| \leq \text{Const.} |x - x'|^\alpha, \quad x, x' \in D.$$

(1.1)

The set E is said to have β-dimensional measure zero, $0 < \beta < m$, if E can be covered by open spheres of radii r_ϵ such that $\sum r_\epsilon^\beta$ is arbitrarily small. The following theorem holds.

Theorem. E is removable for the class H_α if and only if E has $(m-2+\alpha)$-dimensional measure zero.

2.

We first assume the $(m-2+\alpha)$-dimensional measure does not vanish. It is then well-known (see Frostman [1]) that there is a distribution μ of unit mass on E such that

$$\mu(S) \leq C r^{m-2+\alpha}$$

for all spheres S where r denotes the radius of S. We shall prove that

$$u(x) = \int_E \frac{d\mu(y)}{|x - y|^{m-2}}$$

Received April 19, 1963.
satisfies (1.1). We define \(\mu(r, x) = \mu(\{y \mid |y - x| < r\}) \) and find for \(x, x' \in D, |x - x'| = \delta, \)

\[
u(x) - u(x') = \int_0^\infty r^{2-m} d\mu(r, x) - \int_0^\infty r^{2-m} d\mu(r, x')
\]

\[
= (m - 2) \int_0^\infty (\mu(r, x) - \mu(r, x')) r^{1-m} dr
\]

\[
\leq C_1 \int_0^{2\delta} r^{m-2+\alpha} r^{1-m} dr + (m - 2) \int_0^\infty (\mu(r, x) - \mu(r - \delta, x)) r^{1-m} dr
\]

\[
< C_2 \delta^\alpha + (m - 2) \int_0^\infty (\mu(r, x) r^{1-m} - (r + \delta)^{1-m}) dr
\]

\[
< C_2 \delta^\alpha + C_3 \int_0^{\frac{m-2+\alpha}{1-m}} \frac{\delta}{r^m} dr = C_4 \delta^\alpha.
\]

Since \(x \) and \(x' \) can be interchanged we have proved (1.1).

3.

We now assume that the \((m - 2 + \alpha)\)-dimensional measure of \(E \) vanishes and that \(u(x) \) satisfies (1.1). Let \(u_1(x) \) be the harmonic function inside \(\Gamma \) which is equal to \(u(x) \) on \(\Gamma \). If we define \(v(x) = u(x) - u_1(x) \) then \(v(x) = 0 \) on \(\Gamma \) and our assertion is that \(v(x) \equiv 0 \).

We can cover \(E \) by a finite number of closed spheres \(S_r \),

\[
S_r : \quad |x - x_r| \leq r_v
\]

such that

\[
\sum r_v^{m-2+\alpha} \leq \varepsilon.
\]

We assume that \(\varepsilon \) has its smallest value when the number of spheres is \(\leq n \). In the proof we shall also use the expanded spheres

\[
S_{r_v}(t) : \quad |x - x_r| \leq r_v t, \quad 1 \leq t \leq 3.
\]

For \(t > 1 \) every point of \(E \) is strictly inside \(\bigcup S_{r_v}(t) = \Sigma(t) \). The part of \(\partial \Sigma(t) \) which is boundary of the unbounded component of the complement of \(\Sigma(t) \) is denoted \(\sigma(t) = \bigcup \sigma_v(t) \), where \(\sigma_v(t) \) is \(\sigma(t) \cap \partial S_{r_v}(t) \). Clearly \(\sigma(t) \) does not meet \(E \).

By Green's formula we have, \(t > 1 \),
(3.1) \[\psi(t) = \int_{D-\Sigma(t)} |\nabla v|^2 \, dx = \int_{\sigma(t)} v \frac{\partial v}{\partial n} \, d\sigma = \frac{1}{2} \int_{\sigma(t)} \frac{\partial v^2}{\partial n} \, d\sigma. \]

If \(v \equiv \text{constant}, \) \(\psi(t) \) is \(\geq \text{const.} > 0 \) in \(1 < t \leq 3, \) if \(\varepsilon \) is small enough. We rewrite (3.1) introducing the unit sphere \(U. \) Points on \(U \) are denoted \(\xi \) and its area element \(dA_\xi. \) The part of \(U \) for which \(x_\nu + tr_\nu \xi \in \sigma_\nu(t) \) is called \(a_\nu(t). \) Integrating (3.1) and using these notations we find

(3.2) \[-2 \sum_{n} r_\nu^{m-2} \int_{a_\nu(t)} \int_0^t \frac{\partial}{\partial t} v^2(x_\nu + tr_\nu \xi) \, dA_\xi. \]

In each term on the right of (3.2) we shall now interchange the order of integration. We must then study for \(\xi \) fixed for which values of \(t \) a certain ray \(x_\nu + tr_\nu \xi \) belongs to \(\sigma_\nu(t). \) We distinguish four cases, the first two of which are trivial.

(a) \(x_\nu + tr_\nu \xi \in \sigma_\nu(t), \ 2 \leq t \leq 3. \) For such a \(\xi \) we get 0 as contribution to (3.2) from the \(\nu \)th term.

(b) \(x_\nu + tr_\nu \xi \in \sigma_\nu(t), \ 2 \leq t \leq 3. \) We can evaluate the \(t \)-integration and get the contribution \(v^2(x_\nu + 3r_\nu \xi) - v^2(x_\nu + 2r_\nu \xi) = O(r_\nu^\alpha). \)

(c) The remaining possibility is: \(x_\nu + tr_\nu \xi \in \sigma_\nu(t), \ \tau_\nu \leq t \leq \tau_\nu', \ i = 0, 1, 2, \ldots, p, \ 2 \leq \tau_0 < \tau_0' < \tau_1 < \ldots < \tau_p' \leq 3. \) For every \(\tau_\nu', \ i < p, \) there is an index \(\mu + \nu \) so that \(x_\nu + tr_\nu \tau_\nu \xi \in \sigma_\nu(t_\nu'). \) We here have two essentially different cases.

(c1) \(r_\mu \geq r_\nu. \) If we consider the two-dimensional plane containing \(x_\nu, x_\mu \) and \(x = x_\nu + r_\nu \tau_\nu \xi, \) we see that \(x' = x_\nu + tr_\nu \xi, \ t > \tau_\nu', \) must be interior to \(S_\mu(t) \) and hence \(x_\nu + tr_\nu \xi \in \sigma_\nu(t), \ t > \tau_\nu'. \) (c1) can thus occur only if \(i = p. \)

(c2) We now assume \(i < p \) and \(r_\mu \geq r_\nu. \) We first observe that \(x_\nu + tr_\nu \xi, \ 2 \leq t \leq 3, \) belongs to a certain sphere \(S_\mu(t) \) in a \(t \)-interval and that its length is \(\leq 6r_\mu r_\nu^{-1}. \) We now consider an interval \((\tau_\nu', \tau_{\nu+1}). \) The corresponding spheres are \(S_\mu(t), \ \mu = \mu_1, \ldots, \mu_k. \) We can write, if \(\varphi(t) = v^2(x_\nu + tr_\nu \xi), \)

(3.3) \[\varphi(\tau_{\nu+1}) - \varphi(\tau_{\nu}) = \sum_{j=1}^{k} (\varphi(s_{j+1}) - \varphi(s_j)), \]

where each pair \(s_j, s_{j+1} \) belongs to one \(S_\mu(3). \) Hence

(3.4) \[|\varphi(\tau_{\nu+1}) - \varphi(\tau_{\nu})| \leq \sum_{j=1}^{k} C r_\nu^\alpha |s_{j+1} - s_j|^\alpha \leq C 6^\alpha \sum_{j=1}^{k} r_\mu^\alpha, \]

We now evaluate the \(t \)-integral of the \(\nu \)th term in (3.2) and find

\[\sum_{\nu=0}^{p} (\varphi(\tau_{\nu}) - \varphi(\tau_{\nu})). \]
If we add the relations (3.3) for $i = 0, 1, \ldots, p-1$, and use (3.4) we get the estimate
\begin{equation}
O(r_v^\alpha) + O(\Sigma^1 r_\mu^\alpha),
\end{equation}
where Σ^1 indicates that the summation is extended over those μ for which $x_\mu + r_\mu t \xi$, $t \leq 3$, meets $S_\mu(3)$.

We consider the estimate (3.5) for different points $\xi \in U$. The area of U for which $x_\mu + r_\mu t \xi \in S_\mu(3)$ for some t is $O(r_\mu^{m-1} r_\nu^{1-m})$. The total νth term in (3.2) is thus
\begin{equation}
O(r_v^{m-2+\alpha}) + O(r_v^{-1} \Sigma^2 r_\mu^{m-1+\alpha}),
\end{equation}
where Σ^2 indicates summation over those μ for which $S_\mu(3) \cap S_\nu(3) \neq \emptyset$ and $r_\mu \leq r_\nu$. The last relations imply $S_\mu(1) \subset S_\nu(7)$. Since the covering by the spheres $S_\nu = S_\nu(1)$ was assumed to be minimal we have
\begin{equation*}
\Sigma^2 r_\mu^{m-2+\alpha} \leq 7^{m-2+\alpha} r_v^{m-2+\alpha}.
\end{equation*}

If we use this and $r_\mu \leq r_v$ in (3.6), we find that the νth term in (3.2) is $O(r_v^{m-2+\alpha})$ and so
\begin{equation*}
\int_2^3 \psi(t) t^{1-m} dt \leq \text{Const} \sum_1^n r_v^{m-2+\alpha} \leq \text{Const} \cdot \varepsilon.
\end{equation*}

Hence $\psi(t)$ cannot be uniformly positive and so $\nu(x) \equiv \text{constant}$, and then $\nu \equiv 0$, as was to be proved.

REFERENCE

UNIVERSITY OF UPPSALA, SWEDEN