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A THEOREM ON THE MINIMUM MODULUS OF
ENTIRE FUNCTIONS

BO KJELLBERG

1. Introduction.

Let f(z) be an entire function. We denote max|f(z)] and min|f(z)]
on |z|=r by M(r) and m(r), respectively. The order and lower order
are defined as limsup and liminf of loglog M(r)/logr as r - oo. Many
papers have been devoted to the problem of finding relations between
M(r) and m(r). Surveys of this subject have been given by Hayman [3]
and also by Goldberg and Ostrovskij [2]. As a refinement of previous
results by the author [6] we intend to prove the following theorem.

THEOREM. For each non-constant entire function f(z) and for each number
A satisfying 0 <A< 1 the following holds: Either

(1) logm(r) > coszd log M(r)

for certain arbitrarily large values of r, or, if (1) is not fulfilled, the limit
log M

(2) lim -8 pﬁ(ﬁ

exists and is positive or is infinite.

In the case of =1 the theorem has been proved by Heins [5]. In
the review of the paper [6] by the present author, Hayman [4] made a
conjecture (x=pf below) which together with the results in [6] consti-
tutes the above theorem.

2. Preliminary discussion.

To prove the theorem we shall suppose that (1) does not hold. Then
we have
(3) logm(r) = cosnd log M(r)

perhaps not for all » > 0 but in any case for all r27,=0. When m(r)=0
we still consider logm(r) as defined and having the value — ooc.

In [6] we have proved that the inequality (3) implies that (see [6,
Theorem I1])
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log M (r)

rl

(4) & = liminf

r—>00

>0.

Here “> 0" means that the limit is a positive number or + co.
Consider first the case when the limit is a positive number, i.e.

(5) 0<a<oo.

As has been observed in the last section of [6], the relations (3) and (5)
also imply that

log M
(6) f = limsup 8 7 (r) < oo
r—>00 r
In the remaining case we have
!
limint 2870 _
r—>00 r‘
Then
log M
(7 lim og M(r) = 400
roeo T

and the alternative (2) of the theorem is fulfilled. Thus the theorem
stated at the beginning will be proved if we can show that (3), (5) and (6)
imply that «=§.

To be exact, the paper [6] mentioned above contains nothing about
entire functions of order zero. In this well-known case, however, it is
true that logm(r) ~log M(r) for certain arbitrarily large values of r (cf.
Boas [1, Theorem 3.6.2]). Thus, for these functions the alternative (1)
is always fulfilled.

It would be convenient to have the inequality (3) satisfied not only
for r 2 r, but for =2 0. This can be achieved by dividing the function in
question by a constant C'>1. To determine C' we first observe that
log M (r) is continuous for r > 0 and that logm(r) is upper semi-continuous
for r2 0, i.e. for each real number g the set where logm(r) <g is an open
set. Thus

@(r) = logm(r)—cosxzA log M(r)
is upper semi-continuous for r>0. Further, as r - 0,
@(r) > (1 —cosznl) log|f(0)] .

This means that in some interval 0<r < § the function ¢(r) is continuous
if f(0)#0, upper semi-continuous if f(0)=0. The result is that ¢(r) is
upper semi-continuous for 7= 0. Suppose that a function f(z) does not
satisfy (3) for 7= 0 but only for r=7,>0. Then the upper semi-con-
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tinuity of ¢(r) implies that ¢(r) attains a positive maximum for 0 <r <r,,.
Denote this maximum by (1 —coszi)logC. Then

(8) @(r)— (1 —coszd) logC = log ﬁg—) — cosxA log JLICQ =0

holds for all »=0.

Later on it will also be a little more convenient for the proof if the
modulus of the entire function at the origin is less than one. If neces-
sary, we therefore take a somewhat larger value of C than is needed to
fulfil (8). Of course, dividing by a constant does not affect the values of «
and g in (5) and (6).

Summing up, we are going to consider an entire function f(z) satisfying
(5) and (6). These relations imply that f(z) is of order 4, where 0<1<1,
and of “very regular growth”’. Every function of order less than one can
be represented as an infinite product in the following way:

9) fle) = Az ﬁ (1-zfa,) ,

where A4 = 0 is a constant, p is a non-negative integer and a,,a,, . . .,a,, . . .
are the zeros outside the origin. We assume that the division, if neces-
sary, by a constant is already done so that (3) holds for all » > 0 and also
that

(10) If(0) < 1.
We then want to prove that «=g.

3. An integral inequality.

To begin with we perform some calculations valid for each entire
function f(z) of order g less than one. Such a function can be represented
as in (9). As usual we also form an auxiliary function f;(z) with real
and non-positive zeros:

(11) fie) = IAlz”fi(HZ/lanl)-

The maximum and minimum of |f;(z)] on |2|=r are denoted by M,(r)
and m,(r), just as M(r) and m(r) for f(z). Then for all » 2 0 we know that
(cf. Boas [1, 3.2])

(12) my(r) = |fi(=7)| £ m(r) £ M(r) £ fi(r) = My(r)

holds and also
(13) my(r) My(r) < m(r) M(r) .
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The function log|f,(2)| is harmonic in the plane cut along the negative
real axis. Like f(z), the function f(z) is also of order ¢ (cf. Boas [1,
Theorem 2.9.5]). The magnitude of log|f,(z)| is then small enough to
permit a representation of log|f,(z)| by means of its boundary values in
each half-plane where it is harmonic (cf. Boas [1, 6.5]). Considering the
upper half-plane we thus get at a point ¢y, y>0:

1
log fy(iy)| = ¥ f szlfyx)l
or
* logm,(r) +log M,
(14) tog y(iy)] =2 f ogm rli;f ") g

Because of the symmetry of f,(z) we have log|f;(—ty)|=log|fi(¢y)|. If
we then apply the representation formula in the right half-plane we
obtain for B>0

log |f1(e9)]
(15) log M,(R) = D d
2R dy Y oologml(r) +log M(r) dr
v+ R*n 2y y?
ydy

2R [
= na log M. dr | —— ot
2 J‘ { ogml(r) + 0og 1(7‘)} r ) (?/2 + R2)(y2 + /’-2)

_ gg xlogml(r)+logM1(r) logE i .
72 ; RZ—y2 r

By (12) we have
log M,(R) = log M(R)
and by (13)
logm,(r) +log M,(r) < logm(r)+logM(r)

If we apply these last inequalities and also divide by R* we obtain from
(15)

(16) dr,

log M(R) _ 2 7 logm(r) +log M(r) /r\* Rlog(R/r)
R? n20 ” (E) R2—r2

valid for entire functions of order less than one.
Let us also suppose that (3) holds for all > 0. Because the kernel
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function K(r, R) defined below is non-negative we then obtain from (16)
the following formula, fundamental for our proof:

[e0)

log M (R) log M(r)
= <]

(17) K(r,R) dr.

0

The expression for the kernel function K(r, R) is

(18) K(r,R) =

2(1 + coszA) ( r )‘ Rlog (B/r)

: o \B) mop

T

A residue calculation shows that

o0

(19) fK(r,R) dr = 1.

0

We have strict inequality in (17) because we have strict inequality in
(3) in certain intervals, for instance in the neighbourhood of the zeros

of f(z).

4. The final proof.

Let us consider an entire function f(z) satisfying (3) for all »> 0, (5),
(6), (9) and (10). We then have the integral inequality (17), which
provides the key to the solution of our problem (to show that «=p).

Because of (10) the function

log M
(20) yiry = 220

asr - 0. We may define its value as — oo for r=0. Then y(r) is continu-
ous for >0 and upper semi-continuous for r=0. Thus it attains a
maximum in each closed sub-interval of = 0. But y(r) does not attain
any largest value in the infinite interval r=0. To understand this,
suppose a largest value y, be attained at E,. Then (17) and (19) would
give the impossible relation y, <y, Consequently, it must be true that

(21) y(r) < B
for all r=0.
Let R, be a value of r so large that y(r) has a positive maximum b

in the interval (0,R;). Let R be a value of r in this interval where the
maximum is attained, i.e.

- — o0

(22) b = max y(r) = p(R) > 0, b<p.

0=r=Ry
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We also set
(23) a=y(R) > 0.

Because logM(r) is an increasing function, >0 yields a>0. Let us
define

(24) k = (afbyue .
In the interval kR, <r < R; we have
log M(r) *logM (B) _ a
@) v =B s (YR < Sy

Let us now return to the integral inequality (17). In the right-hand
side of (17) we use the following upper bounds of y(r) according to (22),
(25) and (21):

For 0 <r < kR, wehave o(r) <b.
For kR, < r < R, we have y(r) < (ab)t = b—(b—(ab)}).
For R, = r we have y(r) < f=0b+(f—0).

By choosing R as in (22) we then get from (17) that
(26) b < b f K(r,R)dr — (b—(ab)}) f K(r,R)dr + (B—D) f K(r,R) d

kR

Because of (19) we obtain

(27) (b—(ab)*)fK (r,R) dr < (B— b)jK r,R) dr .

kRy
We can choose arbitrarily large values of R, such that
o~ «, b~ f.

Let us now suppose that a<f. A rough estimation of the integrals
in (27) gives

Ry
2(1 1) [t logt

(28) j K(r,B) dr = 2L+ 00574) f Og d
kR

loge

> (1+cosmd)(1— k)———

and
2(1 + coszd) 1 1 loge

2 K(rR)d _ .
(29) Rf nB)dr < — k) |14 (1=2)logh] o3
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where
¢c=RR > 1/k .

It is now obvious that (27) contradicts (28) and (29) since we sup-
posed that « <f. Therefore « =f, and the theorem is proved.

After having read this paper in manuscript L. Carleson made a remark
concerning the conclusion in Section 4 above from the integral inequality
(17). The result can be obtained from a general theory of integral in-
equalities by Matts Essén. We find this very interesting and it has been
arranged so that a separate proof by Essén immediately follows in this
journal.
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