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ALGEBRAIC EXTENSIONS OF RELATIONAL SYSTEMS

BJARNI JONSSON
Introduction.

This paper is concerned with a class K of relational systems, subject
to two conditions of a rather general nature. In particular, these condi-
tions are satisfied if K is the class of all (commutative) fields. The notion
of an algebraic extension of a system in K is introduced, as well as several
other related notions, and a series of results are obtained that generalize
many of the basic theorems concerning algebraic field extensions.

Our first assumption concerning K is:

(I) K is the class of all models of a set of universal sentences.

It is well known that the class of all fields satisfies this condition, provided
we regard a field as a system with two binary operations, two distin-
guished elements, and two unary operations, defining 0! in any way
whatsoever, say 0-1=0. Throughout most of the paper we shall actually
assume, in place of (I), three simple conditions of a purely mathematical
nature:

(I;) Every system that is isomorphic to a member of K belongs to K.

(I,) Every system that ts a subsystem of a member of K belongs to K.

(I;) Every system that is the union of a non-empty directed family of mem-
bers of K belongs to K.

These conditions are easily seen to be consequences of (I). A fourth

condition,—also a consequence of (I), although this is somewhat less

obvious,—is introduced in Section 9. It is used only in the proofs of

two of our results, the transitivity of the relation of being an algebraic

extension, and the existence of algebraically closed algebraic extensions.
In addition to the conditions (I,) we assume:

(IT) K has the amalgamation property.

By this we mean that the following is true: If A, B, and B, are any systems
in K, and if f; and f, are isomorphisms of A into B, and B,, respectively,
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then there exist a system C in K and isomorphisms g, and g, of B, and B,,
respectively, into C, such that g,f,=g,f;. In the terminology of homo-
logical algebra this means that if in the diagram below the systems A4,
B, and B, in K and the monomorphisms f, and f, are given, then there
exist a system C in K and monomorphisms g, and g, such that the dia-
gram commutes.

1
A B,
fa g1
1 I
B C
2 Ja

It is not difficult to show that the class K of all fields has the amalgama-
tion property. It may be assumed that A is a subfield of both B, and
B,, and that both f, and f, are the identity automorphism of 4. There
then exist algebraically closed extensions C; and C, of B; and B,, such
that C, and C, have the same transcendence degree over A. From this
it follows that C; and C, are equivalent extensions of 4, and we can take
C to be either one of them.

The proof outlined above makes use of certain facts, concerning al-
gebraically closed algebraic extensions of fields, that are special cases
of results proved below, as well as of properties of purely transcendental
extensions that have no counterpart in the general development. It is
therefore of some interest to observe that it is possible to give a more
elementary proof that uses only some basic facts concerning simple
extensions. Such a proof will be given in Section 10.

It should be noted that, although many important classes K of rela-
tional systems satisfy the conditions (I) and (II), and the results presented
here therefore apply to them, these results will in many cases yield nothing
of interest. The reason for this is that our basic definition, the defini-
tion of an algebraic element, is very strong. Thus it will be shown in
Section 10 that for certain classes K, such as the class of all groups,
every member of K is algebraically closed.

It is to be hoped that some new and interesting applications will be
found, but this is not our object at the present. The fact that some of
the most beautiful results from classical algebra can be obtained in such
a general setting seems in itself to be of sufficient interest to make these
investigations worth while.
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The amalgamation property was first introduced into the literature
by R. Fraissé (cf. [2]) in connection with certain embedding properties
for relational systems, and it has played a role in connection with the
investigations of other such problems in [3], [4], [5], [6] and [8]. In the
classical treatment of field extensions the amalgamation property is not
explicitly mentioned, but the condition which we use in Section 10 to
give an elementary proof of the amalgamation property for the class of
all fields is either explictly or implicitly involved. In the literature on
differential fields of characteristic 0, for instance in [7], the amalgama-
tion property is not formulated in its full generality, but a special case
(Theorem 2.5 in [7]) plays an important role.

There exist in the literature several generalizations of the classical
theory of field extensions, or of certain portions of that theory, but
most of these have little connection with the investigations reported on
in this paper. It should be mentioned that in a paper by Shoda [10]
some portions of the theory of algebraic extensions are derived from
assumptions concerning the structure of the class K of systems under
consideration rather than from specific axiom systems. However, with
his definition of an algebraic element he is forced to make some rather
strong assumptions concerning K, and in fact several of the basic proper-
ties that we derive have to be explicitly assumed. Observe also that
although the amalgamation property is not mentioned in [10], this or
some other related properties is actually needed in one of the proofs
there. This fact is pointed out in [9].

2. Notation and terminology.

By a relational system or, more briefly, a system, we here mean a
(possibly transfinite) sequence

A = (A, FoFy,....Fe...,RuRyy .. Ry Deconess

where 4 is a set, « and f are ordinals and, for each § <x and n<f, F, is
an operation of some finite rank p, over 4 (a map of A" into 4) and R,
is a relation of some finite rank », over A (a subset of 4’7). Some of
the operations F; may be of rank 0, in which case the domain of F,
consists of the null sequence ¢ alone. In this case F, is usually identified
with the element F.(¢) of 4, and this element is referred to as a distin-
guished element of .

The ordinals « and g and the ranks u, and », are assumed to be the
same for all the systems 9 under consideration. Usually all reference to
the operations F, and to the relations R, is omitted, and the system A
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is identified with its underlying set A. By a subsystem of A is meant a
subset B of A that is closed under all the operations F,. Of course it is
understood that the operations and relations over B are the restrictions
to B of the operations and relations over 4. Observe that if 4 has
distinguished elements, then these are members of every subsystem, but
if no such elements are present, then the empty set is regarded as a
subsystem of A. If B is a subsystem of A, then 4 is said to be an
extension of B, and in symbols this is expressed by writing B< A
and 4= B. We also write f: A —~ B to mean that f is an isomorphism
of 4 into B.

If L is a non-empty family of subsystems of a given system 4, then
their intersection, nL, is also a subsystem of 4. A family L of systems
is said to be directed if and only if any two members of L have a common
extension that also belongs to L. If L is a non-empty directed family
of systems, then the union, UL, of all the members of L, with its opera-
tions and relations defined in an obvious manner, is a system and
an extension of all the members of L. If, in addition, all the mem-
bers of L are subsystems of some given system 4, then UL is also a
subsystem of 4.

Throughout Sections 3-9 we consider a fixed class K of relational
systems, and assume that it satisfies the conditions (I,), (I,), (I3) and
(IT). It is agreed that all systems under consideration are members of K,
and this fact will in general not be explicitly mentioned. It is further
agreed that the letters 4, B, C, D and E, with or without subscripts and
primes, will always denote systems (members of K).

3. The amalgamation property.

In this section we prove a generalized form of the amalgamation
property and two theorems concerning extensions of isomorphisms.

TaHEOREM 3.1. Iff;: A — B, for all i in I, then there exist C and functions
g, associated with all the elements 1 of I, such that g;: B; — C for all ¢ in
I and g;f;=g;f; for all 1, j in I.

Proor. We may assume that I coincides with the set of all ordinals
less than a fixed ordinal y. We then obtain systems C, and functions g,,
associated with all the ordinals » <y, such that

(1) gx: Bx—)Cu’ Ox é Ot’ gxfn = g‘tfr

whenever » < v <y. In fact, if we take Cy= B, and let g, be the identity
automorphism of B, then these conditions obviously hold for x<7<1.
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Assuming that 1<y, and that C, and g, have been so chosen for all
% <1 that (1) holds whenever » < v <, consider the system

cy = U{C,|x < 2}

which, according to (I3), belongs to K. Then g,: B, — C,’ for all x <4,
and all the isomorphisms g, f,, with x <A, of 4 into C,’ coincide. Since

fi: A — B,, there exist by (II) a system C, and functions ¢, and 4,
such that ,
9 B~ Gy hy: Cf - C,, 9af1 = higofo -

Because of (I;) we may assume that C, is an extension of C,’ and that
h, is the identity map. It then readily follows that (1) holds whenever
x<t<A+1. By an application of Zorn’s Lemma we infer that C, and g,
can be so chosen for all x <y that (1) holds whenever » < v <y, and the
conclusion of the theorem is therefore seen to holds with

C = U{C,x < y}.

THEOREM 3.2. If A, <B; and f;: A; - C for all ¢ in I, then there exists
D = C such that for each ¢ in I there is an isomorphism of B; into D that
agrees with f; on A,;.

Proor. Observe that the following special case of the theorem is an
easy consequence of 3.1 and (I,):

If A<B;foralliin I, and if f: 4 -~ C, then there exists D= C such
that for each ¢ in I there is an isomorphism of B; into D that agrees
with f on 4.

In fact, for each ¢ in I we have f;: A - B, where f; is the identity
automorphism of A. Applying 3.1 to these isomorphisms together with
the given isomorphism f, we obtain a system DD, an isomorphism g of C
into D and, for each ¢ in I, an isomorphism g, of B, into D such that
gf=g.f; for all ¢ in I. Because of (I,) we may assume that D is an exten-
sion C and g(x)=x for all z in C. Then for all z in 4, g,(x)=g,fi(x)=
af (@) =f ().

To prove the theorem we shall apply the above special case twice.

First, consider a fixed ¢ in I, and apply the special case with I replaced
by the one-element set {i}, and with A=A, and f=f,. This yields an
extension D; of C' and an isomorphism f;" of B; into D; that agrees with
f,on A,

Next, apply the special case with 4 and B; replaced by C and D,,
and taking for f the identity automorphism of C. We then obtain an
extension D of C and for each ¢ in I an isomorphism %; of D, into D such
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that k;(xz)=x for all  in C. The proof is then completed by checking
that the isomorphism g,=#h,f;,’ of B, into D agrees with f;, on 4,.

THEOREM 3.3. If, for all ¢ in I, A;< B and f;: A; — B, then there exists
C = B such that for each i in I there is an automorphism g; of C that agrees
with f; on A;.
Proor. By repeated application of 3.2 we obtain a commutative
diagram
‘A‘i g B - Co - C]_ hd 02 -
Vi Vh,; Vhy s Vhy Vhg g
B - C - C - C - C3 -

where the horizontal maps are identity isomorphisms (injections) and
the vertical maps are isomorphisms. Letting D, be the union of the
systems C;, we infer that all the maps f; extend to isomorphisms g, ,
of D, into itself.

This is a weaker form of the theorem; by applying it repeatedly we
obtain another commutative diagram

4 - Dy - D, - Dy, - Dy -

Vi V90,4 V91,4 V93,5 V93,4
B - Dy - D, - D, - Dy -

In fact, each (g, ;)~! maps a subsystem D, ; of D, isomorphically onto
D,, and by the result just obtained there exists an extension D, of D,
such that all the functions (g, ;)-* extend to isomorphisms g, ; of D,
into D;. D, and g, ; are then obtained by applying the same result to
the maps (g, )71, ete.

Let C be the union of the systems D,. The maps g,, ;, n=0,1,...,
have a common extension g, that maps C isomorphically into itself, and
g; is an extension of f;. Also, the maps g,,,; 4, ¢=0,1..., have acommon
extension g;," that maps C isomorphically into itself, and it is easy to
check that g;/=g,~!. Therefore g, is an automorphism of C.

4. Algebraic extensions.
We now introduce some of the basic concepts of this paper.
DerFiniTiON 4.1, If A < B and U is a subset of B, then by the extension

of A by U,—in symbols A(U)—we mean the intersection of all those sub-
systems of B that contain AUU as a subset.

The extension of 4 by U does of course depend on the system B,
but the notational ambiguity will lead to no confusion. This is largely
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due to the obvious fact that if A < B<C, and if U is a subset of B, then
the extension of A by U in B coincides with the extension of 4 by U in C.

If the set U consists of just one element, U= {u}, then we writeA4 (u)
for A(U). More generally, if U,,U,,... are subsets of B and u,,u,, ..
are elements of B, then we write A(U,,U,,...,u,u,y,...) for A(U U
UyU...U{uy,u,,...}).

DEerFiNiTION 4.2. Suppose A < B.

(i) We say that B is a finite extension of A if and only if B=A(U) for
some finite subset U of B.

(i1) We say that B is a simple extension of A if and only if B=A4(u)
for some element u of B.

DEriniTION 4.3. Suppose A< B and A<C.

(i) By an A-isomorphism of B onto, respectively into, C we mean an
tsomorphism of B onto, respectively into, C such that f(x)=x for all x in 4.

(ii) By an A-automorphism of B we mean an A-isomorphism of B onto B.

(ili) We say that B and C are equivalent extensions of A if and only if
there exists an A-isomorphism of B onto C.

(iv) An element w in B ts said to be A-equivalent to an element v in C
if and only if there exists an A-isomorphism of A(u) onto A(v) that maps
u onto v.

DeriNiTION 4.4. Suppose A < B.

(1) An element w in B s said to be algebraic over A if and only if in any
extension C of A there are only finitely many distinct elements that are A-
equivalent to u.

(ii) A subset U of B is said to be algebraic over A if and only if every
element in U 1is algebraic over A.

(ili) We say that B is an algebraic extension of A if and only if B is
algebraic over A.

LeMMA 4.5. Suppose A <B. An element u in B is algebraic over A if
and only if there exists a positive integer n with the property that in any
extension C of A there are at most n distinct elements that are A-equivalent
to u.

Proor. Clearly the existence of such an integer » implies that u is
algebraic over A. On the other hand, if no such integer exists, then for
each positive integer » there exists an extension C,, of 4 such that there
are n distinct elements v, ;,v, ,,...,v, , in O, that are A-equivalent
to u.

We now apply 3.2, taking for I the set of all positive integers, replacing
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A, B; and C by 4, C; and 4, and taking for f; the identity automor-
phism of 4. This yields an extension D of A4, and for each positive
integer n an A4-isomorphism of C, into D. Each isomorphism f, maps
A(v,, ;) onto A(w,, ;) where w, ;=f,(v, ;), and it follows that the elements
w, ; are A-equivalent to u. Since, for each n, the elements w, ;,w, ,,
.« .,W, , are distinct, we conclude that there are infinitely many distinct
elements in D that are A-equivalent to u, and that w is therefore not
algebraic over A.

DEerFiNiTION 4.6. Suppose A< B. If the element u in B is algebraic
over A, then by the reduced degree of u over A we mean the smallest positive
integer n that satisfies the condition in Lemma 4.5.

Lemma 4.7. Suppose A< B, BEC, and B D. If an element u in C is
B-equivalent to an element v in D, then u is A-equivalent to v.

Proor. The B-isomorphism of B(u) onto B(v) that maps % onto v also
maps 4(u) onto A(v).

CoroLLARY 4.8. If ASB=ZC, and if an element w in C is algebraic
and of reduced degree n over A, then w is algebraic and of reduced degree
at most n over B,

THEOREM 4.9. If A< B, and if the subset U of B is algebraic over A,
then A(U) is an algebraic extension of A.

Proor. We wish to show that if v is any element in 4(U) and if C
is any extension of A4, then the number of distinct elements of C' that
are 4-equivalent to v is finite or, in other words, the number of distinct
A-isomorphism of A(v) into C is finite.

There exists a finite subset ¥V of U such that v is in 4(V), and by 3.2
there exists an extension D of C' with the property that every A4-isomor-
phism of A(v) into C can be extended to an A-isomorphism of A(V)
into D. Since the number of distinct 4-isomorphisms of 4(V) into D
is obviously finite,—in fact, it is at most equal to the product of the
reduced degrees of the elements in V,—the conclusion follows.

CoroLLARY 4.10. If A< B, then the elements in B that are algebraic
over A form a subsystem of B (and obviously an algebraic extension of A).

Proor. If U is the set of all those elements in B that are algebraic
over A, then by 4.9 the system C'=A(U) is an algebraic extension of 4.
Thus every element of C is algebraic over 4, and we infer that C'=A(U).
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5. Splitting extensions and normal extensions.

Lacking a counterpart to the notion of a polynomial, we formulate
the definitions of splitting extensions and of normal extensions entirely
in terms of elements. The term “splitting extension” is perhaps not very

natural, but is used in order to stay as close as possible to the classical
terminology.

DEriNtTION 5.1. Suppose A <B and u is an element in B.

(i) w 18 said to split in B over A if and only if u is algebraic over A,
and the number of elements in B that are A-equivalent to wu is equal to
the reduced degree of uw over A.

(ii) B 1is said to be a splitting extension of w over A if and only if u
splits in B over A, and there exists no extension C of A such that C < B,
C+£B, and u splits in C over A.

DEeriNITION 5.2. Suppose A <B and U is a subset of B.

(1) U is said to split in B over A if and only if every member of U splits
in B over A.

(ii) B is said to be a splitting extension of U over A if and only if U
splits in B over A, and there exists no extension C of A such that C < B,
C=£B, and U splits in C over A.

Given an element » in B that is algebraic and of reduced degree n
over 4, in order for B to be a splitting extension of « over 4 it is obviously
necessary and sufficient that B=A4(u,,u,,...,u,) where u;,u,,...,u,
are distinct elements in B and are 4-equivalent to w. Similarly, given a
subset U of B, B is a splitting extension of U over 4 if and only if U
splits in B over 4 and B= A(U’) where U’ is the set of all those elements
in B that are 4-equivalent to some element in U.

CoRrOLLARY 5.3. Suppose A < B, and suppose U is a subset of B that is
algebraic over A. Then:

(i) There exists an extension C of B such that U splits in C over A.

(ii) There exists an extension D of A(U) such that D is a splitting exten-
sion of U over A.

Proor. For each « in U, if n(u) is the reduced degree of u over 4,
then there exists an extension C, of 4 such that there are n(u) distinct
elements in C, that are A-equivalent to u.

We now apply 3.2 with I replaced by U, with 4;, B, and C replaced by
4, C, and B, and with all the functions f; replaced by the identity
automorphism of 4. This yields an extension C of B and, for each »
in U, an A4-isomorphism of C, into C. Consequently, for each u in U
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there are n(u) distinct elements in C that are A-equivalent to u, and U
therefore splits in C.
The second statement immediately follows the first.

DeriNITION 5.4. Suppose A< B. We say that B is a normal extension
of 4 if and only if every member of B splits in B over A.

Lemma 5.5. If B is an algebraic extension of A, then the following
conditions are equivalent:

(i) B ts a normal extension of A.

(ii) For every extension C of B, every A-isomorphism of B into C maps
B into itself.

(iii) For every extension C of B, every A-automorphism of C maps B
onto itself.

Proor. That (i) implies (ii) follows from the fact that every A-iso-
morphism of B into an extension C of B maps each member « of B onto
an element » in C that is A-equivalent to u, and from the observation
that if B is a normal extension of 4, then every member of C that is
A-equivalent to a member of B is itself a member of B. That (ii) implies
(iii) is obvious.

Assume that (iii) holds. By 5.3 there exists an extension C’ of B such
that C’ is a splitting extension of B over A. Hence C'=A4(U) where U
is the set of all those elements in (' that are A-equivalent to some
member of B. For each element » in U there exists an element » in B
that is A-equivalent to u, and hence there exists an A-isomorphism f
of A(v) onto A(u) that maps v onto w. By 3.3, f can be extended to an
A-automorphism g of some extension C of C’'. Since, by (iii), g maps B
onto itself, it follows that  belongs to B. Thus U is a subset of B,
C’' =B, every member of B splits in B over 4, and B is a normal exten-
sion of 4.

CoroLLARY 5.6. If A <B<C, and if C is a normal extension of A, then
C is a normal extension of B.

CoroLLARY 5.7. If ASB=C, and if C is a normal extension of A, then

every A-isomorphism of B into C can be extended to an A-automorphism
of C

Proor. If f is an A-isomorphism of B into C, then by 3.3 f can be
extended to an A4-automorphism g of some extension D of C. By 5.5,
g maps C onto itself.

CoroLLARY 5.8. If B is a normal extension of A, and if the elements
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w and v in B are A-equivalent to each other, then there exists an A-auto-
morphism of B that maps w onto v.

CoROLLARY 5.9. Suppose A <B=C, and C is a normal extension of A.
Then B is a normal extension of A if and only if every A-automorphism
of C maps B onto itself.

THEOREM 5.10. Suppose A < B, U is a subset of B, and B=A(U). Then
B is a normal extension of A if and only if U splits in B over A.

Proor. If U splits in B over A, then U is algebraic over 4, and it
follows from 4.9 that B is an algebraic extension of 4. Also, every
A-isomorphism of B into an extension C of B must map U into B, and

must therefore map B into itself. Consequently, by 5.5, B is a normal
extension of A.

CoroLLARY 5.11. If A< B, and if B is a splitting extension over A of
some subset of B, then B is a normal extension of A.

Proor. If U is a subset of B such that B is a splitting extension of
U over 4, then B=A(U’), where U’ is the set of all those elements in
B that are A-equivalent to some member of U. Clearly U’ splits in B,
whence it follows by 5.10 that B is a normal extension of 4.

CoroLLARY 5.12. If A < B, then the elements in B that split in B over
A form a subsystem C of B, and C is a normal extension of A.

Proor. If U is the set of all those elements in B that split in B over 4,
then every member of U splits in C=4(U) over A. Hence, by 5,10,
C is a normal extension of 4, whence it follows that every member of C
splits in C over 4, and therefore that C=U.

THEOREM 5.13. If B and C are splitting extensions over A of their sub-
sets U and V, respectively, then every A-isomorphism of A(U) onto A(V)
can be extended to an A-isomorphism of B onto C.

Proor. If f is an A-isomorphism of A(U) onto A(V), then by 3.2
there exists an A-isomorphism ¢ of B into some extension D of C such
that ¢ agrees with f on 4(U).

We have B=A(U') and C=A(V’), where U’ is the set of all those
elements in B that are A-equivalent to some member of U, and V' is
the set of all those elements in C that are A-equivalent to some member
of V. If 4 is in U’, then %' is A-equivalent to some member u of U,
and the elements v=g(u) and v'=g(w') are therefore A-equivalent to
each other. Since v=g(u)=f(w) is in A(V), and therefore in C, and since
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by 5.10 C is a normal extension of A, it follows that v’ is in . Thus ¢
maps B into C.

Similarly, there exists an A-isomorphism of C into B, and since an
algebraic extension of 4 cannot be A-equivalent to a proper subsystem
of itself, we infer that g must map B onto C.

CorROLLARY 5.14. If B and C are splitting extensions over A of their
elements w and v, respectively, and if u is A-equivalent to v, then there
exists an A-isomorphism of B onto C that maps u onto v.

THEOREM 5.15. If B and C are splitting extensions over A of their sub-
sets U and V, respectively, if every member of U is A-equivalent to some
member of C, and if every member of V is A-equivalent to some member of
B, then B and C are equivalent extensions of A.

Proor. By essentially the same argument as was used to prove 5.13.

6. Iterated finite algebraic extensions.

We do not know how to prove, on the basis of the assumptions (I,),
(I,), (Is) and (IT), that an algebraic extension of an algebraic extension
of a system in K is an algebraic extension of that system. The principal
result of this section shows, however, that finite algebraic extensions do
have this property.

DeriniTION 6.1. If A < B, then by the Galois group of B over A,—in
symbols G(B[A),—we mean the group of all A-automorphisms of B.

Lemma 6.2. If A<B<C, and if each member of G(C|A) maps B onto
itself, then G(C|B) is a normal subgroup of G(C|A). In fact, the function
that maps each member of G(C[A) onto its restriction to B s a homomor-
phism of G(C|A) into G(B|A), and its kernel is G(C|B).

Proor. This is essentially just an elementary property of groups of
permutations, and the fact that the permutations are automorphisms of
relational systems is quite irrelevant. More precisely, if H is a group of
permutations of some set U, and if V is a subset of U that is mapped
onto itself by each member of H, then the function that maps each mem-
ber of H onto its restriction to V is a homomorphism of H onto a group
H' of permutations of V, and the kernel of this homomorphism is the
set of all those members of H that leave V pointwise fixed. In the present
case, with U=C, V=B and H=G(C[/A), H' is clearly a subgroup of
G(BJA), and the kernel of the homomorphism is G(C/B).
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CoroLLARY 6.3. If ASBZC, and if B and C are normal extensions of
A, then the homomorphism in Lemma 6.2 maps G(C[A) onto G(B|A).

Proor. By 5.5, each member of G(C/A4) maps B onto itself, and Lemma
6.2 therefore applies. By 5.7 every member of G(B/A4) is the restriction
to B of some member of G(C/4), and the given homomorphism is there-
fore onto G(B/A).

Lemma 6.4. Suppose A < B<C, and assume that each member of G(C[A)
maps B onto itself. Let R and S be the binary relations over C such that,
for all x, y and C,

xRy if and only of y = f(x) for some f in G(C[A4),
xSy if and only if y = f(x) for some f in G(C|B) .
Then:
(i) R and S are equivalence relations over C, and S<R.
(ii)) For all 2,y in C and f in G(C[A), if y=f(x), then f maps the equiv-
alence class x[S onto the equivalence class y[S.
(iii) For all x,y in C, if xRy, then /S and y/S have the same number of
elements.
(iv) For all x in C, the number of elements in z|R is less than or equal
to the number of elements in xS times the order of the group G(C[A)|G(C|B).

Proor. The first statement is obvious. Under the hypothesis of (ii),
if 2" is in z/S, then 2’ =g(x) for some ¢ in G(C/B). Therefore f(x')=
faf (y), and since G(C/B) is a normal subgroup of G(C/A4), it follows
that f(2') is in y/S. Thus f maps z/S into y/S. Similarly, f-1 maps y/S
into z/8, and we infer that f must map z/S onto y/S. This proves (ii),
which in turn implies (iii).

Given z in C, choose representatives «;, ¢+ in I, from the equivalence
classes mod S that are contained in #/R. By (iii), the number of elements
in z/R is equal to the number of elements in x/S times the order of the
set I. For each ¢ in I let H; be the set of all those members of G(C[4)
that map z/S onto x;/S. The sets H; are pairwise disjoint, and their
union is G(C[A). Since the members of G(C/B) map z/S onto itself, we
see that if f is in H;, then the coset of f modG(C/B) is a subset of H,.
Consequently the order of I is at most equal to the index of G(C/B) in
G(C/A), whence the conclusion of (iv) follows.

THEOREM 6.5. If B is a finite algebraic extension of A, and if C is an
algebraic extension of B, then C is an algebraic extension of A.

Proor. By hypothesis, B=A(U) for some finite subset U of B. By
5.3 there exists an extension ¢’ of C such that U splits in C’ over 4.
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Let V be the set of all those elements in C’ that are 4-equivalent to some
member of U. Then V is finite, and ¥V splits in A(V) over 4. Conse-
quently, by 5.10, A(V) is a normal extension of 4.

Consider any element % in C. Since B=< A(V), it follows from 4.8 and
the hypothesis that « is algebraic over A(V). In order to prove that u
is algebraic over 4, it suffices to show that in any extension D of C’
there exist only finitely many elements that are 4-equivalent to u. By
3.3 there exists an extension £ of D with the property that if v is any
element of D that is A-equivalent to u, then v =f(u) for some fin G(E/A).
Let R and S be the equivalence relations over E such that, for all z,y
M B Ry if and only if y = f(z) for some f in G(E[A)

xSy if and only if y = f(x) for some f in G(E[/A(V)).

Then all the elements in D that are 4-equivalent to » belong to a single
equivalence class mod B. On the other hand, the equivalence class /S
consists of elements that are A(V)-equivalent to u, and this class is
therefore finite. By 5.5, every member of G(E/4) maps A(V) onto it-
self, and Lemmas 6.2 and 6.4 therefore apply. Since the group G(A(V)/A)
is finite, it follows that »/R must be finite, and hence that there are only
finitely many elements in D that are A-equivalent to u.

LemMma 6.6. Suppose C is a normal extension of A. If uq,us,...,u,
are elements of C, if the reduced degree of u, over A is ny, and if, for 1=
2,3,...,k, the reduced degree of w; over A(uy, %y, ...,u;_1) 18 n;, then the
number of distinct A-isomorphisms of A(uy,us, . . ., u;) into C is nyn, . . . 1.

Proor. It clearly suffices to show that if f is an A-isomorphism of
the system B=A(uy, %y, ...,%;_y) into C, then there are exactly n,
A-isomorphisms of B(u;) into C that agree with f on B.

By 5.7 there exists an 4-automorphism g of C that agrees with f on B.
Also, since by 5.6 C is a normal extension of B, and u; therefore splits
in C over B, there exist exactly n,; distinct B-isomorphisms g,, p=
L,2,...,n; of B(w,) into C. The functions gg, are distinct A-isomor-
phisms of B(w;) into C, and they all agree with f on B. The number
of distinct extensions of f is therefore at least n;.

On the other hand, if A,A,, ... are distinct 4-isomorphisms of B(u,)
into C that agree with f on B, then g—'h,,g~h,, ... are distinct B-iso-
morphisms of B(u;) into C, and the number of such functions %, therefore
cannot exceed n;.

THEOREM 6.7. Suppose C ts a normal extension of A. If C=
A(uy,ug, . . ., u;) where the reduced degree of w, over A is m, and, for
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©=2,3,...,k, the reduced degree of w; over A(uy,u,, ..., u;_,) 18 n; then
the order of G(C|A) is nyn,...n,.
Proor. By 6.6.

Lemma 6.6 shows that we can define the reduced degree of B over 4,
—in symbols (B:4),,—where B is a finite algebraic extension of 4, in
such a way that the following conditions hold:

(1) If B=A(u), then (B:A4), is the reduced degree of u over 4.
(2) If ASB=C, then (B:A4),(C:B)y=(C:4),.

7. Separable extensions and the Galois correspondence.

Assuming that C is an extension of 4, for each subgroup H of G(C/4)
let H? be the fixpoint set of H (that is, the set of all x in C such that
f(x)==z for all fin H), and for each intermediate system B between A
and C let B°=G(C/B). The maps H — H? and B - B* form a Galois
correspondence (see e.g. [1, p. 56]) between the lattice of all subgroups
of G(C/4) and the lattice of all systems between 4 and C. This means
that, for any subgroups H and H, of G(C/A), and for any systems B and
B, between 4 and C, the following statements hold:

If H £ H,, then H,*
If B < B,, then B
H < H”" and B <

IIA

H? .
BT.

& IA

TP R
From this it follows that
H? = H*** and B® = B™",

It also follows that the maps H — H*" and B — B*® are closure operations
on the two lattices, that the closed subgroups and intermediate systems
form complete lattices under set-inclusion, and that restricted to these
new lattices the two original maps are anti-isomorphisms and are in-
verses of each other.

A complete analogue of the classical Galois theory cannot be expected
here, but assuming that C is a normal extension of 4, we shall obtain
a characterization of the closed intermediate systems and show that the
set of all fixpoint of a normal subgroup of G(C/4) is a normal extension
of A.

DEeriNiTION 7.1. We say that B is a separable extension of A if and only
if B is an algebraic extension of A and every element in B of reduced degree
1 over A belongs to A.

Math, Scand. 11 — 13
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DeriNiTION 7.2. Suppose A < B. An element u in B is said to be sep-
arable over A if and only if A(u) is a separable extension of A.

Lemma 7.3. Suppose A<B=C, and suppose every member of B is
algebraic and of reduced degree 1 over A. Then:

(i) G(C|A)=G(C|B).

(ii) Two elements in C are B-equivalent to each other if and only if they
are A-equivalent to each other.

(iii) Any element in C that is algebraic over B is also algebraic over A,
and has the same reduced degree over A as over B.

Proor. The first statement follows from the fact that a member of
G(C/A) maps each element » of B onto an element that is A-equivalent
to u, and the only such element is wu itself.

If the elements « and v of C' are A-equivalent, then by 3.3 there exists
an extension D of C such that » is mapped onto v by some member of
G(D|A). Since, by (i), G(D/A)=G(D|B), it follows that u is B-equivalent
to v. Thus (ii) holds. :

If u is an element in C, and if D is any extension of C, then we can
apply (ii) with C replaced by D to infer that the number of elements in D
that are 4-equivalent to u is equal to the number of elements in D that
are B-equivalent to . From this (iii) follows.

THEOREM 7.4. If C is a normal extension of A, then the fizpoint set of
G(C|A) 1is the set of all elements in C whose reduced degree over A 1s 1.

Proor. Clearly an element u in C whose reduced degree over 4 is 1
is mapped onto itself by every member of G(C/4). Conversely, it follows
from 5.8 that if the reduced degree of « over A4 is greater than 1, then
f(u)=*u for some G(C/A).

CoroLLARY 7.5. If C is a normal extension of A, then in order for the
Sfixpoint set of G(C|A) to be equal to A it is necessary and sufficient that C
be a separable extension of A.

CorOLLARY 7.6. If C' is an algebraic extension of A, then the elements
in C whose reduced degree over A is 1 form a subsystem B of C, and C is a
separable extension of B.

Proor. By 5.3 and 5.10 there exists an extension C’ of C such that
C’ is a normal extension of A. By 7.4, the elements in €' whose reduced
degree over A4 is 1 form a subsystem of C’, in fact, the fixpoint set B’
of G(C’'|A). Consequently the elements in ' whose reduced degree over
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A is 1 form the subsystem B=B'nC of C. The second statement in the
conclusion of the corollary follows by 7.3 (iii).

THEOREM 7.7. If C is a normal extension of A, and if H is a normal
subgroup of G(C[A), then the fixpoint set of H is a normal extension of A.

ProoF. Since every element in the fixpoint set B of H splits in C,
it suffices to show that if an element % in C is 4-equivalent to an element
v in B, then » is in B. By 5.8 there exists f in G(C[/4) such that f(v)=u.
For any k in H, f-1hf is also in H, and therefore f~1hf(v) =v, hf (v)=f(v),
h(u)=wu. Thus u is in B, as was to be shown.

8. Maximal algebraic extensions.

It is an open question whether, for an arbitrary class K that satisfies
the.conditions (I,), (I,), (I3) and (II), Theorem 6.5 can be generalized
by dropping the finiteness assumption for the first extension. In the
next section we shall impose on K one further condition which will be
shown to hold whenever K is the class of all models of a set of first order
universal sentences, and which will at once yield the desired generaliza-
tion. This will permit us to prove the existence of algebraically closed
algebraic extensions, but in order to carry the investigations as far as
possible on the basis of the present assumptions, we now introduce and
investigate the (apparently) more general concept of a maximal alge-
braic extension.

DeriNiTioN 8.1. We say that B is a maximal algebraic extension of A
if and only if B is an algebraic extension of A, and there exists no algebraic
extension C of A such that B<C and B<+C.

Lemma 8.2. If B is an algebraic extension of A, then the following
conditions are equivalent:

(i) B is a mazimal algebraic extension of A.

(ii) For every algebraic extension C of A, there exists an A-isomorphism
of C into B.

(i) For every finite algebraic extension C of A, there exists an A-iso-
morphism of C into B.

Proor. Assume (i). For any algebraic extension C' of A4 there exists,
by 3.2, an A-isomorphism of C into some extension C’ of B. Since the
images of the elements in C are algebraic over A, it follows from 4.9 and
the maximality of B that the isomorphism must map C into B. Thus
(ii) holds.
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Assume (iii), suppose D is an algebraic extension of 4 with B<D,
and consider an element » in D. If the reduced degree of u over 4 is n,
then there exists an extension C of A such that there are n distinct
elements v,,v,,...,v, in C that are A-equivalent to . We may assume
that C=A(v,,v,,...,v,), so that C is a finite algebraic extension of 4.
By (iii) it follows that there are » distinct elements in B that are A4-
equivalent to w. On the other hand there are at most » distinct elements
in D with this property, and they must therefore all belong to B. In
particular, it follows that # is in B. Thus (i) holds.

Since (iii) is a special case of (ii), this completes the proof.

CorOLLARY 8.3. If B and C are maximal algebraic extensions of A, then
B is A-equivalent to C.

Proor. By 8.2 and the fact that no algebraic extension B of 4 is
A-equivalent to a proper subsystem of itself.

CoroLLARY 8.4. If B is a maximal algebraic extension of A, then B is
a normal extension of A.

Proor. By 5.3 there exists an extension C of B such that C is a splitting
extension of B over A. By the maximality of B it follows that B=C.
Thus every element in B splits in B over 4, and B is a normal extension
of 4.

THEOREM 8.5. For any system A there exists a maximal algebraic ex-
tension B of A.

Proor. There exist finite algebraic extensions B; of 4, associated with
all the elements ¢ in some set I, such that every finite algebraic exten-
sion C of A is A-equivalent to some B;. We now apply 3.2, taking for
A; and C the system A, and for f; the identity automorphism of 4. This
yields an extension B of A such that each of the systems B; is 4-equiv-
alent to some subsystem B, of C. Since each B, is an algebraic extension
of A4, it follows from 4.9 that we can take B to be an algebraic extension
of A. The maximality of B is now an easy consequence of 8.2.

DEerINITION 8.6. A system A is said to be perfect if and only if every
algebraic extension C of A is a separable extension of A.

Lemma 8.7. Suppose B is a mazximal algebraic extension of A. Then A
18 perfect if and only if B is a separable extension of A.

Proor. By 8.2, every algebraic extension C of A is A-equivalent to
some subsystem C’ of B. If B is a separable extension of 4, then so is
(", and hence so is C. The converse is obvious.
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THEOREM 8.8. For any system A there exists an extension B of A such
that B is perfect, and every element in B is algebraic and of reduced degree
1 over A. Furthermore, if two extensions of A have these properties, then
they are A-equivalent to each other.

Proor. By 8.5 there exists a maximal algebraic extension C' of A4,
and by 7.6 the elements in ¢ whose reduced degree over 4 is 1 form a
subsystem B of C, and C is a separable extension of B. By 7.3, C'is a
maximal algebraic extension of B, and we conclude by 8.7 that B is
perfect.

Now suppose the extension B’ of 4 is also perfect, and suppose every
element in B’ is algebraic and of reduced degree 1 over 4. By 8.2 there
exists an A-isomorphism of B’ onto a subsystem B’ of C. Since every
element in B’ has reduced degree 1 over 4, we have B” <B. On the
other hand, B’ is perfect, and C is therefore a separable extension of
B"”. From this it follows that every element in C' whose reduced degree
over A is 1 belongs to B"". Thus B<B", B=B".

9. Algebraically closed algebraic extensions.

If K is the class of all fields, then the following condition obviously
holds:

(1,) Suppose A< B, U is a subset of B, and u is an element in B. If u is
algebraic over A(U), then there exists a finite subset V of U such that
u 18 algebraic over A(V).

It is not known whether this property is a consequence of the condi-
tions (I,), (I,), (I3) and (II). However, it does hold whenever K is the
class of all models of a set of universal sentences, and we shall now out-
line a proof of this fact.

TaroREM 9.1. If (1) holds, then so does ().

OUTLINE OF PROOF.! Assume, as in the hypothesis of (1,), that A < B,
that U is a subset of B, and that  is an element of B.

By hypothesis, K is the class of all models of a set 2 of first order
universal sentences. These sentences are assumed to be formulated in a
language L that contains the usual logical symbols, including the identity
symbol, as well as operation symbols 0, of rank u, and predicates P,

1 This proof of Theorem 9.1 is essentially due to E. Engeler. Actually, what Professor
Engeler proved was Theorem 11.1, and originally that result was used in conjunction
with Lemma 6.4 to prove Theorem 9.2. Later, by an obvious modification of Engeler’s
argument, the present proof of Theorem 9.1 was obtained.
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of rank »,, associated with all the ordinals £ <« and <. We now form
a new language L’ by adjoining to L as constants (operation symbols
of rank 0), distinet symbols a’ associated with all the elements ¢ in
A(U,u), and by also adjoining distinct operation symbols 6,,6,,... of
rank 1.

Let X'y be the set obtained from X as follows: First, we add all sen-
tences of the types

On(@) + 0,(0'),  0,(c') = ¢, 0,(w) * O,(u),

where m and » are distinct natural numbers, ¢ and b are distinct members
of A(U,u), and c is a member of A(U). Secondly, we add all sentences
of the types

0(ay,ay, . . . al"s_l) =a,

o Pby’by s b, ),

where &<« and n<f, and where agy,a,, .. >y boyby, .. .,b, 4 are ele-
ments in 4(U,u) such that the conditions

0 (2, @y -+ 30y y) = @ P, (bg; by, . . "b’n*l) ,
hold in 4(U,u). Finally, we add all sentences of the types
05(0n(a0’)7 on(al')’ L Gn(a;g—l)) = en(oe(aol’all’ L 7“,’45—1)) )
P"(On(bol), en(bl,)’ R en(b;n—l)) A Pn (bol’blr’ M 9b;,7—-1) ’

where £<x, 1<, n is a natural number, and a4, a,, . . o By bosbys e s
bvﬂ_1 are elements in A(U,u).

It is now easy to see that X, is consistent if and only if » is not alge-
braic over A(U). For, a model B of X;; would be a model of 2 with
certain distinguished elements a* associated with all the elements a in
A(U,u), and enriched by certain unary operations 0,*. The axioms of
the first type imply that the map a — a* is one-to-one, and the axioms
in the second group assert that this correspondence is an isomorphism
with regard to the old operations and relations. Hence we may identify
a* with a and regard A(U,u) as a subsystem of B. The axioms in the first
group and in the last group then assert that the functions 6,* are A(U)-
isomorphisms of A(U,u) into B, and that no two of them map % onto the
same element.

Similarly, if V is a finite subset of U, and if we let X}, be the set ob-
tained by adding to 2’ precisely those formulas of the above types that
have the additional property that all the new constants occurring in
them are associated with elements of A(V,u), then we find that X is
consistent if and only if » is not algebraic over 4(V).

Furthermore, every finite subset of Xy is contained in 2} for some
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finite subset ¥V of U. Consequently X, is consistent if and only if X,
is consistent for every finite subset V of U. From this the proof readily
follows. For, if u is algebraic over 4(U), then X7, is not consistent, and
there must exist a finite subset V of U such that X, is not consistent and,
therefore, u is algebraic over 4(V).

TrEOREM 9.2. Suppose (1,) holds. If B is an algebraic extension of A,

and if C is an algebraic extension of B, then C is an algebraic extension
of A.

Proor. Every element u in C is, by hypothesis, algebraic over the
system B=A(B). Therefore, by (I,), » is algebraic over A(V) for some
finite subset ¥ of B, and it follows by 6.5 that u is algebraic over A.

DEerINITION 9.3. A4 system A is said to be algebraically closed if and only
if there exists no algebraic extension B of A with A+ B.

THEOREM 9.4. Suppose (1,) holds, and suppose B is an algebraic exten-
sion of A. Then B is algebraically closed if and only if B is a maximal
algebraic extension of A.

Proor. Suppose B is a maximal algebraic extension of 4. By 9.2,
if C is an algebraic extension of B, then C is also an algebraic extension
of A, whence it follows that B=C. Thus B is algebraically closed. The
converse is obvious.

10. Examples.

We begin this section by showing that if K satisfies a certain condition
(II") which is a stronger form of the amalgamation property, then every
system in K is algebraically closed. We then consider a special case of
the amalgamation property, and show that it is equivalent to the orig-
inal property. This result is used, first, to give an elementary proof of
the fact that the class of all fields has the amalgamation property and,
second, to give another example of a class K that satisfies (I) and (II),
but does not satisfy (I1’). This class, while probably of no great interest
in itself, is useful for providing counterexamples to various questions
that arise naturally in connection with the results in the earlier sections.

We now drop the blanket assumption, in effect since the end of Sec-
tion 2, that K satisfies the conditions (I,), (I,), (I3) and (II), and shall
instead state explicitly in each case what is being assumed.

TueOREM 10.1. Suppose (1,), (I,) and (I ) kold, and also the following
condition :
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(I1") If the systems By and B, in K have a common subsystem A4, and if B,
and B, have no element in common except those in A, then B, and B,
have a common extension that also belongs to K.

Under these hypotheses every member of K is algebraically closed.

Proor. The property (II') can easily be extended to arbitrarily many
systems B;. More precisely, we have: If the systems B; with 7 in I belong
to K and have a common subsystem A, and if, for any two distinct
members ¢ and j of I, the systems B; and B; have no element in common
except those in A4, then all the systems B; with ¢ in I have a common
extension that also belongs to K.

From this the conclusion readily follows. For suppose 4 and B are
two systems in K with 4 < B. Choosing an infinite set I, we can associate
with each member ¢ of I an extension B, of 4 that is 4A-isomorphic to B,
in such a way that for any two distinct members ¢ and j of I the systems
B, and B; have no elements in common except those in 4. By the above
generalization of (II') it follows that there exists a system C in K that is
an extension of all the systems B,. If u is any member of B, then there
exists for each 7 in I an element u, in B, that is 4-equivalent to w. If,
further, % is not in A4, then all the elements u; must be distinct, and since
they are all members of the same extension C of 4, it follows that u is
not algebraic over 4. Thus A is algebraically closed.

THEOREM 10.2. Suppose (1,), (I,) and (1) hold, and also the following
condition :

(IL,) For any systems A, B, and B, in K, if By and B, are sitmple extensions
of A, then for some extension C of A, also in K, there exist A-isomor-
phisms of B, and of B, into C.

Under these hypotheses K has the amagamation property.

Proor. It clearly suffices to show that (II,) implies the corresponding
property with the word “‘simple” omitted from the hypothesis.

First consider the case in which B, is a simple extension of 4, B, =A4(u),
but B, is an arbitrary extension of 4. Consider the family L of all four-
termed sequences (B,C, f,, f,) such that 4 < B< B,, C is a member of K
and an extension of 4, f, is an A4-isomorphism of B, into C, and f, is an
A-isomorphism of B onto a subsystem C of C, such that C=C(f,(u)).
(To avoid the set-theoretic anomalies the choice of C can be restricted
by requiring it to be a subset of some sufficiently large set that is fixed
in advance.) The family L is partially ordered by the condition that

BLCf, 1) <<B".D", fi", /')
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if and only if B'<B"”, C'<C", fi'=f,", and f,”" agrees with f,” on B’.
A routine argument shows that every simply ordered subfamily of L
has an upper bound that belongs to L. This implies the existence of a
maximal member (B,C, f;, fo), and we infer with the aid of (II,) and
(I,) that B=DB,.

In the general case with B, and B, arbitrary extensions of 4, we use
essentially the same argument, except that in place of the condition
C=C(f,(u)) we now require C = C(B) where B is the image of B, under f;,
and in proving that the maximal sequence satisfies the condition B=B,
we now use in place of (II,) the more general property derived in the
first part of the proof.

It is easy to prove, using only the most elementary properties of simple
extensions of fields, that the class K of all fields has the property (11,).
Actually, we verify directly the more general property considered in
the first part of the proof of Theorem 10.2. In fact, suppose A, By,
B, are fields, B, is a simple extension of 4, B,=A(u), and B, is an ar-
bitrary extension of 4. If u is an indeterminate over A, then we let
C = B,(v) where v is an indeterminate over B,, but if « is algebraic over
A, and therefore a root of a polynomial p that is irreducible over 4, then
we consider a factor ¢ of p that is irreducible over B,, and let C = B,(v)
where v is a root of ¢. In either case the isomorphism of B, into C maps
r(u) onto r(v), for every rational function » over A, and as the isomor-
phism of B, into C we take simply the identity automorphism of B,.

We now give another simple example of a class K that satisfies the
conditions (I) and (II), but does not satisfy (I1').

THEOREM 10.3. Suppose n is an integer greater than 1, and let K be the
class of all algebraic systems {A,F) such that F is a unary operation over
A, and the following conditions hold:

(i) For any positive integer k, and for all a in A, if F¥(a)=a, then
F(a)=a.

(ii) For any a in A, there exist at most n distinct elements x in A such
that F(z)=a.

Then K satisfies (I1), but does not satisfy (11').

OUTLINE OF PROOF. Suppose {B;,G;) is a simple extension of {4,F),
obtained by adjoining the element %, and suppose (B,, G, is an arbitrary
extension of (4,F). We wish to prove that there exists an (4, F)-iso-
morphism of {(B,,G;)> into some extension {C,H) of (B,,G,). It may be
assumed without loss of generality that the only elements common to
B, and B, are those in 4.
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If there exists no positive integer k such that G,*(u) is in A, then we
let C=B,uB,, and so define the operation H that it agrees with G,
on B; and with G, on B,. The alternative case easily reduces to the sub-
case in which the element a=G(u) is in A4, and therefore B,=Au{u}.
If the equation Gy(x)=a has a solution x=v that is in B, but not in 4,
then we can take (C,H)=(B,,G,), for the function that takes « into v
and each element of A into itself is an {4, F)-isomorphism of {(B,,¢,)
into (B,,G,). Finally, if the equation F,(x)=a has no solution that is
in B, but not in A4, then it is easy to see that the construction applied
in the first case yields a system with the desired properties.

That K does not have the property (II') is obvious: We take for B,
and B, two n-element sets with only one element a in common, let 4 = {a},
and let F(a)=a, G4(x)=a for all x in B;, and Gy(x)=a for all z in B,.
Then the systems (B;,F,;) and {(B,, F,» have {(4,F) as a common sub-
system, but they have no common extension that belongs to K, for if
such an extension {C,H) did exist, then the equation H(z)=a would
have 2n—1 distinct solutions.

This example can be used to settle by means of counterexamples
various questions that arise in connection with the results in the preceding
sections. As examples we consider the following statements which are
known to hold if K is the class of all fields:

(a) If A and B are systems in K, and if B is a finite, separable extension
of 4, then B is a simple extension of A.

(b) If A, B and C are systems in K, if A < B<C, and if C is a separable
extension of A, then C is a separable extension of B.

(c) If A, B and C are systems in K, if A<B=C, and if u is an element
in C that is separable over A, then u is separable over B.

(d) If A and B are systems in K, if A is perfect, and if B is an algebraic
extension of A, then B is perfect.

(e) If A and C are systems in K, if C is a finite normal extension of A4,
and if H is a subgroup of G(C|A), then there exists a system B in K such
that A<B=<C, and H=G(C|B).

Before showing that none of these statements hold if K is defined as
in Theorem 10.3, we must find out what some of the relevant concepts
mean in this case. It will be convenient to denote the operations in all
the systems under consideration by the same letter F, and to identify
in the usual manner the system {4,F) with its underlying set A.

Suppose A < B and u is an element in B. It is easy to show that u
is algebraic over A if and only if F*¥(u) is in A for some positive integer
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k. Assuming that « is algebraic over 4, let 6(u) be the smallest positive
integer k for which F¥(u) is in A. Two elements « and v in B that are
algebraic over 4 but are not in A are then 4-equivalent if and only if
O(u)=0(v) and FoW(y)= Fowu(y),

We are now ready to construct the counterexamples to the statements
(a)—(e). For convenience we take n=4.

ExamMPLE (a). B consists of three distinct elements a, u;, u, with
F(a)=F(u,)=F(u,)=a, and A consists of the element a alone. Since %,
and u, are A-equivalent, B is a separable extension of A4, but it is not a
simple extension since A(u;)={a,u;} for i=1, 2.

ExampLE (b). C consists of four distinet elements a, u;,u,,u; with
F(a)=F(u;)=F(uy)=F(uz)=a, B and 4 are as in Example (a). The
element u, is of reduced degree 1 over B, because in order for an element
z to be B-equivalent to u, it would have to satisfy the equation F(x)=a,
and since this equation has three solutions in B, it can have no more
than one additional solution in a given extension of B. On the other
hand, C is obviously a separable extension of A4.

ExampPLE (¢). 4, B and C are as in Example (b), and u=1u,.

ExampLE (d). A and B are as in Example (a). It is easily seen that
if C is an algebraically closed algebraic extension of 4, then for every
» in C the equation F(x)=w has four distinct solutions. Thus every
element that is in C' but not in 4 has reduced degree at least three over
A, and C is therefore a separable extension of 4. From this it follows
by 8.7 that A is perfect. On the other hand, if C' is an algebraically closed
algebraic extension of B, then the equation F(x)=a has exactly one
solution x in C that is not in B, and this element x is therefore of reduced
degree 1 over B. Consequently B is not perfect.

ExampLE (e). 4 and C are as in Example (b), and H is the group of
all even permutations of C that leave a fixed. The fixpoint set of H is in
this case A, and G(C/A) consists of all those permutations of C' that
leave a fixed. Therefore, there is no system B such that A <B<(C and
H=G(C/B).

11. Remarks on the notion of an algebraic element.

The notion of an algebraic element used here is rather restrictive,
and one might ask whether there does not exist a more general concept
for which results similar to the ones obtained here could be established.
Theorem 11.1 below suggests, however, that if the present concept is
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replaced by a more general one, then several of the principal results of
the present paper are bound to fail. In particular, it shows that if the
new concept has the property that the adjoining of an algebraic set of
elements to a given system yields an algebraic extension, then it cannot
be the case that every system has an algebraically closed algebraic ex-
tension.

THEOREM 11.1. Suppose K is a class of systems that satisfies the condi-
tion (1), suppose A and B are systems in K with A < B, and suppose u
is an element in B that is not algebraic over A. If m is any cardinal number,
then there exists in K an extension C of A such that there are at least m
distinct elements in C that are A-equivalent to u.

OUTLINE OF PROOF. (See footnote 1.) The method of proof is essentially
the same as for Theorem 9.1, and there is no need to repeat all the de-
tails. The systems A(U) and A(U,u) that occur there are now replaced
by A(u) and A, respectively, and the set of all natural numbers, as the
index set for the new operational symbols, is replaced by a set I of
cardinality m. Except for this, the sentences which we add to 2 can
be described in exactly the same manner as before, and one easily verifies
that the conclusion of our theorem is equivalent to the assertion that
the set of sentences, 2}, obtained in this manner, is consistent. We then
consider, for each finite subset J of I, the set 2, of all those sentences
in X, that have the additional property that all the new operational
symbols that occur in them are associated with members of J. The
hypothesis that « is not algebraic over 4 implies that all these sets 2,
are consistent, and this in turn implies the consistency of X,.

CoroLLARY 11.2. Suppose K s a class of relational systems that satisfies
the conditions (I) and (II), and suppose A and B are systems in K such
that A < B. Then the following conditions are equivalent:

(i) B is a normal extension of A.

(ii) For every extension C of B in K, every A-isomorphism of B into C
maps B into itself.

(iii) For every extension C of B in K, every A-automorphism of C maps
B onto ttself.

Proor. By 5.5 the conditions (i)-(iii) are equivalent provided B is an
algebraic extension of 4. Inasmuch as normal extensions are by defini-
tion algebraic, it follows that (i) implies (ii). Since (ii) obviously implies
(iii), it therefore suffices to show that if (iii) holds, then B is an algebraic
extension of 4.

If there is an element % in B that is not algebraic over 4, and if m
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is any cardinal, then it follows from 11.1 with the aid of (II) and (I,)
that there exists an extension ¢’ of B in K with the property that there
are at least m distinct elements v in ¢’ that are A-equivalent to u. Taking
m sufficiently large we infer that, for the corresponding extension (',
some of these elements v are not in B. By 3.3, the A-isomorphism of
A(u) onto A(v) can be extended to an A-automorphism of some exten-
sion C of C’ that also belongs to K. Since v was so chosen that it does not
belong to B, it follows that this automorphism does not map B into
itself, and the statement (iii) therefore fails.

This result shows that if our hypothetical notion of a generalized
algebraic element is accompanied by a suitable modification of the defi-
nition of a normal extension, and if it is true of these new concepts that
every algebraic extension of a given system is a subsystem of a normal
extension of that system, then it cannot be the case that normal exten-
sions are characterized by the properties (ii) and (iii). We shall not try
to make these observations more precise, but the above considerations
suggest that the concept of an algebraic element which we have adopted
is the least restrictive one for which the principal results of this paper are
valid.
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