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A NOTE ON CONTRAPRODUCTION DOMAINS!

THOMAS G. McLAUGHLIN

Our discussion concerns the character of the domains of partial re-
cursive functions which are contraproductive (see section 2 below) for
certain natural number sets. In section 3, we precisely formulate and
prove this claim: if § is a contraproductive set which is not productive,
and « is the domain of partial recursive function contraproductive for g,
then « is either a creative set or a mesoic set of a certain special kind.

2.

Before proceeding to the results of the note, we shall list, for the con-
venience of the reader, the meanings of various terms and notations
employed in the paper.

1. “w;” denotes the ¢-th r.e. (recursively enumerable) set of natural
numbers, in an enumeration of all the r.e. sets according to the Kleene
Enumeration Theorem ([2, p. 281], or [4, p. 89, Theorem 8]):

w; = {x | (H?J)Tl(%x,?/)} ’

T,(2,x,y) being a certain fixed, 3-place primitive recursive predicate.

2. Let o be a set of natural numbers. o is said to be productive just in
case there is a partial recursive function p such that, for all i, w;c0
implies that ¢ is in the domain of p and p(i) € 6 —w;. o is called contra-
productive just in case there is a partial recursive function p such that,
for all 4, o< w,; implies that ¢ is in the domain of p and (i) € w;—o.

3. An infinite r.e. set § of natural numbers is termed: (i) simple, just
in case f is infinite but without any infinite r.e. subset; (ii) creative, just
in case § is productive; and (iii) mesoic, just in case it is neither recursive
nor simple nor creative. (The existence of simple and creative r.e. sets
was proven by Post in 1944; the existence of mesoic r.e. sets was first
observed by Dekker, in 1953.) Other terminology which may be un-
familiar to some readers will be explained where it is introduced.
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3.

It is known that every productive set of numbers admits a general
recursive contraproductive function. (See, for example, the discussion of
this in [3], and the concluding remark on p. 149 of [1].) On the other
hand, although the proof which we shall present is very like one of the
key phases of the usual proof of the contraproductivity of any productive
set, the following partial converse seems not to have been observed in
the literature:

THEOREM A. If 8 is a contraproductive number set which admits a total
(i.e., @ general recursive) contraproductive function, then B is productive.

To prove this result, we will apply an elegant general form of the re-
cursion theorem proved by Smullyan ([4, p. 72, Theorem 4]). We here
reproduce, as a lemma, a statement of as much of this theorem as we
shall need.

LemMa. For any recursively enumerable relation R(z,x,y), there is o
recursive function, r, such that, for all i, w,={x | R(3,x,r())}.

Proor or THEOREM A. Let f be a general recursive function contra-
productive for f. In order to apply the above lemma, we take as
R(z,z,y) the predicate: x € w,vx=%f(y). This predicate is certainly re-
cursively enumerable; and, by the lemma, there is a recursive function
g such that, for all numbers 7, wg(i)=wiu{ f(g(i))}~. We verify that fog
is a productive function for f. Suppose that w,<p. If f(g(i)) ¢ B, then
B < wyy,; hence, since f is contraproductive for g, we have

f(9() € 0y = w; U {f(g(0))}" .

But, f(g(i)) ¢ w; (since f(g(i)) ¢ p and w,cp); and certainly f(g(:)) ¢
{f(9())}". From this contradiction, we conclude f(g(3)) € 8. If f(g(i)) € w;,

th
" Wy = @3 U {f(g(,"))}N =N,

N the set of all natural numbers. Therefore, we find that f(g(7)) € N — o;:
contradiction. Thus, f (g(i)) € f—w;, and the verification is complete.

This theorem, which we believe is of some interest in itself, is the basis
of the following result on contraproduction domains:

THEOREM B. Let 8 be a contraproductive set which is not productive;
and let p be a partial recursive function contraproductive for B, with o=
domain of p. Then, « is either creative or is a mesoic set which is pseudo-
creative with no set simple in its complement. (A mesoic set « 18 called
pseudo-creative just in case, for any r.e. set A< &, there is another r.e. subset
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T of & such that v — 4 is infinite. We further say that « has no set simple in
its complement just in case there is no (r.e.) subset A of & such that xUA
s simple.)

Proor. It follows from Theorem A that « is not recursive; for, if it
were, p could then be extended to a fofal recursive contraproductive
function for 8, implying productivity of 8. Again, « is not simple. We
verify this by showing that for some number ¢, and some infinite re-
cursive set f(1) of indices of w;, f(3)nax =M. Suppose no such f(z) exists.
Following Myhill (see [4, p. 69]), let k(x,y) be a 2-place recursive function
such that, for all numbers i and m, h(i,m)>m and w,q p=w
the sequence

¢+ From

8(g,1) = Mg,0),  s(9,2) = h(g,s(g,1)),
8(¢,3) = h(g,8(¢,2)), ete.,

one gets an infinite recursive set f(q) of indices of w,, g being arbitrarily
given. Thus let ¢ be any number: generate « and f(g) simultaneously;
by hypothesis, we will come at length upon a number m € xnpf(q); let
the first such m encountered be called “m(g)”, and define p*(g) = p(m(q)).
The function p* thus obtained is contraproductive for f (since p is
contraproductive for # and w,,,=w, for all ¢); and p* is fotal recursive.
We thus have a contradiction to Theorem A, and so « cannot be simple.
Now suppose that w;c & Then, defining a partial recursive function p*,
with domain xuw;, by p*(x)=p(r) for xea and p*(x)=0 for z € w;,
we see that p* is another contraproductive function for . Hence, by
what we have already proved, xUw; must be either creative or mesoic.
So, « has no r.e. set simple in &; and, if « is mesoic, it follows that «
must be pseudocreative. The proof is complete.

CoroLLARY. If B is a simple or a mesoic r.e. set, then j§ is contra-
productive, and if « is the domain of any partial recursive function
contraproductive for j, then « is either creative or pseudo-creative mesoic
with no set simple in its complement.

Proor. Itis shown in [1] that j is contraproductive but not productive.
Now apply Theorem B.

REMARKS. 1. Let 8, p, « be as in Theorem B. Then p can be extended
to a function p* such that p* is contraproductive for # and has a creative
domain. For, since « is not recursive or simple, & must contain a creative
subset 1; then «xUAZ is creative, and, proceeding in the evident manner
previously indicated, we extend p to a function p*, with domain xU4,
which is still contraproductive for . We might remark that it can be
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shown that the domains of those functions shown by Dekker, in [1], to
be contraproductive for complements of simple and mesoic sets, are all
of them creative.

2. It is easy to show that if § is simple, then there are 2% number sets
« such that fc« and « is contraproductive but not productive. By
Theorem A, then, each of these 2% contraproductive sets « fails to admit
any total contraproductive function.

ADDED IN PROOF. Since this paper was submitted, the author has proved
the following stronger result in connection with Theorem B: If 8, p,«
are as in Theorem B, e is a number such that w,=8, and 3,={z|w,=o,
and x¢«}, then ¥, contains an infinite r.e. subset. Hence, in particular,
the ¢ of the proof of Theorem B, satisfying B(i)na =@, can be taken an
index of J.
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