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RECURSIVE ARITHMETIC OF SKOLEM 1II

H. A. POGORZELSKI

1. Introduction.

In our previous note [5], Part I, we extended the Skolem arithmetic
through the unique resolution theorem with respect to exponent chains
of Mycielski numbers. In the present note, Part II, we further extend
the Skolem arithmetic in the following two ways: (1) In section 2, we
show that certain word-arithmetical methods in certain denumerable
alphabets are valid in the Skolem arithmetic. (2) In section 3, we intro-
duce a class of new unique resolution theorems in the Skolem arithmetic.

We shall assume the notation and definitions of Part I. In addition,
we shall make use of the following. The class of natural numbers shall
be denoted by N. We denote the recursive arithmetic of Skolem by
> (1) so as to emphasize the fact that it is also a word system in an
alphabet consisting of one sign, namely, {1}. We shall denote the classes
of numbers defined by scheme (20) of Part I as P® P® P® respec-
tively, where P® is the class of consecutive Mycielski numbers, and so on.
With respect to the Hilbert—Ackermann class of primitive recursive
functions defined by scheme (17) of Part I, we add the following two
obvious properties concerning P®:

(1 1) é—‘k(m‘u(k)’ a;)”wn = Ek(m"(k), x) v mu(k) = mﬂ(k) ;
(1.2) ‘Ek(mu(k)’x)non = fk(mﬂ(k)’ ?/) vr=y.

In these formulas as in all formulas and mathematical symbols in the
following, k=1,2,... and u,v € N.

2. Word theory and the Skolem arithmetic.

We begin this section with some pertinent facts about the word theory
in question. However, we shall not dwell upon the results already treated
in the author’s note [6], referred to as note A, on the formal word 0Q(A)
in the denumerable alphabet A={a,,a,, ...}, neither shall we elaborate
on those results which carry over easily in the obvious way from the
results of note A to the subject-matter of this section.
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On the strength of (1.1) and (1.2), we can obviously construct the classes
of functions

(2.1) F® = (F{9(2), F¥(@), ...}
where, for y,ve N,

(2.2) F ®(x) = &(m,®,2),
(2.3) F@yon = F,®()vu=»,
(2.4) F ®(z)mon = F ®(y)vae=y.

Next, following the recursive methods of R. Péter [4] in the form given
in note A, we can easily in the obvious way construct word systems
Q(P®) in denumerable alphabets P® with 1 as the empty word in each
case. Clearly, the word systems Q(P®) are arithmetizations or rather
interpretations of the formal word system (2(A) in the denumerable
alphabet A. We point out here that as a consequence of the R. Péter
construction of Q(P®) and the fact that they are arithmetizations of
Q(A) it follows that Q(P®) are isomorphic.

Several easy consequences of the above constructions are the following
theorems:

(2.5) F ®(z)ron = F®(y) v (m,P=m®rz=y);
l1e8
(2.6) gvre v F,®(x)eS
S = 0(P)

From this point of the section, we shall relate the above subject-matter
to the Skolem arithmetic X (1).

On the strength of the recursive apparatus given in Part I and theorems
(1.1) and (1.2) of section 1, it is not difficult to see that theorems (2.5)
are also theorems in ¥ (1). On the other hand, the fact that the stage
induction theorems (2.6) are also valid in 3 (1) is not so obvious. We shall
therefore verify this fact. However, since the proof of the above-men-
tioned validity requires amongst other things a considerable deal of new
notation and definitions, we shall expedite matters by simply assuming
certain established results, definitions and notation of Asser [1], Good-
stein [2], Skolem [8] and Vulkovi¢ [10] to be pointed out as we go along.
Finally, we shall also abbreviate some of our terminology in what follows
by referring to mathematical induction and primitive number-theoretic
recursion as induction and primitive recursion in ¥ (1) respectively, and
to the relevant forms of stage induction and primitive word recursion
as induction and primitive recursion in Q(P®) respectively.
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We now outline the verification that induction in Q(P®) is valid in
3 (1). (I) On the strength of the results of Goodstein [2] and Skolem [8],
induction in ¥ (1) is equivalent to the principle of uniqueness of primitive
recursion in ¥ (1), that is, the principle that every function defined by
the primitive recursive scheme in Y (1) is uniquely determined. (IT) On
the other hand, Vuckovié¢ [10] recently proved that stage induction
follows from the principle of uniqueness of primitive word recursion, and
his results easily carry over in the obvious way to the same in Q(P®),
In turn, the fact that the principle of uniqueness of primitive recursion
in 2(P®) follows from induction in Q(P®) can be shown in the simplest
form as follows: If

f(1) = «, P(l) = &,
JFB@) = Bz, f@),  o(FB()) = B(2.¢@)),

and f(x)=g¢(x) for some z, then
F(F,B(@) = B,(x, f(2) = B.(x,9(x)) = ¢(F,%(x)),

and, by induction in Q(P®), f(x)=¢(x). Consequently, by virtue of the
above results of Vuckovié, induction in 2(P®) is equivalent to the prin-
ciple of uniqueness of primitive recursion in 2(P®). (III) Finally, we
show that if a function is primitive recursive in Q2(P®), then it can be
defined by primitive recursion in 3 (1). The proof of this theorem runs
parallel to the proof given by Asser [1] of his Hauptsatz [Beweis a),
page 264] for primitive recursive word functions. In particular, the proof
that in Q(P®) the null word function, successor word function, identity
word function and the substitution scheme (for definitions, see Asser [1])
reduce to the primitive recursive definition in ¥ (1) carries over in the
obvious way from the proof given by Asser [1]. With respect to the
primitive recursive scheme in Q(P®) using ¥, ®(x) as the successor func-
tion, it is not difficult to see that the primitive recursive definition in
Q(P®) reduces to the primitive recursive definition in ¥ (1) by applying
some form of course-of-value recursion [3].

From (1), (IT) and (IIT) above, it follows that the principle of uniqueness
in Q(P®) implies the principle of uniqueness in 3 (1), and therefore induc-
tion in Q2(P®) implies induction in X (1).

3. Unique resolution theorems in the Skolem arithmetic.

In this section, making use of the results of section 2, we introduce
a class of unique resolution theorems in 3 (1) of which one of the theorems
of the class is the unique resolution theorem proved in Part I.
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In particular, we shall assume definitions (17), (18), (19) and (20) of

Part 1. Furthermore, we shall make use of the arithmetical chains

E® _,x, defined as follows

= (k)

(3 1) ~isrsl
: & k
E{§)r§ﬂ+l X, = Elc(xlﬂ-l’ E{;rgy xr) s

x, =z,

where E{2,_ x, is the exponent chain defined by (7) in Part I.

Recalling the results in section 2, it is not difficult to see that the
following theorems are corollaries of theorems (2.5) and consequently
theorems in 3 (1):

(3.2) mm[Rk(Egkg)rg,uqr: m) A Nr < u{My(q,)} A My(m)] v g,=m .

On the strength of theorems (3.2), we prove the following Unique
Resolution Theorems in 3 (1):

(3.3) ER oo = ER _ q,v Vr < pu{""M(p,)}
v Vs S v{""My(q,)}
v E(p,q; n,v) .

The proof runs parallel to the one given originally by Skolem {[9].
The case u=1 is easy to prove. Assume that the theorem is true for
some p. Then from the assumption of the theorem we have

Eigrg/t-{-l pr = E](]_cs_)sgv qs A Alr § H + I{Mk(pr)} A AS é v{Mk(Qs)} 4

and consequently

Rk(E{Qag Qe Puyr) ANs = VIM(g,)} A Mu(P,11) 5

from which it follows by virtue of theorem (3.2) that p,.,=gq,. Further-
more, on the strength of definition (3.1) we have 2 _ p =Z® g

from which on the grounds of the inductive hypothesis, we obtain

(D1 = 4)AEDG5 v — 1) <=E(p,q; u+1,9)

In conclusion, we should like to offer the remark that it is possible by
virtue of the fact that Q(P®) are arithmetizations of Q(A) and by means
of the recursive word-arithmetical methods of Vuckovié [10] to show
further that the class of unique word resolution theorems (see, author
[7]) with respect to Q(P®) are also theorems of the Skolem arithmetic
3 (1),
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