DYNAMICAL SYSTEMS WITH A CERTAIN LOCAL CONTRACTION PROPERTY

BO T. STENSTRÖM

1.

We will consider dynamical systems (i.e. autonomous systems of differential equations) having a certain local contraction property (defined in sec. 2), and will investigate the existence of periodic solutions and the stability properties of such systems.

These questions have previously been treated, in a somewhat more special case, by G. Borg [1].

2.

Let M^n be an n-dimensional Riemannian manifold $(n \ge 2)$, i.e. a differentiable (C^{∞}) manifold with a metric defined by a positive definite, symmetric, second order covariant differentiable (C^{∞}) tensor field on M^n . Let X be an open, connected subset of M^n such that its closure \overline{X} in M^n is compact and its boundary ∂X is a differentiable (n-1)-manifold in M^n .

The Riemannian distance between two points x and y in M^n is denoted by d(x,y), and the Riemannian inner product between tangent vectors a and b is denoted by (a,b).

Let f be a contravariant C^1 vector field on \overline{X} . The field f defines a system S (using local coordinates)

$$\frac{dx^i}{dt} = f^i(x^1, \dots, x^n), \qquad i = 1, \dots, n,$$

of differential equations on \overline{X} . From now on it will be assumed that f satisfies the two following conditions:

- A. f penetrates the boundary ∂X of \overline{X} inwards, that is, $(f(x), n_x) > 0$ for every $x \in \partial X$, where n_x is the inner normal to ∂X at x.
- B. at each point $x \in X$ we have: $(\nabla_a f, a) < 0$ for every tangent vector $a(\pm 0)$ at x with (f(x), a) = 0. $(\nabla_a f)$ denotes the covariant derivative of f in the direction a).

In local coordinates, (B) becomes (writing g_{ij} for the fundamental tensor field):

B. at each point $x \in X$ we have:

$$\sum_{i,j,k,m} \left(\frac{\partial f^i}{\partial x^j} + \Gamma_{jk}{}^i f^k \right) a^j a^m g_{im} < 0$$

for every $a = (a^i) \neq 0$ with

$$\sum_{i,j} f^i a^j g_{ij} = 0.$$

3.

Consider the solution curve of S starting at $x \in \overline{X}$ at t = 0. Denote by $F(x,\tau)$ the point on the curve corresponding to $t = \tau$. The mappings $x \to F(x,t)$ form a one-parameter $(0 \le t < \infty)$ semigroup of transformations. Let \mathbb{R}^+ be the set of non-negative real numbers.

Definition. The ε -tube N_{ε} around a trajectory $F(p, \mathbb{R}^+)$, where $f(p) \neq 0$, is $N_{\varepsilon} = \{x \mid x \in \overline{X} \text{ and } d(x, F(p, \mathbb{R}^+)) \leq \varepsilon\}$. An ε -sphere around a singular point p, that is, f(p) = 0, is defined analogously. The ε -tube resp. ε -sphere is normal if the ε -neighborhood U of every point F(p,t) satisfies: any two points in U can be joined by a unique geodesic in U; this geodesic is the unique shortest geodesic in M^n joining the two points.

Normal ε -tubes (ε -spheres) always exist when \overline{X} is compact, as is well known. In case $\overline{F(p, \mathbb{R}^+)}$ does not contain any singular points, we require N_{ε} to satisfy also the following condition:

$$\left(f(x),\, \varPi_{yx}f(y)\right)>0 \text{ for all pairs } x \text{ and } y \text{ with } x\in F(p,\mathsf{R}^+) \text{ and } d(x,y)\leqq \varepsilon.$$

 Π_{yx} denotes the parallel displacement of tangent vectors from y to x. This can be required since $(f(x), \Pi_{yx}f(y))$ is >0 on the diagonal of the compact subset $\overline{F(p, \mathbb{R}^+)} \times \overline{F(p, \mathbb{R}^+)}$ of $\overline{X} \times \overline{X}$, and therefore is >0 in a neighborhood of the diagonal.

DEFINITION. The section at $x \in F(p, \mathbb{R}^+)$ of a normal ε -tube N consists of those y in N that can be reached from x along a geodesic in N of length $\leq \varepsilon$ perpendicular to f(x).

Theorem 1. (i) Let N be a normal ε -sphere around a singular point p. A solution starting in N approaches p with monotonously decreasing distance from p.

(ii) Let N be a normal ε -tube around $F(p, \mathbb{R}^+)$, p non-singular, and suppose $y \in \mathbb{N}$. If $F(p, \cdot)$ tends to a singular point q, then also $F(y, \cdot)$

tends to q; if $F(p,\cdot)$ does not tend to any singular point, then $F(y,\cdot)$ approaches $F(p,R^+)$ with monotonously decreasing distance.

PROOF. Let $x \in F(p, \mathbb{R}^+)$ and consider any geodesic L starting at x. For each point $y \in L$, let a_y be the tangent vector to L at y, pointing in the direction away from x and of unit length. We will show that if $(f(x), a_x) = 0$, then $(f(y), a_y) < 0$ for all $y \in L$ $(y \neq x)$. So suppose $(f(y_1)a_{y1}) \ge 0$ for some $y_1 \in L$. The function $(f(g), a_y)$ is a C^1 -function on L, and

 $\nabla_a (f(y), a_y) = (\nabla_a f(y), a_y) + (f(y), \nabla_a a_y).$

But obviously $\nabla_a a_y = 0$, so by cond. (B) of sec. 2 we have $(f(y), a_y) < 0$ in a neighborhood of x $(y \neq x)$ on L. By continuity there exists a nearest point y_2 to x on L where $(f(y)_2, a_{y2}) = 0$ and then $(f(y), a_y) \leq 0$ between x and y_2 on L. But repeating this argument for y_2 instead of x, we find that $(f(y), -a_y) < 0$ in a neighborhood of y_2 $(y \neq y_2)$ on L, which gives a contradiction.

Now let s(t) be the distance of F(y,t), $y \in N$, from $x \in F(p, \mathbb{R}^+)$. When F(y,t) is in the ε -sphere around x, we find, using normal local coordinates around x, that

$$\frac{ds}{dt} = \sum_{i} \frac{\partial s}{\partial x^{i}} \frac{dx^{i}}{dt} = \sum_{i,j} g_{ij} a^{j} f^{i} = (f,a) .$$

It follows that no solution can leave the ε -tube (resp. the ε -sphere) N. It is now easy to see that the theorem holds.

4.

By the *limit set* of the system S is meant the union of the limit sets of all solutions of the system. One easily proves:

LEMMA 1. The limit set L of S is closed in M^n .

Lemma 2. L is connected.

PROOF. Suppose we had $L = L_1 \cup L_2$ with L_1 and L_2 closed in L, thus closed in M^n by lemma 1, and $L_1 \cap L_2 = \emptyset$. Let d_0 be the distance between L_1 and L_2 .

Obviously no solution can have a limit set that intersects both L_1 and L_2 . Put

$$P_i = \{p \mid \text{the limit set of } F(p, \cdot) \text{ is contained in } L_i\}$$

i=1,2. Then $P_1 \cup P_2 = \overline{X}$ and $P_1 \cap P_2 = \emptyset$. But P_i is open in \overline{X} . For if $p \in P_i$, then F(p,t) belongs to the $\frac{1}{4}d_0$ -neighborhood of L_i for sufficiently large t and so F(q,t) belongs to the $\frac{1}{2}d_0$ -neighborhood of L_i for large t

if q is sufficiently near p. But \overline{X} was supposed to be connected, so either P_1 or P_2 must be empty, that is, L_1 or L_2 is empty.

Theorem 1 (i) and lemma 2 gives:

Theorem 2. If S has a singular point, then this point is the limit set of S.

Theorem 3. If S has no singular point, then it has a periodic solution, which is the limit set of S.

PROOF. Let p be a point in the limit set of the system. Choose a normal ε -tube N around $F(p, \mathbb{R}^+)$ and let E be the ε -sphere around p. If ε is small enough, every solution starting in E stays in N and we can find $\varepsilon_1 < \varepsilon$ such that after some time all these solutions are in the ε_1 -tube around $F(p, \mathbb{R}^+)$.

Since p is in the limit set of S, there is a point x with $d(x,p) < \frac{1}{3}(\varepsilon - \varepsilon_1)$ such that $F(x,\cdot)$ returns to the $\frac{1}{3}(\varepsilon - \varepsilon_1)$ -neighborhood of p for arbitrarily large t. Since F(x,t) is in the $\frac{1}{3}(\varepsilon - \varepsilon_1)$ -tube around $F(p,\mathbb{R}^+)$, this means that F(p,T) is in the $\frac{2}{3}(\varepsilon - \varepsilon_1)$ -neighborhood of p for some arbitrarily large T. Then the section at F(p,T) of the ε_1 -tube around $F(p,\mathbb{R}^+)$ is contained in E. Every solution starting at t=0 in E reaches this section at a time nearly equal to T, which gives a continuous map of E into the section, i.e. into E. By the Brouwer theorem this map has a fixed point. Thus every neighborhood of p contains a starting point for a periodic solution. It is then obvious from Theorem 1 that $F(p,\cdot)$ is the unique periodic solution.

5.

The following topological characterization of X is easily proved:

THEOREM 4. The system S has a singular point if and only if X is homeomorphic with R^n , and has a periodic solution if and only if X is homeomorphic with either a solid torus or a solid Klein bottle. (The solid n-torus is $R^{n-1} \times S^1$, while the solid Klein bottle is the non-trivial fiber bundle of R^{n-1} over S^1 .)

6.

In the Euclidean case the obtained results specialize to:

Theorem 5. Consider a system dx/dt = f(x), $f \in C^1$, on an open, connected and bounded subset of \mathbb{R}^n with the vector field f penetrating ∂X

inwards. Suppose there exists a constant, positive definite, symmetric $n \times n$ -matrix G such that for each $x \in X$,

$$(V(x)y,Gy) < 0$$
 for all $y \neq 0$ with $(f,Gy) = 0$.

Then X is homeomorphic with either \mathbb{R}^n or a solid torus. The system has as its limit set, in the first case a singular point and in the second case a periodic solution.

PROOF. Apply the previous results with the flat metric on \mathbb{R}^n defined by G.

7.

Finally, we state the following result:

Theorem 6. The system S is structurally stable on \bar{X} .

For definition of structural stability, see [2]. A proof of the theorem is obtained by a modification of the proof of theorem 2 in [2] to apply to our global situation.

REFERENCES

- G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems,
 K. Tekniska Högskolans Handl. 153 (1960).
- 2. L. Markus, Structurally stable differential systems, Ann. of Math. 73 (1961), 1-19.

THE ROYAL INSTITUTE OF TECHNOLOGY, STOCKHOLM, SWEDEN