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DYNAMICAL SYSTEMS WITH A CERTAIN LOCAL
CONTRACTION PROPERTY

BO T. STENSTROM

We will consider dynamical systems (i.e. autonomous systems of dif-
ferential equations) having a certain local contraction property (defined
in sec. 2), and will investigate the existence of periodic solutions and
the stability properties of such systems.

These questions have previously been treated, in a somewhat more
special case, by G. Borg [1].

2.

Let M™ be an n-dimensional Riemannian manifold (n 2 2), i.e. a diffe-
rentiable (C*) manifold with a metric defined by a positive definite,
symmetric, second order covariant differentiable (C*) tensor field on
Mn. Let X be an open, connected subset of M™ such that its closure
X in M~ is compact and its boundary 0X is a differentiable (n—1)-
manifold in M™.

The Riemannian distance between two points x and y in M™ is denoted
by d(z,y), and the Riemannian inner product between tangent vectors
a and b is denoted by (a,b).

Let f be a contravariant C! vector field on X. The field f defines a
system § (using local coordinates)

dat Tl n ),

E:f(x,...,x), 1=1,...,n,
of differential equations on X. From now on it will be assumed that f
satisfies the two following conditions:

A. f penetrates the boundary 0X of X inwards, that is, (f(z),n,) >0
for every z € 60X, where n, is the inner normal to X at x.

B. at each point x € X we have:
(V.f,a) <0 for every tangent vector a(+0) at x with (f(x),a)=0.
(V,f denotes the covariant derivative of f in the direction a).
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In local coordinates, (B) becomes (writing g;; for the fundamental
tensor field):
B. at each point x € X we have:

of? ) .
> (l— + ij'fk) aamg,, < 0

iy m N0

for every a=(a?)+0 with

Zfiajgij =0.
i

3.

Consider the solution curve of S starting at € X at t=0. Denote by
F(x,7) the point on the curve corresponding to ¢=7. The mappings
z — F(z,t) form a one-parameter (0 < ¢ < co) semigroup of transformations.

Let R+ be the set of non-negative real numbers.

DEriNtTiON. The e-tube N, around a trajectory F(p,R+), where
f(p)*0, is N,={x |x e X and d(x,F(p,R*))<e}. An e-sphere around a
singular point p, that is, f(p)=0, is defined analogously. The e-tube
resp. e-sphere is normal if the e-neighborhood U of every point F(p,t)
satisfies: any two points in U can be joined by a unique geodesic in U;
this geodesic is the unique shortest geodesic in M™ joining the two points.

Normal e-tubes (e-spheres) always exist when X is compact, as is
well known. In case F (p,R*) does not contain any singular points, we
require V, to satisfy also the following condition:

(f(), IT,,.f (y)) > O for all pairs # and y with « € F(p, R*) and d(z,y) <e.

I1,, denotes the parallel displacement of tangent vectors from y to .
This can be required since (f(x), IT,.f(y)) is >0 on the diagonal of the
compact subset F (p,R+)x F (p,R+) of X x X, and therefore is >0 in a
neighborhood of the diagonal.

DEerFiniTION. The section at x € F(p,R+) of a normal ¢-tube N consists
of those y in N that can be reached from x along a geodesic in N of length
< ¢ perpendicular to f(x).

THuEOREM 1. (i) Let N be a normal e-sphere around a singular point p.
A solution starting in N approaches p with monotonously decreasing dis-
tance from p.

(i) Let N be a normal e-tube around F(p,R+*), p non-singular, and
suppose ye N. If F(p,-) tends to a singular point q, then also F(y,-)
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tends to q; if F(p,-) does not tend to any singular point, then F(y,-) ap-
proaches F(p,R+) with monotonously decreasing distance.

Proor. Let x € F(p,R+) and consider any geodesic L starting at x.
For each point y € L, let a, be the tangent vector to L at y, pointing in
the direction away from z and of unit length. We will show that if
(f(x),a;)=0, then (f(y),a,)<0 for all yeL (y+z). So suppose
(f(y1)a,,) 20 for some y, € L. The function (f(g),a,) is a C*-function on

L, and
Vof@).a,) = (Vof 0),2,) +(f (), V,ay) -

But obviously V,a,=0, so by cond. (B) of sec. 2 we have (f(y),a,)<0
in a neighborhood of x (y+x) on L. By continuity there exists a nearest
point y, to # on L where (f(y)y,a,,)=0 and then (f(y),a,) <0 between
x and y, on L. But repeating this argument for y, instead of z, we find
that (f(y), —a,) <0 in a neighborhood of y, (y+y,) on L, which gives a
contradiction.

Now let s(t) be the distance of F(y,t), y € N, from x € F(p, Rt). When
F(y,t) is in the e-sphere around z, we find, using normal local coordinates
around z, that

ds 0s dx? o
—_— = _—— = Ll ft = .
dt < oxt dt %gl,af (o)

It follows that no solution can leave the ¢-tube (resp. the e-sphere) N.
Tt is now easy to see that the theorem holds.

4.

By the limit set of the system S is meant the union of the limit sets of
all solutions of the system. One easily proves:

Lemma 1. The limit set L of S is closed in M™.

LemMMA 2. L is connected.

Proor. Suppose we had L=L,uL, with L, and L, closed in L, thus
closed in M™* by lemma 1, and L;nL,=0. Let d; be the distance between
L, and L,.

Obviously no solution can have a limit set that intersects both L,
and L,. Put

P, = {p | the limit set of F(p,-) is contained in L},

i=1,2. Then P,uP,=X and P,nP,=0. But P, is open in X. For if
p € P,, then F(p,t) belongs to the }d,-neighborhood of L, for sufficiently
large ¢ and so F(q,t) belongs to the }d,-neighborhood of L; for large ¢
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if ¢ is sufficiently near p. But X was supposed to be connected, so either
P, or P, must be empty, that is, L, or L, is empty.

Theorem 1 (i) and lemma 2 gives:

THEOREM 2. If S has a singular point, then this point is the limit set
of S.

TaEOREM 3. If S has no singular point, then it has a periodic solution,
which is the limit set of S.

Proor. Let p be a point in the limit set of the system. Choose a
normal e-tube N around F(p,R+) and let £ be the e-sphere around p.
If ¢ is small enough, every solution starting in E stays in N and we can
find ¢, < ¢ such that after some time all these solutions are in the ¢;-tube
around F(p,R+).

Since p is in the limit set of 8, there is a point  with d(x,p) < }(e—¢,)
such that F(x, -) returns to the }(e— ¢)-neighborhood of p for arbitrarily
large . Since F(z,t) is in the 3(e—¢;)-tube around F(p,R+), this means
that F(p,T) is in the %(¢—e¢,)-neighborhood of p for some arbitrarily
large T'. Then the section at F(p,T) of the ¢-tube around F(p,R+) is
contained in £. Every solution starting at {=0 in £ reaches this section
at a time nearly equal to 7', which gives a continuous map of ¥ into the
section, i.e. into £. By the Brouwer theorem this map has a fixed point.
Thus every neighborhood of p contains a starting point for a periodic
solution. It is then obvious from Theorem 1 that F(p, ) is the unique
periodic solution.

5.
The following topological characterization of X is easily proved:

THEOREM 4. The system S has a singular point if and only if X s homeo-
morphic with R*, and has a periodic solution if and only if X is homeo-
morphic with either a solid torus or a solid Klein bottle. (The solid n-torus
is R"1 x §1 while the solid Klein bottle is the non-trivial fiber bundle
of R"-1 over S1.)

6.
In the Euclidean case the obtained results specialize to:

THEOREM 5. Consider a system dx/dt=f(x), fe C, on an open, con-
nected and bounded subset of R™ with the vector field f penetrating 0X
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inwards. Suppose there exists a constant, positive definite, symmetric
n x n-matrix G such that for each x e X,

(V(z)y,Gy) < 0 forall y + O0with (f,Gy) = 0.

Then X is homeomorphic with either R™ or a solid torus. The system has
as its limit set, in the first case a singular point and in the second case a
periodic solution.

Proor. Apply the previous results with the flat metric on R™ defined
by G.

Finally, we state the following result:
THEOREM 6. The system S is structurally stable on X.

For definition of structural stability, see [2]. A proof of the theorem
is obtained by a modification of the proof of theorem 2 in [2] to apply
to our global situation.
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