ON THE DISTRIBUTION OF LINEAR FUNCTIONS OF SPACINGS FROM A UNIFORM DISTRIBUTION¹

LIONEL WEISS

Suppose X_1, \ldots, X_{n-1} are independent random variables, each with a uniform distribution over [0,1]. Let $Y_1 \leq Y_2 \leq \ldots \leq Y_{n-1}$ denote the ordered values of X_1, \ldots, X_{n-1} , and define

$$T_1 = Y_1, \quad T_k = Y_k - Y_{k-1} \text{ for } k = 2, \dots, n-1, \quad T_n = 1 - Y_{n-1}.$$

For each positive integer n, let $\{h_{1n}, \ldots, h_{nn}\}$ be a given sequence of constants, and let \overline{h}_n and Z_n be defined by

$$\overline{h}_n \, = \frac{1}{n} \sum_{i=1}^n h_{in}, \qquad Z_n \, = \, \frac{n \sum_{i=1}^n h_{in}(T_i - 1/n)}{[\sum_{i=1}^n (h_{in} - \overline{h}_n)^2]^{\frac{1}{2}}} \; .$$

Blom in [1] showed that the asymptotic distribution of Z_n is standard normal if the following condition is satisfied:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} (h_{in} - \bar{h}_{n})^{r}}{[\sum_{i=1}^{n} (h_{in} - \bar{h}_{n})^{2}]^{r/2}} = 0, \qquad r = 3, 4, \dots.$$

Here it will be shown that the asymptotic distribution of Z_n is standard normal under the much weaker condition that

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} |h_{in} - \bar{h}_n|^{2+\delta}}{\left[\sum_{i=1}^{n} (h_{in} - \bar{h}_n)^2\right]^{1+\delta/2}} = 0$$

for some positive δ . (Note that Blom's condition for r=4 implies this latter condition with $\delta=2$.)

To prove the asymptotic normality of Z_n under the weaker condition, we define

$$g_{in} = \frac{n(h_{in} - \bar{h}_n)}{[\sum_{i=1}^{n} (h_{in} - \bar{h}_n)^2]^{\frac{1}{2}}}$$

and note that Z_n can be written as $\sum_{i=1}^n g_{in} T_i$, since $\sum_{i=1}^n T_i = 1$. We also note that $\sum_{i=1}^n g_{in} = 0$, and $\sum_{i=1}^n g_{in}^2 = n^2$.

Next we define U_1, \ldots, U_n as independent random variables, each with probability density function e^{-u} for u > 0, zero for u < 0. Define S_n

Received August 15, 1962.

Research supported by National Science Foundation Grant No. NSF-G22585.

as $U_1 + \ldots + U_n$. It is a well-known and easily verifiable fact that the joint distribution of $U_1/S_n, \ldots, U_n/S_n$ is exactly the same as the joint distribution of T_1, \ldots, T_n . Defining W_n as $\sum_{i=1}^n g_{in}[U_i/S_n]$, we see that the distribution of W_n is exactly the same as the distribution of Z_n , for each n. Therefore we investigate the distribution of W_n .

Since S_n/n converges stochastically to unity as n increases, if $(1/n) \sum_{i=1}^n g_{in}U_i$ has asymptotically a standard normal distribution, so does

$$W_n = \left[\frac{S_n}{n}\right]^{-1} \left\{ \frac{1}{n} \sum_{i=1}^n g_{in} U_i \right\},\,$$

by a theorem to be found in Cramér [2, p. 254]. Since $\sum_{i=1}^{n} g_{in} = 0$,

$$\frac{1}{n} \sum_{i=1}^n g_{in} \, U_i = \frac{1}{n} \sum_{i=1}^n g_{in} \! \left(U_i \! - \! E \! \left\{ U_i \right\} \right).$$

Applying the classical Liapounoff criterion to the sum of the independent random variables with zero means

$$\frac{1}{n}g_{1n}(U_1-E\{U_1\}),\ldots,\frac{1}{n}g_{nn}(U_n-E\{U_n\}),$$

cf. Uspensky [3, p. 284], we find that $(1/n) \sum_{i=1}^{n} g_{in} U_{i}$ has asymptotically a standard normal distribution if, for some $\delta > 0$,

$$\lim_{n\to\infty} \frac{\sum_{i=1}^n E\{|(1/n)g_{in}(U_i-1)|^{2+\delta}\}}{[\sum_{i=1}^n E\{(1/n)g_{in}(U_i-1)\}^2]^{1+\delta/2}} = \ 0 \ .$$

It is easily verified that this last equality holds if and only if

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} |h_{in} - \overline{h}_n|^{2+\delta}}{\left[\sum_{i=1}^{n} (h_{in} - \overline{h}_n)^2\right]^{1+\delta/2}} = 0.$$

This completes the proof.

The device of using the fact that the joint distribution of T_1, \ldots, T_n is exactly the same as the joint distribution of $U_1/S_n, \ldots, U_n/S_n$ has been used to prove asymptotic joint normality of several functions of T_1, \ldots, T_n by Weiss [4].

REFERENCES

- Gunnar Blom, On the asymptotic distribution of linear combinations of interchangeable random variables, Math. Scand. 7 (1959), 321-332.
- 2. Harald Cramér, Mathematical methods of statistics, Princeton, 1951.
- 3. J. V. Uspensky, Introduction to mathematical probability, New York and London, 1937.
- Lionel Weiss, Limiting distributions of homogeneous functions of sample spacings, Ann. Math. Stat. 29 (1958), 310-312.