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PERTURBATION OF
ORDINARY DIFFERENTIAL OPERATORS!

ERIK BALSLEV

1. Introduction.

In the present paper L will denote an operator in the Hilbert space
Z*(a,b) derived from a formally selfadjoint, in general singular, ordinary
differential operator of order 2n and B will denote an operator of the
form By=py® of order k, 0<k<2n—1.

We find conditions under which, in the terminology of Wolf [6] the
operator B is L-compact. The study of such conditions is of interest in
view of the fact that perturbation of the operator L by an L-compact
operator leaves the essential spectrum unchanged (the spectrum of L
is divided into the set of isolated eigenvalues of finite multiplicity and
the rest of the spectrum, which is called the essential spectrum). For the
basic results concerning L-compact perturbations we refer to the paper
by Gokhberg and Krein [2] in which general Banach spaces are con-
sidered, and to the paper by Wolf [6], where a simpler and more detailed
treatment is given for the case of Hilbert spaces.

As was pointed out to the author by professor Kuroda (see Kuroda [4]),
it is of importance for some questions of quantum mechanics to know
whether B is of L-Hilbert-Schmidt type (see definition 3.5), and in the
theorems 51,1, 5I1,2 and 511,3 we give necessary and sufficient conditions
for this.

It turns out that a necessary condition that B be defined on the
domain of L is that g e %2 (a,b), and the sufficient conditions for B

loc

to be L-compact or of L-Hilbert-Schmidt type are growth conditions on
B

ERE

o

for « —~a and g —b.

The main results are formulated in the theorems of section 5: 1 1,3,4;
1T 2,3,5,6 and IIT 2,3,5,7.

Received November 3, 1962.

1 This research has been partially supported by a grant of the U. S. National Science
Foundation.




132 ERIK BALSLEV

I wish to express my thanks to E. Thue Poulsen, who suggested the
problem to me, and to Professor F. Wolf for helpful conversations and
suggestions during the course of the present work.

2. Definition of the operators.
a) The unperturbed operators. The terminology of Neumark [5, Kap.
V] will be used.
Let (a,b) be an interval, where a = —c and b= + o are allowed as
boundary points, and let
Do P15 - - 5P

be real-valued functions on (a,b), such that 1/py,p,,...,p, are locally
integrable. The quasi-derivatives y*! of a complex-valued function y on
(a,b) are defined by

dk
:,/[lc]—_:;i_%/‘7 for £k = 0,1,...,n—1,
x

y[n] . poc_i_n_?{’
da™
ank d
ymtkl = p, %n%z - %y[”“‘“l] for k = 1,2,...,n.

The formal differential operator ! is defined by

D(l) = {y | y™ exist, loc. a.c., for 0k <2n—1}
and
(y) =y for yeD().

Corresponding to ! we consider the following operators in .#2(a,b): The
maximal operator L defined by

Dy =D ={y | ye D) n L*a,b), Uy) € £*a,b)}
and
Ly =1ly) for yeD.

L, is the restriction of L to the set D, of functions in D with compact
support. The minimal operator L, is the closure of L', its domain is
denoted by D,. Finally, L, will denote a closed extension of L,, D, its
domain, L, a self-adjoint extension of L, and D, its domain.

b) The perturbing operators.

The theory of L,-compactness requires that B is a closable operator
defined on D,.
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In the following, when k=n+v+1 with 0<y<n—1, we assume, that
(1/pe)® and p¢™ exist, loc. a.c., for 1<r<v»—1. This implies, that
y® ) exists, loc. a.c., and hence the existence of y® for all y € D. Then
we can define for every complex-valued function 8 on (a,b) the formal
differential operator b; by

D(b,) = D
and
bi(y) = py® for yeD(by).

If b, (y) € L*a,b) for y € D, and for some fixed k, 0 Sk < 2n—1, we define
the operator B, by
Dy, = D,
and
B,y = bi(y) for yeDp,.

Lemma 2.1. Suppose that B’ is defined on D,, and that B is a.e. equal
to a function (5, with the following properties:

(1) S={x | z € (a,b), fy(x) =0} is closed.
(2) For every interval [«,f] < (a,b)\S there exists a K, ;>0 such that
1/py(x) < K, 5 for a sz <p.

Then B,' is closable.

This form of the conditions is due to conversations with T. Gamelin.

Proor. a) We consider first the case f(x)=1. Let By, be the restric-
tion of B, to functions with compact support. It is easy to prove that
B, is contained in B} and hence closable.

b) In the general case let

() ¥, =rs00 0 In L¥a,b),

(1) BLY, >roeo 2 I FL¥a,b).

From (ii) it follows, that z(x)=0 a.e. for x € §. Also for any interval
[o, 8] < (a,b)\S, the conditions (2) and (ii) imply

z(x)

i

p(z)

From a) it follows that z(z)=0 a.e. on [«,8]. Hence 2=0 in #*(a,b),
and the lemma is proved.

2
dx—> 0
T7—>00

- yr(k)(x)

In the following we shall assume that § is a.e. equal to a function f,,
having the properties (1) and (2) stated in lemma 2.1, so that B,’, when-
ever defined on D,, is closable.
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3. Formulation of the problem.

DEerintTION 3.1. For any closed operator 4 in a Hilbert space H with
norm |-||, we define the A-norm of x € D, by

[2lg® = lll®+ | 4[> .
Then D, is a Hilbert space with the 4-norm.

DrriniTiON 3.2. A set S<D, is said to be 4-bounded, if |z, <K
for x € 8. An operator B defined on D, is said to be 4-defined. When
B maps every A-bounded set into a bounded set, B is called 4-bounded.
When B maps every 4-bounded set into a precompact set, B is said to
be A-compact.

Remark 3.3. When 4 is closed, and B is a closable A-defined opera-
tor, B is A-bounded.

Lemma 3.4. B is A-compact if, and only if, B(A — 1)1 is compact for
some A in o(A), the resolvent set of A (or, equivalently, for all A € o(A )

DEerFiNiTION 3.5. B is said to be of A-Hilbert—-Schmidt type, if
B(A—-2)7! is a Hilbert-Schmidt operator for some Aeo(4) (for all

A€ o(4)).

For every L, and k, 0<k=<2n—1, we shall consider the following
problem: For which functions f is B;’ an L -compact operator, resp. of
L,-Hilbert—Schmidt type ?

Instead of treating this problem directly we consider the corresponding
problem for the quasi-derivatives: Let the operator B, be defined by

By = py™i.
For which functions g is B, an L defined and L,-compact operator,
resp. of L,-Hilbert—Schmidt type ?

For 0k <n—1 we have B,=B,’; for k=n and p,(z)+0 a.e. the solu-
tion of the problem for B, can immediately be applied to B,’. For
n+1=<k=2n—1 the derivatives ¥® can be expressed linearly by the y!¢|,
s=2n-k,...,k, with certain functions of the pﬁk‘""q), q=r,....k—n,
r=0,...,k—n, as coefficients; then the results for the B, can be applied
to B,', at least to give sufficient conditions on f in order that B,  be
L,-compact.

4. Local conditions and reduction of the main problem.

Lemma 4.1. In the regular case, i.e. when (a,b) is finite, and 1/p,,
P1s - - - Dy, 1€ integrable on (a,b), for any set of complex numbers xy, x4, . . .,
Oon—1:B0sB1s « + > Ban—1, there exists a function y € D such that
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Y a) = o, yRb) = B4, E=0,1,...,2n—1.
Proor. See Neumark [5, § 17.3, lemma 2].

Lemma 4.2. For every L and k a necessary condition in order that B,
be L, -defined is that g € L2 (a,b), that is

loc

f B@)2dx < o

c

for every compact subset ¢ of (a,b).

Proor. By means of lemma 4.1 it is simple to construct for any
z, € (¢,b) a function y, € D, such that

Yo (@) = 1.
From this and the continuity of ! the conclusion of the lemma follows.

LemMA 4.3. In the regular case f € L*a,b) implies that By, is L-com-
pact for k=0,1,...,2n—1.

Proor. Let y,,vs,...,Ys, be a system of linearly independent solu-
tions of the equation

(I—A)y = 0  for some non-real 1,

normed such that the Wronskian is 1. Set

Y1) v Yeaa(®) Y@ ()

YEA@) R ) yRT) -y )
Then the solution of the equation
(l=Az=f

and its quasi-derivatives are given by
2n on o
@) @) = 3 eyP@)+ 3y [ 0O fEdE k= 01,201,
i=1 i=1
0

Let {z,} be an L-bounded sequence. Then by (2) for k=0 and Schwarz’

inequality on

> cisyi} is bounded in #2(a,b) ,
i=1
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and hence
le;sl < K for ¢ =1,2,...,2n, s =1,2,....

We choose a subsequence {z,} such that

Ciop—> k; 1 =1,2,...,2n

18t t—>00 ¥’
and

o2/ weakly .

Then by Lebesgue’s dominated convergence-theorem
By, =2 B() Zk Y (@) + zy”‘] f )f(f)ds}
0
in %%a,b).
DeriNiTION 4.4. Unmixed boundary conditions are conditions of the
form on—1 on—1
2aya) =0 and 3 Byb) =
=0 =0
DeriNiTION 4.5. When [ is a formal differential operator applied to
functions on (a@,b), we shall denote by L(x,8) the maximal operator
corresponding to ! applied to functions on [«,8]<(a,b). If L, is defined
by certain unmixed boundary condtions at the endpoints ¢ and b, and
a<ax<f<b, we shall denote by L,(a,x) the operator corresponding to I
applied to functions on (a,x) and with the same boundary conditions at
the point a as L, but with no boundary conditions at x. L.8,b) is de-
fined in the same way, and the same notation is used for B,. If there
are no boundary conditions at the point @, then L,(a,«) shall mean
L(a,«), ond similarly for b.

THEOREM 4.6. Let the operator L, be defined by certatn unmizxed boundary
conditions at the endpoints a and b. Then a necessary and sufficient con-
dition for the operator By, to be L,-bounded or L -compact is that

) ﬂE loca/b)
and

(2) Byla,«) and B,(8,b) are L -bounded, resp. L,-compact with respect
to Lya,x) and L, (B,0) for some «,p with a<x<f<b (equivalently,
for all such «,pB).

Proor. For every L, -bounded sequence {y,} the restrictions of y, to
the intervals (a,«), (x,8) and (B8,b) form L, a,x)-bounded, L(«,p)-
bounded and L,(8,b)-bounded sequences. From this follows the suffi-
ciency.
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By means of lemma 4.1 it is simple to construct to a given L (a,«x)-
bounded sequence {z,} an L,-bounded sequence {y,} such that z, is the
restriction of y,, to (a,«), and similarly for the intervals («,8) and (8,b).
From this follows the necessity.

By theorem 4.6 the problem concerning compactness is reduced to the
following main cases:
I. The interval [0,1] with both endpoints regular, boundary condi-
tions at 0 and no boundary conditions at 1.
II. L and L, on [0,c0) with 0 regular.
III. L on [0,1) with O regular, 1 singular.

Remark 4.7. Every theorem concerning L -compactness of the B,
remains valid if the operator L, is changed by addition of a bounded
function r to p,,. For, obviously, a set S<.D,is L,-bounded if, and only if,
it is (L,+r)-bounded.

5. Investigation of the main cases.

Case I: The interval [0, 1] with both endpoints regular, boundary condi-
tions at 0 and no boundary conditions at 1.

TrareorEM 5I,1. Suppose that y*(0)=0 is not a boundary condition for
L, for some k with 0<k<2n—1. Then € £%0,1) is necessary for By to
be L -bounded and sufficient for B, to be L,-compact. Also g € £?0,1) is
sufficient in order that B, be of L -Hilbert—Schmidt type.

Proor. a) Suppose that B, is L,-bounded. The existence of a function
y € D,, sach that y*(0)= 0, implies
J.[/f}(ar:)(2 dx < oo for some ¢ > 0,
0
and then by lemma 4.2 8 € #?(0,1).
b) By lemma 4.3 8 € .#2%(0,1) implies that B, is L -compact.
For any L, the ¢; in the expression (2) for z*! used in the proof of
lemma 4.3 are bounded linear functionals of f for i1=1,2,...,2n. Then
there exist functions &, € £2(0,1), ¢=1,2,...,2n, such that

1
o) = [RS8 ds .
0

By substitution of these expressions in (2) of lemma 4.3 we obtain the
following representation of (B,—21)™*:
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(Be= 1) f(@) = [ Kyla£) £(6) de
0

With 2n
]ﬂ(w) 3 yP@) he(O) +v,(8)], 0sésa,
Ky

x’f) = 2n
oo Sy, <t
i=1
Since the y*! and the v; (see lemma 4.3 (1)) are continuous on [0, 1], it
follows that € £?%[0,1] implies

11
fﬁm@@RMﬁ<m for k=0,1,...,2n—1.
00

Lemma 51,2. For 0<a=<oo let fe £*0,a) and set
F@):fﬂna.
0

Let p be a complex-valued function on [0,a) and let T be the operator in
Z%0,a) defined by

Dy = {f | fe £%0,a), yF € L*0,a)}
and

Tf(@) = y@)F(x) for feDp.
Then T is a compact operator with Dp=F%0,a) if, and only if

(1) Y(x) = flzp(t)let<oo, O<x<a;
(2) ¥ (x) >, 0 0;
(3) ¥ (x) >4 .00 0

This lemma goes back to a corresponding statement concerning
boundedness, which for a < oo, is due to J. Odhnoff (private communica-
tion): 7' is a bounded operator with D,=.2%0,a) if, and only if, (1)
holds and
(2a) 2Px) < K for O<z<a.

The idea of the proof given here is due to E. Thue Poulsen.

Proor. We prove the lemma for a=oo; for a < o it follows easily (in
that case also (3) is trivially implied by (1)).

(a) Suppose that 7' is compact with D= .%%0,) and consider for
0 <x < oo the functions f, defined by
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zt 0=tz

Jalt) = 0 z<t<oo.

The family {f,}, ... is bounded in #2(0,c0), hence (1) follows. Since
Ju(t) > 0 for x - 0 or x — o and 7 is compact, it follows that

x¥P(x) < ||ITfJ2—~0 for x>0 or 2> o0,

(b) We now prove that (1), (2) and (3) imply that 7' is compact.
(i) Let 2¥(x) <c for 0 <x < oo. For fe £2(0,0), f(x)20, 0<x<f < oo,
we have

B

WP + P P 42 [ 2a) O S

-3

B
[ v Fo@) do

By Schwarz’ and Hardy’s inequalities

B

| w@)? Fe) da

o

2 PPPIS I+ ()] 1122+ el f1]?

6ellfll,* -

(For Hardy’s inequality, see e.g. Hardy, Littlewood and Polya [3]).
This implies, that 7' is a bounded operator with Dj=.%#2%0,), and
7> < 6c.

(ii) For a function p with compact support satisfying (1) the result
follows from Schwarz’ inequality and Lebesgue’s theorem on dominated
convergence.

(iii) For any y satisfying (1), (2), and (3), let ¢, =yx,, where z, is the
characteristic function of [1/n,n]. By (i) and (ii) the corresponding
operators T, form a sequence of compact operators converging uniformly
to 7', which proves, that 7' is compact.

A

THEOREM 51,3. When y2*-1(0)=0 is a boundary condition for L, and
P, € L*0,1), a necessary and sufficient condition in order that B,, ; be
L,-compact is that

1

(1) f{ﬁ(t)izdt<oo for O<xz<l1,

1

(@) 2 [ 1B dt—, 0.

x

Proor. (a) Suppose, that 8 satisfies (1) and (2). For f=Ly we have
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y2n-1(z) = f [P (DY) —f ()] dt .
0

If {y,} is an L -bounded sequence, then
ly(x)] < K for 0=sx=<1, s=1,2,....
Hence {p,y,—f} is bounded in #?(0,1), and by lemma 51,2 the sequence

{By>~"1} is compact.
(b) Let B,,_; be L,-compact and consider a set {y,},..<; such that

d et 0=Zx=Ze¢
& len-1] — ) =x=¢,
dx(ye () { 0, e<zsl.

It is easy to see, that we can choose {y,},..<;, to be an L -bounded set,
and then by the proof of lemma 5I,2a,
1
ef B@)]? de— .

TrEOREM 51,4. If y*+)(0) =0 are boundary conditions for L, for some k,
0sk=n—2,and v=0,1,...,p with 0Sp=<n—2—k, and y*+P+1(0)=0 s
not a boundary condition for L,, then it is necessary for By, to be L -bounded
and sufficient for B, to be L -compact, that

B(x)xP+l € £2(0,1) .

Proor. By means of the expression (2) of lemma 4.3 for y*+»+1l the
proof is straightforward.

ReEMARrK 51,5. Similar, more complicated relations hold for n—1<k=
2n—2, 0<p=<2n—-2—k.

Case II: L and L, on the interval [0,cc] with the endpoint 0 regular.

TreorEM 5IL,1. Let A(x) be an nxn matrixz, whose coefficients are
complex-valued functions on [0,00) such that for sufficiently large x, say
x>,

A(x) = Ao(x) + Ay(2) ,
where the elements of Ay(x) are loc. a.c., and the elements of A (x) and
A,(x) are integrable on (xy,00). Let

Wy(2), wy(®), - - -, Wy(X)

be the eigenvalues of Ay(x) arranged such that w,(x) is continuous for
t=1,2,...,n and suppose further, that
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lim Re(wy(x) —wy(x)) £ 0 for ik, 4,k=1,2,...,n.

ZT—>00

Then the system of equations

7 = A@yi)

has n linearly independent solutions y;, j=1,2,...,n, such that

Yurl@) = () exp ( [ww® ds) ,
where ’

Cjx() o Cik
Proor. We refer to Neumark [5, §22,1, Satz 2, Folgerung 1].

TrrOREM 5I1,2. Suppose that the coefficients of 1 satisfy the conditions
llpo(x) = ao(x)+b0(x)’ Pi() = “i(x)+bi(x)’ 1=12,...,n,

such that for x > x, the functions a; are loc. a.c.,

f la/ (@) dz < o and f 1b,(@)] dz < oo
o o
for 1=0,1,...,n, and
lim ay(z) + 0.
Then, for k=0,1,...,2n—1, f € £*0,00) implies that B, ts L-compact
and that B,, is of L -Hilberi—Schmidt type.
If y'®(0) =0 is not a boundary condition for L, then f € £%(0,) ts also
a necessary condition in order that By, be of L -Hilbert—Schmidt type.

Proor. (a) Suppose, that g € £?0,00). The equation
(1) ()~ 2y =0

is equivalent to a system

@) 2 = @),
z
where
7= (g, 9", ...,y 1)
and



142 ERIK BALSLEV

with

0 1 0 0 0
0 0 1, 0 0
0 o o0 °. .00 0

1 0 0,

Aylz) = . 0 a O°

’ . a 0-—1
0 apy O 0 -1
an—3% 0 0 L 0 0

(@q is in the »’th row and (n+ 1)’th column of the n x » matrix Ay(x)).
The elements of A, exist and are integrable on (,,o0), and the coeffi-
cients of 4, are integrable on (x,, o). The eigenvalues w;(x), . .., wy,(x)
of 4,(x) are the roots of the equation

(%) 02" —a,(2) "2+ ay(x) @*t — ...+ (— 1)"(6%(-70) - l) =0.

We choose A such that

lim Re(w;(@) —w(®)) £ 0 for ¢ +k, 4,k=12,...,n.

Z—>00

Let r;(z)=Rew,(z), i=1,2,...,2n, and choose the order of the w,; such
that

r1(00) < 75(0) < ... < Ty () < Tyu(c0) .
Then there exist z; >0 and ¢> 0 such that

) < rpx) < ... <) < —e <0< e< (@) < ... < 1)

for x> x,, and

rix) = — 7y _s11(), t=12,...,n.

Application of theorem 5IL,1 to (2) shows, that (1) has 2n linearly inde-

pendent solutions y, . . .,¥,, such that
(3) ¥¥(@) = ¢, (%) exp ( fwk(f) df)
0
=cj,(2) Wi(),
where

Cjk(x);;;c]'k fO!‘ j—'—— 1,...,271', k=0,...,2n—1,

and
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Wi(x) = exp(fwk(ff)dé), kE=12....2n.
0

We choose A such that c;,#+0 for j=1,...,2n, k=0,...,2n—1. Then

Y, € £¥0,00) for 1 =1,...,n,
y; &€ L20,00) for i =n+1,....2n.

Let yy,...,yy, be normed such that the Wronskian is 1. Then for
f e Z%0,) the solution of the equation

Ly-ty = f

together with its derivatives are given by

(@) #9) = 3 kafa) + 3 9a) [0@f@ ds— 3 o) [@)(0) as
i=1 i=1 R i=n+l K

for k=0,1,...,2n—1, where

Co, W) ... Co,i-1(8) W,;_1(8) Co,i+1(§)Wi+1(5) -+ Cy, 2n(E) W 5, (€)

...............................................................

¢
= ¢,(§)Wi(§) = c(§) exp (fwi(t) dt) ,
0

and

(&) =2 ¢ s

1=1,2,...,2n. (For the definition of the v,, see lemma 4.3 (1).) By the
choice of 1 we obtain ¢;+0 for i=1,...,2n.
Substitution of the asymptotic expressions for 4i*! and v, in (4) gives

() P9 = S kad@ W@+ 3 @) Wo(@) [ &)W @) d -

2n g
~ 3 cu@W(@) [ c@WOF @) ds

1=n+1 v
for k=0,1,...,2n—1. Then
(6) By(a) = f@) 3 keu@Wil) + [ Kilw 1) e
= 0

= Bj,y(x) + Byyy()
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' Ecm f)exp(fw ) 0sé=w,
Ky(x,§) =
l B(x) z Cril@ exp( fw ) <é&.
t=n+1

Since |¢;;(x)| <K for 0w <o, 9=1,2,...,2n,k=0,1,...,2n—1, we have

where

x x

f[cki(x)|2|ci(§)]2 exp <2fri(t)dt> dé < K4(2¢)1 f(—2ri(£)) exp (2 (r,-(t)dt) dé < K,
1 3 1 ]

&

for 1=1,2,...,n, and similarly, for t=n+1,...,2n, k=0,...,2n—1,

o) & oo
flcki(x)lzlci(E)lzexp <—2fr,.(t)dt) < K*(26)1 f.?ri(é) exp( f dt) s < K,

Also [{|K(x,8)|%d& < K|f(x)|? for 0=z =2, and hence
[ [ 1w o dgde < K [ 1@ de < o,
00 0
and B,, is a Hilbert-Schmidt operator for £=0,...,2n—1. From the

expression (5) for y =y it is seen, that if {y,} is an L-bounded sequence,
then {k;,} is bounded for i=1,...,n. Since

cri(2) exp ( f”i(t) dt)

0

< K for 0gx<oo, 2=1,...,n,

it follows from Lebesgue’s theorem on dominated convergence, that
B, is L-compact. Thus, we have proved that B, is L-compact.

For any L, the k, in (6) considered as functions of f are bounded linear
functionals on #20,00). Hence there exist functions h; e Z%0.),
1=1,...,n, such that

By(L,—)f(x) = fHkxsf(s)f

where

Hy(z,§) =

3 x
B(x) [ (hi(f) exp <fwi(t)dt) +Ci(5)> Cri(2) exp (fwi(t) dt)}, 0=
i=1 g ;
n z 2n ¢
B(x) [Z hy(&) () exp ( fwi(f)df) — 2 cul@)ey(§) exp <_ fwi(t)dt)] z<§.
i=1 0 = x

M=

I

(s,
)

1=n+1
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It is evident that, when fe %% 0,), the terms involving A,(&) are
also square-integrable, so that B, (L,— 1)1 is a Hilbert—-Schmidt operator.
(b) Suppose now that

[o0]

Of f \H (2, &) ded < oo

for some k, 0<k < 2n—1, and that ¢*(0) =0 is not a boundary condition
for L,. We choose z, and x; such that 0 <z, <z, and, for some §>0,

ro(®) > 7,(0) =08 > r,_q(0)+6 > ry(x) for x>z, 1 =1,2,...,n—1,
and

n—1

€ (E)Chn(®)] — 2 lc;(E)cps(x) exp(—202,) > K > 0  for x>x,.

This is possible, since all the c; and c;; have finite limit values different
from 0 as # - o. Then, for x> z,+x,,

:

0

=1

% ¢i(&)ey; (x) exp ( fw t)dt)

de > K2f exp( fr,,(t)dt)dg > K, >0.
§

Zo

Finally we can find x, >z, + 2, such that

f éhi(s)cm(x) exp ( f wi(t)dt)

0
Then

2
d¢ < K,[4¢ for zz=z,.

[ 1@ o2 de > Pkt for wzay,
0

hence
o0

[ 1B@)edz < .

T2
Also by theorem 4.6 and theorem 51,1

Lo

[ Byde < o,

0

and we have proved, that § e £%0, ).

TuroreM 511,3. If, on the interval (—oco,0), the coefficients satisfy the
asymptotic relations required in theorem 5I1,2 both for x — co and for
x — —oo, then the index of deficiency vs (0,0), and L is self-adjoint. A

Math. Scand. 11 — 10
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necessary and sufficient condition in order that B, be of L -Hilbert-Schmadi
type is that f € L3~ o0, 00).

Proor. The proof is similar to the proof of theorem 5I1,2.

Remark 511,4. For po=1, p,=01for ¢=1,2,...,n, the result of Agudo
and Wolf [1] follows.

TrEOREM 511,5. The following conditions are sufficient in order that
By, be L-compact:

(1) B e £%0,00)

(@) 2 [ 1B dt >4ovee 0
:cx %

(®) () ( [XCEk dt) e £2(0, ).
0

Proor. For f=Ly,

By ay(@) = B@)y™0) — (@) [ f0dt + (@) [ palt)ytt) dt
0 0

= B 1y(@)+ By 1y(2) + By 1y(2) -
Since {y/2"-1(0)} is bounded for an L-bounded sequence {y,}, it follows
from (1) that Bj, , is L-compact. By lemma 51,2, conditions (1) and (2)
imply that B), , is L-compact. By lemma 4.3 the operator B,,_,(0,K)
is L(0,K)-compact, and since this evidently holds for B;, ,(0,K) and
B}, ,(0,K), also B,, (0,K) is L(0,K)-compact. Then an L-bounded
sequence {y,} has a subsequence {y,,} such that

By 1Y (%) ;52 2(%)  a.e.on (0,K).

Since this holds for any K > 0, there exists a subsequence {y,} such that

By 1Yg(®) =2 2(x)  a.e. on (0,00).

By Lebesgue’s dominated convergence theorem, this together with (3)
implies ” .
BZmlysgl__;_c,’o z in  Z%0,),

2 .
and B,,_, is L-compact.

THEOREM 5I1,6. We consider the case, where n=1, p(x)=py(z)=0,
1/p e £Y0,), and
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xP(z) = xjdt/p(t) < K for 0fx<oco and p,(x)=0.

Then B, is L-compact if, and only if, B satisfies the conditions
(1) p e £20,00),

(@) 2 [ 1B dt >, 0

Proor. By theorem 5II,5 conditions (1) and (2) imply that B, is
L-compact. Suppose, on the other hand, that B, is L-compact. Define
the functions y, for 0 <a < oo by

Ia‘*xP(x) + a—%fp(t) dt — E{fﬁp(t) dt

P(x) , 0sz=a,

Yol2) = FO)
) i a1 L P() dt
a’P(x)<1""*—P‘(‘O—)‘“>, a<x<oo.,
Then . 0zesa.
Lya(x)={0 , a<x<oo;
Blya(x) = l a“lng(t)dt
ﬁ(x)a'i (—‘1 + ﬁiPEij)v) : a<xr<oo.

It follows from simple inequalities that {y,}, <q<e I8 an L-bounded set
for some a,>0, and
Byy,(x)—— 0  pointwise .

a—> 0o

This together with the L-compactness of B; implies

1Balla 20,

and since Y

a1 j P(t)dt—= 0,
0

(1) and (2) follow.

Case III: L on the interval [0,1) with 0 regular and 1 singular.
We suppose that p, € £%0,1) and consider only the operator B,,_;.
The following theorems can be proved by the methods used in I and II.
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Remark 5IIL 1. For every y € D the function %27-1(x) has a limit
as z — L.

Tueorem 5IIL2. If § € £%0,1), then B,,_, is L-compact.

TarorEM 5IIL3. If there exists a ye D such that y2»-1(1)+0, then
B e £?0,1) is necessary in order that By, ; be L-bounded.

CoroLLARY 5IIL4. If n=1, p;=0 and [Fdt/py(t) e £L*0,1), then
B e L0,1) is necessary in order that B, be L-bounded and sufficient in
order that B, be L-compact.

TrEOREM 5IIL,5. If py(x) =0 and y*»-1(0) =0 for all y € D, then B,, _; is
L-compact if l—e

ef B@)? de—s 0 .

0

CoroLLARY BIIL,6. If n=1, py(x) =0, py(x) 2 0 and [§dt[p,(t) &€ L*0,1),
B, is L-compact, if

1—¢

ef B(@)[? da— 0 .

0

TrrorEM BIIL7. If n=1, p(x)=0, po(x)=0, P(x)=/[3dt/py(t) ¢
L2(0,1) and (1 —x)P(x) < K for 0 <z < 1, then B is L-compact if, and only if,
1—¢
sf @) dz — 0.

0
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