THE RESOLUTIONS OF THE IDENTITY FOR SUMS AND PRODUCTS OF COMMUTING SPECTRAL OPERATORS

NIELS WENDELL PEDERSEN

1. Introduction.

Dunford [1] proved that if T_1 and T_2 are commuting spectral operators on a reflexive complex Banach space with the resolutions of the identity $E(\cdot)$ and $F(\cdot)$, respectively, and if the Boolean algebra of projections generated by $E(\cdot)$ and $F(\cdot)$ is bounded, then T_1+T_2 and T_1T_2 are spectral operators.

Later this has been improved by Foguel [3] who proved that the same result holds on a weakly complete complex Banach space and that the resolution of the identity $G(\cdot)$ of T_1+T_2 is determined on Borel sets α with $G(\text{boundary of }\alpha)x=0$ by

$$G(\alpha)x = \int E(\alpha - \mu) F(d\mu)x$$
,

where the integral exists in the sense of Riemann. For the product T_1T_2 a similar formula was obtained.

The purpose of this note is to prove that the restriction on α can be removed by defining convolutions of $E(\cdot)$ and $F(\cdot)$ differently (see theorem 2).

2. Notation.

If X is a complex Banach space, a spectral measure is a set function $E(\cdot)$, defined on the set \mathscr{B} of all Borel sets in the complex plane π , whose values are projections on X, satisfying:

- 1. If $\sigma, \delta \in \mathcal{B}$, then $E(\sigma)E(\delta) = E(\sigma \cap \delta)$.
- 2. $E(\pi) = I$, $E(\emptyset) = 0$, where \emptyset denotes the empty set.
- 3. The vector valued set function $E(\cdot)x$ is countably additive for every $x \in X$.
- 4. There exists a compact set $\varkappa \neq \emptyset$ such that $E(\sigma) = 0$ if $\sigma \cap \varkappa = \emptyset$.

From the principle of uniform boundedness it follows that if $E(\cdot)$ is a spectral measure, then there exists a constant K such that $||E(\alpha)|| \le K$ for every $\alpha \in \mathcal{B}$.

A bounded operator T is a spectral operator with resolution of the identity $E(\cdot)$, if it satisfies:

- a) $E(\cdot)$ is a spectral measure.
- b) If $\alpha \in \mathcal{B}$, then $TE(\alpha) = E(\alpha)T$.
- c) If $T \mid E(\alpha)X$ is the restriction of T to the subspace $E(\alpha)X$, then

$$\sigma(T \mid E(\alpha)X) \subseteq \overline{\alpha}$$
 for every $\alpha \in \mathcal{B}$,

where $\sigma(A)$ denotes the spectrum af A.

If T is a spectral operator, then the operator $S = \int \lambda E(d\lambda)$ is called its scalar part and N = T - S its radical. The operators T, S, N and $E(\alpha)$, $\alpha \in \mathcal{B}$, commute. The operator T is called a scalar operator if T = S.

3. The product measure of two commuting spectral measures.

In this section we shall prove the existence of a product measure of two commuting spectral measures. We first state some lemmas without proof.

LEMMA 1. Any bounded complex measure defined on \mathcal{B} is a regular measure.

For a proof, see [2, pp. 170].

LEMMA 2. If $E(\cdot)$ is a spectral measure, then for every $x \in X$ there exists a positive, finite, and regular measure v_x defined on the Borel sets in the complex plane such that

$$\lim_{\alpha(\alpha)\to 0}||E(\alpha)x||=0.$$

For a proof, see [2, pp. 320-321].

COROLLARY. If $E(\cdot)$ is a spectral measure, then for every $x \in X$ the set function $E(\cdot)x$ is a regular vector valued measure.

By $\mathscr C$ we denote the algebra generated by all sets in $\pi \times \pi$ of the form $\sigma \times \delta$ with $\sigma \in \mathscr B$, $\delta \in \mathscr B$, and by $\mathscr B^*$ the σ -algebra generated by $\mathscr C$.

Let $E(\cdot)$ and $F(\cdot)$ be commuting spectral measures, that is, $E(\sigma)F(\delta) = F(\delta)E(\sigma)$ for any two Borel sets σ, δ . Every $\alpha \in \mathscr{C}$ may be represented in the following way:

$$\alpha = \bigcup_{i=1}^{n} (\sigma_i \times \delta_i)$$

with $\sigma_i \in \mathcal{B}$, $\delta_i \in \mathcal{B}$, i = 1, 2, ..., n, and with $(\sigma_i \times \delta_i) \cap (\sigma_j \times \delta_j) = \emptyset$ for $i \neq j$. If $\alpha \in \mathcal{C}$ is written in this way, we define

$$P_0(\alpha) = \sum_{i=1}^n E(\sigma_i) F(\delta_i) .$$

It is easily seen that this definition is independent of the representation of α and that the set function $P_0(\cdot)$ is finitely additive on $\mathscr E$ and satisfies

$$P_0(\alpha \cap \beta) = P_0(\alpha)P_0(\beta)$$

for any two sets α and β in \mathscr{C} . Also $P_0(\pi \times \pi) = I$, and there exists a non-empty compact set $\kappa_1 \times \kappa_2$ such that $\alpha \cap (\kappa_1 \times \kappa_2) = \emptyset$ implies $P_0(\alpha) = 0$. These notations will be used throughout this and the following section.

LEMMA 3. If there exists a constant K such that $||P_0(\alpha)|| \leq K$ for every $\alpha \in \mathcal{C}$, that is, if the Boolean algebra of projections generated by $E(\cdot)$ and $F(\cdot)$ is bounded, then for every $x \in X$ the set function $P_0(\cdot)x$ is regular and countably additive.

PROOF. Let $\sigma \in \mathcal{B}$ and $\delta \in \mathcal{B}$. From the corollary it follows that there exist two closed sets κ_1 and κ_2 and two open sets γ_1 and γ_2 with $\kappa_1 \subset \sigma \subset \gamma_1$ and $\kappa_2 \subset \delta \subset \gamma_2$ such that

$$\sup_{\alpha\subset\gamma_1\smallsetminus\varkappa_1}\|E(\alpha)x\|\,<\,\varepsilon/2K^2\quad\text{ and }\sup_{\alpha\subset\gamma_2\smallsetminus\varkappa_2}\|F(\alpha)x\|\,<\,\varepsilon/2K^2\;.$$

It follows that $\kappa_1 \times \kappa_2 \subseteq \sigma \times \delta \subseteq \gamma_1 \times \gamma_2$ and that for $\alpha \subseteq \gamma_1 \times \gamma_2 \setminus \kappa_1 \times \kappa_2$ and $\alpha \in \mathscr{C}$ we have

$$\begin{split} \|P_0(\alpha)x\| &= \|P_0(\gamma_1 \times \gamma_2 \setminus \varkappa_1 \times \varkappa_2) P_0(\alpha)x\| \\ &\leq \|P_0(\alpha)\| \|P_0(\gamma_1 \times \gamma_2 \setminus \varkappa_1 \times \varkappa_2)x\| \\ &\leq K\|P_0\big((\gamma_1 \setminus \varkappa_1) \times \gamma_2 \cup (\gamma_1 \cap \varkappa_1) \times (\gamma_2 \setminus \varkappa_2)\big)x\| \\ &= K\|P_0\big((\gamma_1 \setminus \varkappa_1) \times \gamma_2)x + P_0(\varkappa_1 \times (\gamma_2 \setminus \varkappa_2))x\| \\ &\leq K\big(\|E(\gamma_1 \setminus \varkappa_1)F(\gamma_2)x\| + \|E(\varkappa_1)F(\gamma_2 \setminus \varkappa_2)x\|\big) \\ &< K\big(\|F(\gamma_2)\|\varepsilon/2K^2 + \|E(\varkappa_1)\|\varepsilon/2K^2\big) \leq \varepsilon \ , \end{split}$$

so that $P_0(\cdot)x$ is regular.

In order to prove that $P_0(\cdot)x$ is countably additive, let $\{\sigma_n\}$ be a decreasing sequence of sets from $\mathscr C$ whose intersection is void, and let $\varepsilon > 0$ be given. Since $P_0(\cdot)x$ is regular, there exists a closed set κ_1 , which we may assume compact and in $\mathscr C$, such that

$$\kappa_1 \subseteq \sigma_1 \quad \text{and} \quad \|P_0(\alpha)x\| < \frac{1}{2}\varepsilon \quad \text{for} \quad \alpha \subseteq \sigma_1 \setminus \kappa_1, \ \alpha \in \mathscr{C}.$$

By induction we now construct a sequence of closed sets $\{\kappa_n\}$ from $\mathscr C$ such that

$$\begin{split} \varkappa_n \, \subset \, \sigma_n \cap \varkappa_{n-1} \;, \\ \|P_0(\alpha)x\| \, < \, \varepsilon/2^n \quad \text{for} \quad \alpha \, \subset \, (\sigma_n \cap \varkappa_{n-1}) \diagdown \varkappa_n \;. \end{split}$$

Since $\kappa_n \subset \sigma_n$ and $\sigma_n \setminus \emptyset$ it follows that $\kappa_n \setminus \emptyset$; but then there exists a number n_0 such that $\kappa_n = \emptyset$ for $n > n_0$, that is, $P_0(\kappa_n)x = 0$ for $n > n_0$. From the identity

$$\sigma_n \setminus \varkappa_n = (\sigma_n \setminus \varkappa_1) \cup \bigcup_{i=1}^{n-1} (\sigma_n \cap \varkappa_i) \setminus \varkappa_{i+1},$$

where the union is disjoint and $\sigma_n \setminus \kappa_1 \subset \sigma_1 \setminus \kappa_1$, we then get

$$\begin{split} \|P_0(\sigma_n \searrow \kappa_n)x\| &= \left\| P_0(\sigma_n \searrow \kappa_1)x + \sum_{i=1}^{n-1} P_0((\sigma_n \cap \kappa_i) \searrow \kappa_{i+1})x \right\| \\ &\leq \|P_0(\sigma_n \searrow \kappa_1)x\| + \sum_{i=1}^{n-1} \|P_0((\sigma_n \cap \kappa_i) \searrow \kappa_{i+1})x\| \\ &\leq \frac{1}{2}\varepsilon + \sum_{i=1}^{n-1} \varepsilon/2^{i+1} < \varepsilon \ . \end{split}$$

Hence, for $n > n_0$, we have

$$||P_0(\sigma_n)x|| < \varepsilon ,$$

which proves the countable additivity of $P_0(\cdot)x$.

The following theorem now follows from [4, theorem 2.14 and corollary 2.17].

Theorem 1. If X is a weakly complete complex Banach space and $E(\cdot)$ and $F(\cdot)$ are commuting spectral measures whose values are projections on X, then there exists a unique set function $P(\cdot)$, defined on the σ -algebra \mathscr{B}^* generated by \mathscr{C} , satisfying:

- 1. $P(\cdot)$ is an extension of $P_0(\cdot)$.
- 2. $P(\sigma \cap \delta) = P(\sigma)P(\delta)$ for every two sets σ, δ in \mathscr{B}^* .
- 3. The vector valued set function $P(\cdot)x$ is countably additive for every $x \in X$.

The set function $P(\cdot)$ is called the *product measure* of $E(\cdot)$ and $F(\cdot)$.

4. Sums and products of commuting spectral operators.

We are now able to prove our main theorem.

Theorem 2. Let T_1 and T_2 be commuting spectral operators on a weakly complete complex Banach space X with the resolutions of the identity $E(\cdot)$ and $F(\cdot)$, respectively, and let the Boolean algebra of projections generated by

 $E(\cdot)$ and $F(\cdot)$ be bounded. Then $T_1 + T_2$ and T_1T_2 are spectral operators, and their resolutions of the identity, $G(\cdot)$ and $H(\cdot)$ respectively, are determined by

$$\begin{array}{ll} G(\alpha) \,=\, P\big(\{(\mu,\lambda) \mid \mu+\lambda \in \alpha\}\big), & \alpha \in \mathcal{B} \;, \\ H(\alpha) \,=\, P\big(\{\mu,\lambda) \mid \mu\lambda \in \alpha\}\big), & \alpha \in \mathcal{B} \;, \end{array}$$

where $P(\cdot)$ is the product measure of $E(\cdot)$ and $F(\cdot)$.

REMARK. The product T_1T_2 can be dealt with in the same manner as the sum $T_1 + T_2$. Therefore only the sum is considered in the following proof.

PROOF. It follows from [1, theorem 5], that $E(\cdot)$ and $F(\cdot)$ are commuting spectral measures. Next we have from theorem 1 that the product measure $P(\cdot)$ exists and that the set function $G(\cdot)$ is a spectral measure. It is sufficient to prove that $T_1 + T_2$ is a spectral operator, in case T_1 and T_2 are of scalar type, i.e.

$$T_{1} = \int \lambda E(d\lambda) \qquad \text{and} \qquad T_{2} = \int \lambda F(d\lambda) \; .$$

Thus, under this assumption we have to prove that

$$\int \lambda G(d\lambda) = \int \lambda E(d\lambda) + \int \lambda F(d\lambda) .$$

Let $\varepsilon > 0$ be given and let \varkappa_0 be a compact set in the complex plane π such that $G(\sigma) = 0$ if $\sigma \cap \varkappa_0 = \emptyset$. Now, let

$$(\alpha_i)_{i=1}^N, \qquad (\delta_j)_{j=1}^{N_1}, \qquad (\sigma_k)_{k=1}^{N_2}$$

be partitions of κ_0 , $\sigma(T_1)$, and $\sigma(T_2)$, respectively, in Borel sets such that diam $\alpha_i < \frac{1}{2}\varepsilon$ for i = 1, 2, ..., N, and correspondingly for the two other partitions, and choose $\lambda_i \in \alpha_i$, $\mu_j \in \delta_j$, $\nu_k \in \sigma_k$. By [1, theorem 7], we then have

(1)
$$\left\| \int \lambda G(d\lambda) - \sum_{i=1}^{N} \lambda_i G(\alpha_i) \right\| \leq 4K_0 \varepsilon ,$$

(2)
$$\left\| T_1 - \sum_{j=1}^{N_1} \mu_j E(\delta_j) \right\| = \left\| \int \lambda E(d\lambda) - \sum_{j=1}^{N_1} \mu_j E(\delta_j) \right\| \le 4K_1 \varepsilon ,$$

(3)
$$\left\| T_2 - \sum_{k=1}^{N_2} \nu_k F(\sigma_k) \right\| = \left\| \int \lambda F(d\lambda) - \sum_{k=1}^{N_2} \nu_k F(\sigma_k) \right\| \leq 4K_2 \varepsilon ,$$

where

$$K_0 = \sup_{\alpha \in \mathscr{B}} \|G(\alpha)\|, \qquad K_1 = \sup_{\alpha \in \mathscr{B}} \|E(\alpha)\|, \qquad K_2 = \sup_{\alpha \in \mathscr{B}} \|F(\alpha)\|.$$

Let now x be a fixed element in X. By the corollary in section 3 there exists for every $i=1,2,\ldots,N$ a compact set $\kappa_i \subset \alpha_i$ such that

$$||G(\alpha_i)x - G(\varkappa_i)x|| < \varepsilon/N,$$

from which it follows that

(5)
$$\left\| \sum_{i=1}^{N} \lambda_{i} G(\alpha_{i}) x - \sum_{i=1}^{N} \lambda_{i} G(\kappa_{i}) x \right\| \leq \varepsilon M,$$

where $M = \sup_{\lambda \in x_0} |\lambda|$. Furthermore, it follows from (2), (3), and (4) that

(6)
$$\left\| \sum_{i,j} \mu_j E(\delta_j) [G(\alpha_i) x - G(\varkappa_i) x] \right\| \leq (\|T_1\| + 4K_1 \varepsilon) \varepsilon,$$

(7)
$$\left\| \sum_{i,k} \nu_k F(\sigma_k) [G(\alpha_i) x - G(\varkappa_i) x] \right\| \leq (\|T_2\| + 4K_2 \varepsilon) \varepsilon.$$

For each $n=0,1,2,\ldots$ and each pair of integers p,q, let $\beta_n[p,q]$ denote the square of all z with

$$2^{-n}p < \text{Re}z \le 2^{-n}(p+1), \qquad 2^{-n}q < \text{Im}z \le 2^{-n}(q+1).$$

With this notation we have for every closed subset \varkappa of π that

$$\bigcup_{p,\,q} \beta_n[p,q] \times (\varkappa - \beta_n[p,q]) \searrow \{(\mu,\lambda) \mid \mu + \lambda \in \varkappa\} \text{ as } n \to \infty \ ,$$

and hence

$$\begin{split} G(\varkappa)x &= \lim_{n \to \infty} P\left(\bigcup_{p,\,q} \beta_n[p,q] \times (\varkappa - \beta_n[p,q])\right) x \\ &= \lim_{n \to \infty} \sum_{p,\,q} E(\beta_n[p,q]) F(\varkappa - \beta_n[p,q]) x \;. \end{split}$$

From this we can conclude that there exists an integer n_0 such that

$$\left\| G(\varkappa_i) x - \sum_{p,q} E(\beta_n[p,q]) F(\varkappa_i - \beta_n[p,q]) x \right\| \le \varepsilon / N$$

for all $n > n_0$ and i = 1, 2, ..., N. If we choose $n > n_0$ such that

$$\operatorname{diam}(\beta_n[p,q]) \,=\, 2^{-n}\sqrt{2} \,<\, \min\bigl(\tfrac{1}{2}\varepsilon,\, \tfrac{1}{2}\min_{j \neq k}\operatorname{dist}(\varkappa_j,\varkappa_k)\bigr)\,,$$

and write β_{pq} instead of $\beta_n[p,q]$, we have

(8)
$$\left\| \sum_{i} \lambda_{i} \left(G(\varkappa_{i}) x - \sum_{p,q} E(\beta_{pq}) F(\varkappa_{i} - \beta_{pq}) x \right) \right\| \leq \varepsilon M,$$

$$(9) \quad \left\| \sum_{j} \mu_{j} E(\delta_{j}) \left[\sum_{i} \left(\sum_{p,q} E(\beta_{pq}) F(\varkappa_{i} - \beta_{pq}) x - G(\varkappa_{i}) x \right) \right] \right\| \leq (\|T_{1}\| + 4K_{1}\varepsilon)\varepsilon ,$$

$$(10) \left\| \sum_{k} \nu_{k} F(\sigma_{k}) \left[\sum_{i} \left(\sum_{p, q} E(\beta_{pq}) F(\varkappa_{i} - \beta_{pq}) x - G(\varkappa_{i}) x \right) \right] \right\| \leq (\|T_{2}\| + 4K_{2}\varepsilon)\varepsilon.$$

Choose now $\lambda_{pq} \in \beta_{pq}$. Then, for each bounded functional x^* in the dual space X^* of X we get

$$\left| \begin{array}{l} x^* \sum_{i,\,p,\,q} (\lambda_i - \lambda_{pq}) E(\beta_{pq}) F(\varkappa_i - \beta_{pq}) x - x^* \sum_k \nu_k F(\sigma_k) \sum_{i,\,p,\,q} E(\beta_{pq}) F((\varkappa_i - \beta_{pq}) x \right| \\ \\ \leq \sum_{i,\,k,\,p,\,q} |\lambda_i - \lambda_{pq} - \nu_k| \cdot \left| x^* E(\beta_{pq}) F(\sigma_k \cap (\varkappa_i - \beta_{pq})) x \right| \\ \\ \leq 2\varepsilon \cdot \mathrm{var} \, x^* P(\cdot) x \, \leq \, 8\varepsilon ||x|| \, \, ||x^*|| K \, \, , \end{array} \right.$$

where $K = \sup_{\alpha \in \mathscr{B}} ||P(\alpha)||$. Since this inequality is valid for all $x^* \in X^*$, we have

$$(11) \left\| \sum_{i, p, q} (\lambda_i - \lambda_{pq}) E(\beta_{pq}) F(\varkappa_i - \beta_{pq}) x - \sum_k \nu_k F(\sigma_k) \sum_{i, p, q} E(\beta_{pq}) F(\varkappa_i - \beta_{pq}) x \right\| \\ \leq 8\varepsilon K ||x||.$$

In the same way we can prove that

(12)
$$\left\| \sum_{i, p, q} \lambda_{pq} E(\beta_{pq}) F(\varkappa_i - \beta_{pq}) x - \sum_j \mu_j E(\delta_j) \sum_{i, p, q} E(\beta_{pq}) F(\varkappa_i - \beta_{pq}) x \right\|$$

$$\leq 4\varepsilon K \|x\|.$$

If we now put

$$\boldsymbol{M_0} = \ 4(K_0 + K_1 + K_2)||\boldsymbol{x}|| + 2\boldsymbol{M} + 2||\boldsymbol{T_1}|| + 2||\boldsymbol{T_2}|| + 8(K_1 + K_2) + 12\boldsymbol{K}||\boldsymbol{x}|| \ ,$$

then M_0 is independent of ε , and using (1)–(3) and (5)–(12) we get, for $\varepsilon < 1$, $\left\| \int \lambda G(d\lambda) x - \int \lambda E(d\lambda) x - \int \lambda F(d\lambda) x \right\| \leq \varepsilon M_0 .$

Thus, we have proved that

$$\int \lambda G(d\lambda) x \, = \, \int \lambda E(d\lambda) x + \, \int \lambda F(d\lambda) x \, = \, T_1 x + T_2 x \, \, ,$$

but since all the integrals

$$\int \lambda G(d\lambda), \qquad \int \lambda E(d\lambda), \qquad \int \lambda F(d\lambda) \; ,$$

exist in the uniform topology, we also have

$$\int \lambda G(d\lambda) \, = \, \int \lambda E(d\lambda) + \int \lambda F(d\lambda) \, = \, T_1 + T_2 \; , \label{eq:deltaG}$$

that is, $G(\cdot)$ is the resolution of the identity of $T_1 + T_2$.

REFERENCES

- 1. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
- 2. N. Dunford and J. T. Schwartz, Linear operators I, New York, 1958.
- S. R. Foguel, Sums and products of commuting spectral operators, Ark. Mat. 3 (1957), 449-461.
- D. McGarvey, Operators commuting with translating by one, J. Math. Anal. Appl. 4 (1962), 366-410.

UNIVERSITY OF AARHUS, DENMARK