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THE RESOLUTIONS OF THE IDENTITY FOR SUMS
AND PRODUCTS OF COMMUTING
SPECTRAL OPERATORS

NIELS WENDELL PEDERSEN

1. Introduction.

Dunford [1] proved that if 7'; and 7', are commuting spectral operators
on a reflexive complex Banach space with the resolutions of the identity
E(-) and F(-), respectively, and if the Boolean algebra of projections
generated by E(-) and F(-) is bounded, then 7,+7, and 7,7, are
spectral operators.

Later this has been improved by Foguel [3] who proved that the same
result holds on a weakly complete complex Banach space and that the
resolution of the identity G(-) of T+ 7, is determined on Borel sets «
with G(boundary of «)z=0 by

G(e)e = [ Ba—p) Fduz,

where the integral exists in the sense of Riemann. For the product
T.T, a similar formula was obtained.

The purpose of this note is to prove that the restriction on « can be
removed by defining convolutions of E(-) and F(-) differently (see
theorem 2).

2. Notation.

If X is a complex Banach space, a spectral measure is a set function
E(-), defined on the set & of all Borel sets in the complex plane r, whose
values are projections on X, satisfying:

1. If 0,6 € #, then E(0)E(d)=E(and).

2. E(x)=1, E(D)=0, where J denotes the empty set.

3. The vector valued set function E(-)z is countably additive for
every z € X.

4. There exists a compact set x+@ such that E(o)=0 if onx=0.
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From the principle of uniform boundedness it follows that if E(-) is a
spectral measure, then there exists a constant K such that |E(«x)||< K
for every « € 4.

A bounded operator T' is a spectral operator with resolution of the
identity E(-), if it satisfies:

a) E(-) is a spectral measure.

b) If x € &, then TE(x)=E(x)T.

c) If T | E(«)X is the restriction of T' to the subspace E(x)X, then

oT | E(w)X) < x forevery xeZ#,

where o(A) denotes the spectrum af A4.
If T is a spectral operator, then the operator S=[AE(dA) is called its
scalar part and N =7 -8 its radical. The operators 7', S, N and E(x),
o« € #, commute. The operator 7' is called a scalar operator if 7'=S8.

3. The product measure of two commuting spectral measures.

In this section we shall prove the existence of a product measure of
two commuting spectral measures. We first state some lemmas without
proof.

Lemma 1. Any bounded complex measure defined on & is a regular
measure.

For a proof, see [2, pp. 170].

LemMma 2. If E(-) 18 a spectral measure, then for every x € X there exists
a positive, finite, and regular measure v, defined on the Borel sets in the
complex plane such that
lim ||E(x)z]] = 0.
v{(x)—>0

For a proof, see [2, pp. 320-321].

CoroLLARY. If E(-) is a spectral measure, then for every x € X the set
function E(-)x ts a regular vector valued measure.

By % we denote the algebra generated by all sets in & x 7 of the form
ox 8 with 6 € &, 6 € &, and by #* the o-algebra generated by ¥.

Let E(-) and F(-) be commuting spectral measures, that is, E(c) F(d)=
F(8)E(o) for any two Borel sets ¢,6. Every « € ¥ may be represented
in the following way:

& = U(aixai)

=1
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with 0,€ %, 6;€%#, 1=1,2,...,n, and with (o;xd;)N(0;x 6;)=0 for
i1j. If x €% is written in this way, we define

Pyo) = 3 Bla) F)

It is easily seen that this definition is independent of the representation
of « and that the set function Py(-) is finitely additive on ¥ and satisfies

Po(xn f) = Po(x)Py(B)

for any two sets « and fin €. Also Pyn x=)=1, and there exists a
non-empty compact set x, x %, such that «n (s, x %) =@ implies Py(a)=0.
These notations will be used throughout this and the following section.

Lemma 3. If there exists a constant K such that ||Py(x)|| < K for every
o« €, that is, if the Boolean algebra of projections generated by E(-) and
F(-) is bounded, then for every x € X the set function Py(-)x is regular and
countably additive.

Proor. Let 0 € # and 6 € . From the corollary it follows that there
exist two closed sets », and x», and two open sets y, and y, with x,<
o<y, and x,<=d <y, such that

sup ||E(x)z|| < ¢/2K2 and sup ||F(x)z|| < ¢/2K%.

*SYIN*L >y \*2
It follows that x;xx,Coxd<y; Xy, and that for x<y; x N\, X %,
and « € ¥ we have

[Po(x)c]| = [IPg(yy X ya\2y X %) Po(ox)2]|
= [[Po(a)ll 1Poly1 X y2\%q X xg)et]|
K”Po((?’l\”l) X ¥ U (1 N %) X (ya\%g))2||
K||Po((y1\%;) X y) + Py, X (2 \%2))||
K(IIE(yy o) F (y )]l + B (31 F (y3 N\t )]])

< K(IF(yy)lle/2K? + ||E(xy)e[2K?) < ¢,
so that Py(-)x is regular.
In order to prove that Py(-)x is countably additive, let {0,} be a

decreasing sequence of sets from % whose intersection is void, and let

€>0 be given. Since Py(- )z is regular, there exists a closed set »;, which
we may assume compact and in %, such that

oA

IA

#, <0, and  |Pyo)x|| < 3¢ for & < oN\%, x€F.

By induction we now construct a sequence cf closed sets {x,} from ¥
such that
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Ry S O Ny,
IPo(x)z|| < €/2 for & < (g, N #,_1)\%, -

Since x,<a, and o, \@ it follows that »,\d; but then there exists a
number n, such that »,=0 for n>mn,, that is, Py(x,)x=0 for n>n,.
From the identity

n—1

an\”n = (an\xl) u U (Un n ”i)\”ﬂ-l ’
=1

where the union is disjoint and ¢,\#; <g,\%,, we then get

n—1

1Po(o,\%,)2l| = || Pola,\2)x + > Po(("n n ”i)\”iﬂ)x
i=1

n—1
< 1Po(opNx)zll+ 3 IPo((05 N 2¢5) N\ 1)l
=1

n—1
S de+ D ef2t < €.
-~

1

Hence, for n>mn, we have
1Po(0,)ll < e,

which proves the countable additivity of P(-)x.

The following theorem now follows from [4, theorem 2.14 and corollary
2.17].

TuEOREM 1. If X is a weakly complete complex Banach space and E(-)
and F(-) are commuting spectral measures whose values are projections
on X, then there exists a unique set function P(-), defined on the o-algebra
B* generated by €, satisfying:

1. P(+) %8s an extension of Py(-).

2. P(end)=P(c)P(6) for every two sets 0,0 tn FB*.

3. The wvector valued set function P(-)x is countably additive for every

ze X.

The set function P(-) is called the product measure of E(-) and F(-).

4. Sums and products of commuting spectral operators.
We are now able to prove our main theorem.

THEOREM 2. Let T, and T, be commuting spectral operators on a weakly
complete complex Banach space X with the resolutions of the identity E(-) and
F(-), respectively, and let the Boolean algebra of projections generated by
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E(-)and F(-)bebounded. Then T+ T,and T\T, are spectral operators, and
their resolutions of the identity, G(-) and H(-) respectively, are determined by

G(x) = P({(u,2) | p+4 € a}), aeAB,
= P({u,4) | prea}), x€R,

where P(-) is the product measure of E(-) and F(-).

REMARK. The product 7,7, can be dealt with in the same manner
as the sum 7', + 7T',. Therefore only the sum is considered in the following
proof.

Proor. It follows from [1, theorem 5], that £(-) and F(-) are commut-
ing spectral measures. Next we have from theorem 1 that the product
measure P(-) exists and that the set function G(-) is a spectral measure.
It is sufficient to prove that 7, + 7T, is a spectral operator, in case 7',
and 7', are of scalar type, i.e.

T, = f AE@l) and T, = f AF(d2) .
Thus, under this assumption we have to prove that
f A(dA) = f AB(dA) + f AF(d)) .

Let £¢>0 be given and let x, be a compact set in the complex plane n
such that G(¢)=0 if onxy=0. Now, let

(‘xi)f]:p (‘%)}i‘la (Uk)llcv.-zl

be partitions of x4, o(7',), and o(T',), respectively, in Borel sets such that
diam «; < 3¢ for 4=1,2,...,N, and correspondingly for the two other
partitions, and choose 4; € «;, u; € 9;, v, € 0. By [1, theorem 7], we then
have

N

) “ f 16N - I 46| < 4K,

2) T, - z u B “ f AB(dA) - zij(aj) < 4K,

(3) T,- z v, F(a;) “ f AF(d})— z v F(oy)| £ 4K,e

k=1
where
Ko = sup [@(a)l, Ky = sup [E@), K, = sup [F()].
aeR e aed

Let now z be a fixed element in X. By the corollary in section 3 there
exists for every 1=1,2,...,N a compact set »; =«, such that
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(4) IG(xg)e— Gl < €N,
from which it follows that
N N
(5) > A — 3 A,GQ(x)x| < eM
i=1 i=1

where M =sup,, |A|. Furthermore, it follows from (2), (3), and (4) that

(6)

E(8;)[G(ox) — Gx)x]

< (17| +4Ke)e

(7 () —G(x)2] | = (IToll + 4K pe)e .

For each n=0,1,2,... and each pair of integers p,q, let 8,[p,q] denote
the square of all z with

2-»p < Rez < 2(p+1), 2 "¢ < Imz < 2-*(g+1).
With this notation we have for every closed subset » of # that

Uﬁn[P gl x (= B0, qD) \{(,4) | p+Aex} as n—> o0,

and hence
Gege = lim P (U ulp.a)x ﬂ,,[p,q]))
n—»oc0 P q
= lim ¥ E(B,[p,q))F (x—B.[p,q))x
n—>00 p, q

From this we can conclude that there exists an integer n, such that

”i)x ZE ﬂn[P’Q])F("t ﬂn[p Q])-'E = E/N
P q
for all n>n, and ¢=1,2,...,N. If we choose n>n, such that

diam (,[p,q)) = 22 < min(}e, $min dist (x;, %)) ,
Jj*k
and write §,, instead of B,[p,q], we have

Q 3 (Gt 3 B, Pt~ B0v) | 3
P9

) |3 E0) [ (3 B, F i Bre—00)]| & UL+ 4K e
J LY 2% |

(10) | S F (00 [ (5 B0 Po=Bpa2=G0cz)|| 5 (sl aEe.
k T ‘p,g
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Choose now A, € #,,- Then, for each bounded functional #* in the dual
space X* of X we get

x*_z (}'i_}'pq)E(ﬁpq ﬂpq z — ¥ kaF ak) z E ﬂpq F((” ﬂpq)x
D, q LD g
= . kz Mi_}‘pq_vkl : ix*E ﬂpq F(Gkn ("‘i_ﬂpq )x!
v K, P, q
< 2e-varx*P(:)x < 8e|jx|| |lo*| K ,

where K =sup,.4||P(x)||. Since this inequality is valid for all a* € X*,
we have

2 (Ai’"}‘pq)E(ﬁpq)F(”i_ﬁpq 2 ka Ulc z ﬂpq F(” ﬂpq)x
»L P

v P q

(11)

< 8eK|x| .

In the same way we can prove that

(12)

> A (Bpg) ¥ (2; — Bpg)® 2 uil z (Bpa) F (e — Bpg) x‘
P, q

%Py q

< 481{ Il .

If we now put
M, = 4(Ky+ K, + K,)|\z|| + 2M + 2||T|| + 2||Tyl| + 8(K, + K,) + 12K ||x|| ,

then M, is independent of ¢ and using (1)-(3) and (5)—(12) we get,
fore<1,

H f A6 (d)a — f AE(d)e — f AF(dA)e H < oM, .
Thus, we have proved that

f A(dN)e = f AB(dA)z + f AF(dN)e = T+ Ty ,
but since all the integrals
f AG(dA), f AB(dA), f AF(d3)
exist in the uniform topology, we also have
f AQ(dA) = f AE(d2) + f AF(@dA) = Ty +T,,

that is, G(-) is the resolution of the identity of 7', + T',.
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