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THE FUBINI THEOREM AND CONVOLUTION
FORMULA FOR REGULAR MEASURES

KAREL pELEEUW!
1. Introduction.

Let @ be a compact abelian group; A and g finite regular Borel meas-
ures on G. (For all measure theoretic terminology, see [3].) Their
convolution Axy is a finite regular Borel measure on G which can be
defined in two equivalent ways (see [4].) In the first definition, for
each Borel subset D of G, Axu(D) is defined to be A ® u(E), where E is
the Borel subset {(z,y): x+y€ D} of @xG and A® u is the unique
finite regular Borel measure on G x G satisfying

[etvem = f(fgxy)du )) u)
(&

Gx@G

for all continuous functions g on G x G. In the second definition, Axu is
taken to be the unique finite regular Borel measure on @ satisfying

[ s = | ( | f(x+y)dl(x)) du(y)
Q G \@

for all continuous functions f on G.
From either of these definitions it is simple to deduce (cf. [2, p. 53])
that if D is a Baire subset of G,

(1.1) y—>A-y+D)

will be a Baire function on @ and

(1.2) Inu(D) = [ A~y + D) duly)
é

Although the corresponding result for Borel subsets of G is probably
widely believed, we have not been able to find a proof in the literature.?
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2 Added in proof: This result for Borel sets has been established in M. Heble and
M. Rosenblatt, Idempotent measures on a compact topological semigroup, Proc. Amer.
Math. Soc. 14 (1963), 177-184.
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(For example, the formula (1.2), for D Borel, is stated in [4]. No asser-
tion about the measurability of (1.1) is made and no proof is given.)

The purpose of this note is to establish a Fubini theorem for regular
measures from which the Borel measurability of (1.1) and the equality
(1.2) for Borel D will follow. For simplicity we restrict ourselves to
compact spaces and bounded functions, the extension to locally com-
pact spaces and integrable functions being routine.

2. The Fubini theorem.

In this section X and Y are compact Hausdorff spaces and 1 and pu
finite regular complex Borel measures on X and Y respectively. By the
Riesz representation theorem there is a unique finite regular complex
Borel measure A ® u on X x Y satisfying

[ waow=| ( [ g(x,y)dz(x)) du(y)
X

XxY Y

for all continuous functions g on X x Y.

A® p is an extension of the usual product measure Axu (see [3]),
which is the unique complex measure on the o-algebra generated by sets
of the form 4 x B, 4 Borel in X, B Borel in Y, satisfying

Axu(A xB) = A(A)u(B)

for such sets. The reason that the results of [3] do not directly yield
the Fubini theorem we prove, is that this g-algebra (and even its comple-
tion with respect to Ax u) may not contain all the Borel sets of X x ¥
if X and Y are not metrizable.

THEOREM 1. Let h be a bounded Borel function on X x Y. Then

(2.1) y *fh(x,y) di(x)
X
is @ Borel function on Y and
(2.2) [ maew - ( [ h(x,y)«u(x)) du(y) -
XxY Y \X

Before we proceed to the proof of this result we should point out that
the Fubini theorem of [1] shows that (2.1) is measurable with respect
to the completion of x4 and that the equality (2.2) holds. Thus our only
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original contribution here is the proof of the Borel measurability of (2.1).
However for completeness we also establish the equality (2.2).

The proof of Theorem 1 proceeds by a sequence of lemmas. Because of
the Jordan decomposition, we may assume that 4 and u are non-negative
measures. We further assume A and g normalized to have total mass 1.

We shall denote by C(X) and C(X x Y) the spaces of real valued con-
tinuous functions on X and X x Y respectively. If y is an element of Y,
for each subset £ of X x Y, the slice {x: z € X, (x,y) € £} will be denoted
by E,. And the regular Borel measure A, is defined on X x Y by 4 (&)=
ME,), all E Borel in X x Y.

We shall denote the characteristic function of any set £ by xz.

LemmA 1. Let E be a closed subset of X x Y. Then, for each y in Y,
ME,) is equal to

(2.3) inf[ J. gdi,: e C(XxY), ygSg=s1y.
XxY

Proor. Since 1, is non-negative, it is clear that (2.3) is no smaller than

A,(E), which equals A(E,). For the reverse inequality, choose any > 0.

By the regularity of A and the fact that E, is a closed subset of X, there
is (see [3, p. 248]) a function f in C(X) satisfying yp <f<1 and

(2.4) f fdA < MEB,)+e.
X

Define the function & on (X x {y})UE by h(x,y)=f(z) and =1 on E.
h is continuous and thus by the Tietze extension theorem has a con-
tinuous extension g mapping all of X x Y into the interval [0,1]. The
function g will satisfy yz<g<1 and

fgdz,,—_-dez.
XxY X

So by (2.4) and the fact that ¢ was arbitrary, (2.3) can be no larger
than A(E,). This completes the proof of the lemma.

LemMA 2. Let E be a Borel subset of X x Y. Then the function

(2.5 y > [ zs(@.9) di@)
X
18 Borel on Y.

Proor. Let us assume first that E is closed. For each g in C(X x Y),
define ', on X by
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Fy) = [ gar

XxY

v *

Each F, is continuous on Y. By Lemma 1, since £ is assumed closed,
the function (2.5) is equal to

inf{F,: geC(XxY), ypSg=1},

and is thus Borel, being the infimum of a collection of continuous funec-
tions. Now let # be the collection of all Borel subsets £ of X x ¥ for
which (2.5) is Borel. # is clearly closed under disjoint unions and
proper differences, and by the monotone convergence theorem, is a
monotone class in the sense of [3, p. 26]. We know that & contains all
closed subsets of X x ¥, so by Theorem B, p. 27 and Theorem F, p. 223
of [3], # contains all of the Borel subsets of X x Y.

Since each bounded Borel function on X x ¥ is a uniform limit of
linear combinations of y; for Z Borel, the first assertion of Theorem 1
is an immediate consequence of Lemma 2.

We now proceed to the proof of the second assertion. The reasoning
of the preceding paragraph shows that it suffices to establish the equality
(2.2) for h the characteristic function of a Borel subset £ of X x Y.
For such a set £ we define A-u(E) by

2w = | ( | mx,y)dm)) du(y) -
X

¥
This definition is justified by Lemma 2.

To complete the proof of Theorem 1 it remains to show that A-u(E)=
A ® u(E) for all Borel sets E.

Lremma 3. Let E be a closed subset of X x Y. Then A-u(E)2AQ u(E).

Proor. Choose any ¢ > 0. Since E is closed and A ® u regular, there is
a function f in C(X x Y) satisfying yz<f and

[raa@uw < 1@ uE) +.
XxY
Then

1) s | ( ff(x,yw(x)) du(y) = [ JA0© ) < A® u(E)+e.
Y \X

XxY

Since ¢ was arbitrary, the lemma is proved.
Thus far we have used only the regularity of 4 and A ® u; the follow-
ing lemma makes use of the regularity of u.
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LremMA 4. Let E be a closed subset of X x Y. Then A Q u(E)=<A-u(E).

Proor. By Lemma 2, y -~ A(E,) is Borel on Y. Choose any ¢>0.
4 is regular, so by Lusin’s theorem (see [3], p. 243), there is a closed
subset K of Y so that u(Y —K)<e¢ and y - A(E,) is continuous on K.
For each y in K, by Lemma 1, it is possible to find a function g, in
C(X x Y) satisfying y;<g,<1 and

(2.6) f 9,4, < MB,)+e.

XxY
Let U, be a neighborhood of y in K so that, for each ¢t in U,
(2.7) f g,dd < ME)+e.

XxY

Such a neighborhood exists because of (2.6) and the fact that both
sides of the inequality (2.7) are continuous for ¢ in K. By compactness,
there are y,...,y, in K so that K=U,u...uU,. Let g=
inf{g,,....0,,} 80 yg<g<1 and

f gdd, < ME)+e

XxY
for all ¢ in K. Then

A-u(B) = [ X(E) dptt
Y

> j AME,) du(t)

v

K
f f gd&—s) du(?)
K \XxY

f gdl,) du(t) — ¢
XxY

f f gdl,) du(t) — 26
Y

XxY

v
T

v

[od00 w2 2 1@ uE) - 2.
XxY
Since ¢ was arbitrary, this completes the proof.
We are now able to finish the proof of Theorem 1. We had observed
that it remained only to show that
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(2.8) Ap(B) =A@ wE)

for all Borel £ in X x Y. We argue as in Lemma 2. Let &Z be the col-
lection of all Borel subsets £ of X x Y for which (2.8) holds. & is clearly
closed under disjoint unions and proper differences, and by the mono-
tone convergence theorem is a monotone class in the sense of [3]. We
know, because of Lemmas 3 and 4, that # contains all closed subsets
of X x Y, so by Theorem B, p. 27 and Theorem F, p. 223 of [3], & con-
tains all Borel subsets of X x Y.

3. The convolution formula.
The validity of the convolution formula is an easy consequence of
Theorem 1.

THEOREM 2. Let G be a compact abelian group, A and u finite regular
complex Borel measures on G. Then, for each Borel subset D of G,

(3.1) y->A—-y+D)

18 a Borel function on G and

(3.2) wnu(D) = [~y +D) dp(y) .
é

Proor. Let E be the subset {(z,y): x+ye D} of @x@G. E is Borel
since the mapping (z,y) > x+y of G x @ into G is continuous. Let A
be the characteristic function of E. Then, since

[Ma9) da@) = 4(-y+D),
X

the Borel measurability of (3.1) follows from the first assertion of Theo-
rem 1. Finally (3.2) is a consequence of the second assertion of Theorem
1 and the fact that Axu(D)=1Q u(E).

The analogous result for non-commutative groups and even semi-
groups is of course equally valid.
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