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BRIEF PROOF OF A THEOREM OF BAXTER

J. G. WENDEL!

In [1] Baxter proved a theorem that can be stated as follows.

THEOREM. Let & be a commutative Banach algebra with identity e.
Suppose that P is a bounded linear transformation on & which, for some
fized be X, satisfies

(1) 2P(x Px) = (Px)?+ P(bx?)
Jor all x € &, or, equivalently
(2) P(x- Py +y-Px) = (Px)(Py)+ P(bxy) .
Then, for given fe I and sufficiently small complex z, the equation
(3) g = e+2zP(fy)
has the unique solution
[o.0) z'n 1
@) g = exp 3P
1

Baxter’s proof was heavily combinatorial. It is the purpose of this
note to present a brief proof, of a more analytical character. Before
proceeding to the proof we remark that the equivalence of (1) and (2)
follows trivially upon applying (1) separately to z, y, and z+y.

Proor or THE THEOREM. The key idea is to exploit the differential
equations (and the initial condition ¢g(0)=e¢) implied by (3) and (4).

Clearly (3) has a unique solution g=g(z) for all small z; moreover g(z)
is analytic in z. Hence (3) may be differentiated, with the result

(5) 9'—2P(fy') = P(fg)

where g’ =dg(z)/dz. Now, if f and ¢ are given and z is small. then the
equation
(6) h—zP(fh) = P(fg)

has a unique solution k. Since (6) is linear, 2 depends linearly on g¢;
indeed, & has the form
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(7) h = kg

with k € & depending on z and f but not on g. Momentarily leaving aside
the proof of (7) and the identification of k¥ we note that (5), (6) and (7)
imply ¢'(2) =k(z)g(z), and hence

(8) g(z) = exp f k(t) di .
0
We claim now that if  is defined by

(9) U = ?(zbf)”,

then k = P(fu), i.e., that h=gP(fu) satisfies (6). We must verify the
identity

(10) gP(fu)—2P[fgP(fu)] = P(fg) .
Using (2) with x=fg, y =fu, the left member of (10) becomes
(11) 9P(fu) + zP[fuP(fg)] — 2P(fg)P(fu) — 2P (bfgfu);

on substituting zP(fg)=g—e from (3) and zbfu=wu—e (which follows
from (9)), the quantity (11) is transformed into

gP(fu) + P[fu(g—e)] — (9 — e)P(fu) — P(fg(u—e))

which equals P(fg). This proves (10), (7), and hence (8). Carrying out
the indicated integration completes the proof of (4).
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