BRIEF PROOF OF A THEOREM OF BAXTER

J. G. WENDEL

In [1] Baxter proved a theorem that can be stated as follows.

Theorem. Let \(X \) be a commutative Banach algebra with identity \(e \). Suppose that \(P \) is a bounded linear transformation on \(X \) which, for some fixed \(b \in X \), satisfies

\[
2P(x \cdot Px) = (Px)^2 + P(bx^2)
\]

for all \(x \in X \), or, equivalently

\[
P(x \cdot Py + y \cdot Px) = (Px)(Py) + P(bxy) .
\]

Then, for given \(f \in X \) and sufficiently small complex \(z \), the equation

\[
g = e + zP(fg)
\]

has the unique solution

\[
g = \exp \sum_{n=1}^{\infty} \frac{z^n}{n} P(b^{n-1}f^n) .
\]

Baxter's proof was heavily combinatorial. It is the purpose of this note to present a brief proof, of a more analytical character. Before proceeding to the proof we remark that the equivalence of (1) and (2) follows trivially upon applying (1) separately to \(x \), \(y \), and \(x + y \).

Proof of the Theorem. The key idea is to exploit the differential equations (and the initial condition \(g(0) = e \)) implied by (3) and (4).

Clearly (3) has a unique solution \(g = g(z) \) for all small \(z \); moreover \(g(z) \) is analytic in \(z \). Hence (3) may be differentiated, with the result

\[
g' - zP(fg') = P(fg)
\]

where \(g' = dg(z)/dz \). Now, if \(f \) and \(g \) are given and \(z \) is small, then the equation

\[
h - zP(fh) = P(fg)
\]

has a unique solution \(h \). Since (6) is linear, \(h \) depends linearly on \(g \); indeed, \(h \) has the form

Received July 31, 1962.

1 Supported by U.S. National Science Foundation Contract G 19117.
\[h = kg \]

with \(k \in \mathcal{K} \) depending on \(z \) and \(f \) but not on \(g \). Momentarily leaving aside the proof of (7) and the identification of \(k \) we note that (5), (6) and (7) imply \(g'(z) = k(z)g(z) \), and hence

\[g(z) = \exp \int_0^z k(t) \, dt . \]

We claim now that if \(u \) is defined by

\[u = \sum_{0}^{\infty} (zbf)^n , \]

then \(k = P(fu) \), i.e., that \(h = gP(fu) \) satisfies (6). We must verify the identity

\[gP(fu) - zP[fgP(fu)] = P(fg) . \]

Using (2) with \(x = fg \), \(y = fu \), the left member of (10) becomes

\[gP(fu) + zP[fuP(fg)] - zP(fg)P(fu) - zP(bgfufu) ; \]

on substituting \(zP(fg) = g - c \) from (3) and \(zbfu = u - c \) (which follows from (9)), the quantity (11) is transformed into

\[gP(fu) + P[fg(g - c)] - (g - c)P(fu) - P(fg(u - c)) \]

which equals \(P(fg) \). This proves (10), (7), and hence (8). Carrying out the indicated integration completes the proof of (4).

REFERENCE