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CONVEX CONES WITH PROPERTIES
RELATED TO WEAK LOCAL COMPACTNESS

OTTE HUSTAD
Introduction.

The present paper originated from the problem to characterize the
polar cone of a rich cone, where a convex cone P in a topological vector
space is called rich if p+ P intersects every dense linear subspace when-
ever pe P (see [5] and [6]). During the work with this problem, we
found some general properties concerning convex cones. These results
are collected in §§ 1 and 2. The main result in § 1 (Proposition 3) states
that a convex cone P is weakly locally compact if and only if P satisfies
a Borel-Lebesgue property with respect to open half-spaces. We also
show (Proposition 7) that P has this property if and only if the polar
cone has a certain separation property. Here we make use of the con-
cept of non-support point introduced by Floyd and Klee [4]. Such a
point of P is virtually the same as a strictly positive functional on the
polar cone. We show in § 2 that if ¢ is a locally compact convex cone
and P admits a strictly positive functional, then P+ @ admits a strictly
positive functional if (and only if) P+ @ is proper. In § 3 we prove some
properties about rich cones. If P intersects every linear variety which
separates in a certain sense every point pair of the polar cone, then P
is rich (Proposition 9), and a partial converse is also valid. We use this
result to show that under some not too restrictive conditions the inter-
section of two rich cones is again a rich cone.

NOTATION AND TERMINOLOGY. Set-theoretic difference between sets
A and B is denoted 4 ~B. The letter E shall always denote a real
locally convex Hausdorff topological vector space, and P a convex cone
in E, that is P+ P<P and AP < P for each 12 0. The cone P is proper
if P contains no line through zero. A base of P is a convex set K < E ~ {0}
such that P is the convex cone generated by K. A linear functional f
on E is (strictly) P-positive or shorter (strictly) positive if f(p) = 0 (f(p) > 0)
for each p € P~ {0}. The polar cone P° of P consists of all positive and
continuous linear functionals on E. More generally we define (slightly
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80 OTTE HUSTAD

different from [1]) the polar set K° of K < E as the set consisting of all
continuous linear functionals f such that f(k)= —1 for each k€ K. The
topological dual of E is denoted E’. An open half-space is a set of the
form {x : f(x)> 0}, where fe E'~{0}. We note that the closure of this
set is {x : f(x)2 0}, i.e. a closed half-space. For each x € E we define 2
on E' by Z(f)=f(z). E' is always equipped with the weak topology,
and extensive use will be made of the identification of E with the topo-
logical dual of E'. If #={U,} is a family of subsets of a topological
space, the closure of % is the family {U }. If A, B are subsets of R.
the real number field, then 4 < B (A <B) means that a <8 (x<p) for
each x € 4 and each f e B. Otherwise our terminology follows Bour-
baki [1].

1. The half-space Borel-Lebesgue property.

DrrFINITION 1. A subset K of a topological vector space has the (weak-
ened) half-space Borel-Lebesque property if each family of open half-spaces
which covers K ~ {0} contains a finite subfamily (the closure of) which
covers K ~ {0}.

ProrositioN 1. Suppose that P is closed. Then the following two state-
ments are equivalent.

(i) Whenever X <E is mon-empty, convex and disjoint from P, there
exists a closed hyperplane separating P and X.

(il) P° has the weakened half-space Borel-Lebesgue property.

ProoOF. (i) = (ii). Suppose that (ii) is not satisfied. Then there exists
a non-empty subset 4 < with the following two properties. 1° When-
ever fe P°~{0}, there exists an ae A such that f(a)>0. 2° If

ay,...,a,€ A are given, there exists an fe P° such that f(a;)<0.
1=1,...,n. Let X be the convex hull of 4 and choose x ¢ X. Then we
can find a,,...,a, € 4 and 2,20 such that

n n
x=zliai a:nd Elizl'
i=1 i=1
Because of 2° we can find an fe P° such that

n
f@) = 3 fla) < 0.
1=1
Hence x ¢ P, and consequently XnP=¢. In view of (i) there exists
a € R and g € E'~ {0} such that g(X)<«<g(P). Since P is a cone we
obtain ¢g(X)<0=<g(P). Hence ge P°~ {0} and g(4)=<0, which contra-
dicts 1°.
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(ii) = (i). Suppose that (i) is not satisfied. Then there exists a non-
empty convex subset X of E such that X is disjoint from P and if
f € P°~ {0}, then we can find an 2 € X such that f(z) > 0. Hence, by (ii).

we can find z,,...,%, € X such that
(1) max {f(z;)} 2 0, VfeP°.
i=1,...,mn
Let K be the convex hull of z,,...,z,. Then K is compact and disjoint

from P. Hence there exists [1, p. 73] a closed hyperplane separating K
and P strictly. This implies that there exists an f € P° such that f(z;) <0,
1=1,...n. Since this contradicts (1), the proof is finished.

ProposiTION 2. Suppose that P satisfies (i) in Proposition 1, and let A
be a mon-empty convex subset of E such that A —P is dense in E. Then
E=A4-P.

Proor. Let x € E. Then A — P —x is convex and dense in £, and must
intersect P, for otherwise we could find an fe E'~{0} such that
f(A—P—z)<0=f(P), which is impossible since 4 — P —z is dense. Let
¢ belong to PNn(A—P —=x). Then g=a—p—=, and thus x=a—(p+q) e
A-P.

CoroLLARY. Suppose that P satisfies (i) in Proposition 1. Then every
positive linear functional g is continuous.

Proor. If g is discontinuous, then ¢-1(0) is dense, and therefore
E =g¢-1(0)— P. This implies that g(x) <0 whenever x € . Consequently
g=0 and this is impossible since we assumed g discontinuous.

Lemma 1. Suppose that E'=P°—P° and that P~ {0} is covered by «a
finite family of open half-spaces. Then P admits a strictly positive con-
tinuous linear functional.

Proor. By assumption we can find g,,9," € P°, i=1,...,n. such that

(2) max {(g;—9;)(p)} > 0. Vpe P~{0}.

i=1,...,n

Put g=g,+...+g, and let pe P~{0}. Then g(p)=0. If g(p)=0.

then g,(p)=0 for all i=1,...,n. In view of (2) there exists an i such

that —g,’(p)>0. This is impossible since g, € P°. Hence g(p)>0.
The following simple lemma is certainly well known.

LeEMMA 2. P—P 18 dense in E if and only if P° is proper. If P is
closed, then P is proper if and only if P°— P° is dense in E’.

Proor. If P—P is not dense in E. there exists an fe E'~ {0} such
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82 OTTE HUSTAD

that f is zero on P—P. Hence fe P°n—P°. Conversely, if P—P is
dense and ge P°n—P°, then ¢ is zero on P—P and therefore g=0.
This proves the first assertion. The second statement is a consequence
of the first one, since P =(P°)° when P is closed.

Lemma 3. If P contains an interior point p,, then P° is weakly locally
compack.

Proor. Since £ =P — P, we have that P° is proper. It is therefore
sufficient [9, proof of (2) on p. 341] to show that there exists a weak
zero-neighborhood V in E’ such that VnP° is weakly compact. P—p,
is, by assumption, a zero-neighborhood, and therefore (P — p,)° is weakly
compact. Now we observe that if g=p—p, with p € P, then g=limg,
where

tu =)+ (1-2) (=90

1
n
belongs to the convex hull of Pu{—p,}. From this we conclude that the
closure of P—p, equals the closed convex hull of Pu{—p,}. Hence we
obtain, by general properties of polar sets,

(P=py)° = ({—poj U P)° = {—po}°n P°.

Since {—p,}° is a weak zero-neighborhood, the proof is finished.

We shall adhere to usual terminology and call an element e of P an
order unit provided there exists for every xe€ £ a 1>0 such that
Ae—xz € P. This means that the set (P —e)n(e—P) is absorbing. Hence
e is an order unit if and only if e is an interior point of P, when E is
equipped with the finest locally convex topology. In view of Lemma 3,
we can therefore infer that if P admits an order unit and every positive
linear functional is continuous, then P° is weakly locally compact. We
make use of this result in the following proposition.

ProrosiTioN 3. Suppose that P is proper and closed. Then the following
three statements are equivalent.
(i) P 18 weakly locally compact.
(ii) P satisfies the half-space Borel-Lebesgue property.
(iii) P satisfies the weakened half-space Borel-Lebesgue property and ad-
mits a strictly positive continuous linear functional.

Proor. (i) = (ii). This is a simple consequence of the fact [9, p. 341]
that P admits in case (i) a weakly compact base.

(ii) = (iii). For every pe P~ {0} we can find an fe E’ such that
f(p)>0. Hence it follows from Definition 1 that there exists a finite
family of open half-spaces covering P~ {0}. Applying Propositions 1
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and 2 with P° instead of P, we infer, by Lemma 2, that E'=P° - P°,
Hence it follows from Lemma 1 that P admits a strictly positive con-
tinuous linear functional.

(iii) = (i). According to the remark preceding the proposition it is
sufficient to prove that P° admits an order unit and that every P°-
positive linear functional is continuous. That P° has the last mentioned
property follows at once from the corollary of Proposition 2. Let f, be
a strictly P-positive continuous linear functional. We assert that f, is
an order unit of P°. Let @ be the set of all if, with 2= 0. Then @ — P°
is dense in E’. For otherwise we could find an x € E ~ {0} such that
g(x) £0 whenever g € Q —P°. But this implies 2 € P~ {0} and fy(x) <0,
contrary to the hypothesis on f,. Thus, by Proposition 2, E' =@ — P°,
and from this it follows that f, is an order unit.

COROLLARY. Suppose that P is closed. Then P° is proper and weakly
locally compact if and only if P admits an order unit and every P-positive
linear functional is continuous.

Proor. The remark preceding Proposition 3 contains the “if’’-part.
The converse follows from the proof of Proposition 3 when applied to
P° instead of P.

ProposITION 4. Suppose that P, and P, are two closed convex cones in E,
both with an order unit and such that their positive linear functionals are
continuous. Then P=P,nP, has the same two properties if and only if
P —P is dense in E.

Proor. The “only if”’ part is clear. Suppose therefore that P—P is
dense in E. Then P° is proper. Both P,° and P,° are, by the corollary
of Proposition 3, proper and weakly locally compact. Let B, (B,) be a
weakly compact base of P,° (P,°), and let B be the convex hull of B, uB,.
Then B is weakly compact. If 0 € B, then 0=2,b, + 1,0, with b, € B;, 2,20
and at least one 1,> 0, say 4, >0. Then

A
O#:b].: —szeploﬂ—ch’CPc’ﬂ-Po,
1

contrary to the fact that P° is proper. From this it follows that B is
a weakly compact base of P,°+ P,°, and therefore we can conclude that
P,°+P,° is closed and weakly locally compact. Since

P° = (PN Py)° = P\°+ Py’ = P,°+Py°,

the desired conclusion follows from the corollary of Proposition 3.
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A convex set K in E is called linearly bounded if K contains no half-line.

ProrosiTioN 5. Let K < E ~ {0} be convex and closed. Then K is weakly
compact if and only if K is linearly bounded and satisfies the weakened
half-space Borel-Lebesgue property.

Proor. The “only if”’ part is clear. To prove the converse, let P be
the convex cone generated by K. Since we can separate K and {0}
strictly, it follows that P admits a strictly positive continuous linear
functional. It is easy to see that P has the weakened half-space Borel-
Lebesgue property. Furthermore it follows from [7, p. 26] that P is
closed. Thus by Proposition 3, P is weakly locally compact. Hence K
is weakly locally compact, since K is weakly closed. From [9, p. 343]
we infer that K is weakly compact.

Lemma 4. Suppose that M < E satisfies the weakened half-space Borel-
Lebesgue property, and that Q + {0} is a subset of M. Then Q satisfies the
same property if the following condition is fulfilled.

If x € M ~Q, there exists an f, € E' such that f,(Q ~{0})<0<f,(z).

Proor. Let {H,} be a family of open half-spaces covering @~ {0j.
Then the family
) {}I'y} U {fx-l(<0? °°>}xeM~Q

covers M ~ {0}. Hence we can find a finite subfamily .# such that the
closure of # covers M ~ {0}. Then the closure of #n{H,} covers @~ {0}.

ProposrTION 6. Suppose that K is a convex and closed subset of E, and
that K 18 contained in a hyperplane H with 0 & H. Then K is weakly com-
pact if and only if K has the weakened half-space Borel-Lebesgue property.

Proor. By Proposition 5, we have only to prove that K is linearly
bounded if K has the weakened half-space Borel-Lebesgue property.
Suppose that this is not true, and let S={la+(1—2)b: 120} be a half-
line contained in K. Since S is a subset of H, it is easy to see that §
cannot have the weakened half-space Borel-Lebesgue property. Hence.
by Lemma 4, we have obtained a contradiction if we can prove that
whenever k € K ~ S, there exists an f e E' such that f(S)<0<f(k). Let
L be the vector space generated by a, b and k. Then either a, b and k
are linearly independent or k=aa + (1 —«)b, with « <0. In the first case
we define f, on L by letting fo(k)=1, fy(a)=fo(b)= —1, in the second
case by letting fy(k) =1, fo(b)= — 1. In both cases we have f,(S) < 0 < f(k).
An extension of f; to £ has the desired property.

Following Floyd and Klee [4] we call a point p,e P a non-support
point of P if fe E' and f(p,) =supf(P) implies that f is constant on P.
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It is evident that if P— P is dense in E, then P cannot be separated from
a set which contains a non-support point of P. We now propose to charac-
terize those convex cones which can be separated from every convex
set which does not contain a non-support point of the cone.

We omit the easy proof of the following lemma.

Lemma 5. Suppose that P— P is dense tn E, and let pye P. Then p,
is a non-support point of P if and only if P, s a strictly positive linear
functional on P°.

LeMMA 6. An order unit e of P is a non-support point of P.

Proor. Let f € E’ be such that f(e) =supf(P). Then f(P)< 0=f(e). Let
x € B. Then there exists a 4> 0 such that e~z € P. Hence 02 f(le—x)=
~f(z), and therefore f=0.

Prorosition 7. Suppose that P is closed and that P— P is dense in K.
Then the following two statements are equivalent.

(i) Whenever X is a non-empty convex subset of E such that X contains
no non-swpport point of P, there exists a closed hyperplane separating P
and X.

(il) P° satisfies the half-space Borel-Lebesgue property.

Proor. (i) = (ii). By applying Lemma 5, the proof proceeds in much
the same way as the proof of the first part of the Proposition I, and is
therefore omitted.

(ii) = (i). P° is proper, since P — P is dense. Hence, by Proposition 3
and its corollary, P admits an order unit and every P-positive functional
is continuous. Let X < be non-empty, convex and without any non-
support point of P. Hence, by Lemma 6, X is disjoint from the set of all
order units of P. This set is the same as the interior of P when K is
equipped with the finest locally convex topology. By Eidelheits separa-
tion theorem [2, p. 22] there exists a linear functional g on E such that
9(X) < g(P). Hence g is P-positive and therefore continuous. This shows
that P and X can be separated.

2. Strict separation.

Klee shows in [8] that if P and @ are proper, closed convex cones in K,
PnQ={0}, and Q is locally compact, then P and ¢ can be separated
by a closed hyperplane. He further shows that if P is locally compact
or F is a separable normed space, then it is possible to separate P and ¢
strictly, i.e. there exists an fe E’ such that f(@~ {0})<0<f(P~{0}).
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Several times in the preceding, especially in Lemma 4, we have en-
countered problems of this sort. Now we have the following result.

PROPOSITION 8. Suppose that P and Q are proper, closed convex cones
in E, that Q is weakly locally compact, and that PnQ={0}. Then it is
possible to separate P and Q strictly if and only if P admits a stricily
positive continuous linear functional.

Proovr. Since the “only if” part is trivial, let us assume that g £’
is strictly P-positive. Then M =Png-(1) is a closed base of P. Let K
be a weakly compact base of @, and let B be the closed convex hull of
Mu(—K). Since, by [8, p. 313], P—@ is closed, one proves easily that
P —Q is the convex cone generated by B. We are going to prove that
0 ¢ B. Suppose that this is not true. Then there exist nets {m,} <M,
{k,}=K and non-negative numbers 4, u, with 4 +pu,=1, such that
A,m,—uk, — 0 weakly. Since K is weakly compact, there exists a subnet
{k} of {k,} such that k, > ke K. Since {u,}<[0,1], there also exists a
subnet {u,} of {u} such that p, — u € [0,1]. Hence k, >k, A,=1—p, —
1—p and A,m,—pu,k, -~ 0. Suppose first that u=0. Then u,k, - 0k=0.
and therefore A m,— 0. Hence m,=21,4m,) - 1-0=0, which con-
tradicts the fact that M is closed and 0 ¢ M. And if x> 0, then A m  ~uk
and therefore u-A,m, - k. Since -4 m, e P, this gives the contra-
diction 0k e Pn@. Hence 0 ¢ B. Therefore there exists an f e £’ such
that 0 <f(B), and one verifies directly that f(@ ~ {0}) <0 <f(P ~ {0}).

CoroLLARY. Suppose that P is closed and admits a strictly positive
continuous linear functional. Let Q be a proper weakly locally compact
convex cone in E. Then P+Q admits a strictly positive continuous linear
Junctional if and only if P+Q is proper.

Proor. If P+Q is proper, then Pn —@Q={0}, and every g € E’ with
the property g(—@Q ~ {0}) <0< g(P ~ {0}) is strictly positive on P+ @Q.

3. Some properties of rich cones.

Another formulation of the weakened half-space Borel-Lebesgue prop-
erty of a subset K of E is the following. If M is a subset of £’ such that
there exists for each ke K ~ {0} an f € M such that f(k)> 0, then there
exist f,, ..., f, € M such that

“max {fi(k)} 20, VkeK.

1=1,...,

A weakening of this property has bearing on the richness of a convex
cone.
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DzFINITION 2. Let K be a subset of E and M a subset of E'. We say
that M separates positively the points of K if, whenever p, q € K ~ {0} and
Pp*q, there exists an f € M such that 0<f(p)=+f(q)>0.

LemMMA 7. Let M be a dense linear subspace of B', ge B’ and p, q€
E ~ {0} with p£q. Suppose that the convex cone @ generated by p and ¢
@8 proper. Then, whenever x € B~ (—Q), there exists an fe M such thal

(f+g9)x) =1 and 0 < (f+g)(p) + (f+9)9)>0.

Proor. Let L be the vector space generated by z, p and ¢, and let
M | L denote the set of all f| L, where fe M and f| L is the restriction
of fto L. Since M | L is a dense linear subspace of L', we have L'=M | L
and hence M |L+g|L=L'. Therefore the proof reduces to showing
that there exists an hAe L’ such that A(x)=1 and 0<Ah(p)+h(g)>0.
This is clear if the dimension of L is one or three. Suppose therefore
dimL=2. We can assume that p and ¢ are linearly independent, since
the case when p and ¢ are linearly dependent is easily settled. Hence
we have x=ap+ fg, with at least one x or § positive, since —zx ¢ Q.
Therefore we may and shall assume that «>0. Define 2 on L by first

choosing 0 < h(g) < min{|f|-L, x+B|-1}

and the
" 1—fh(q)
—

Mp) =
One then verifies readily that % has the desired properties.

Lemma 8. (Cf. [3, p.618).) Suppose that P is closed and that
f1v--sfn€ B are given. Then the condition

max {f(p)} 20, VpeP,
i=1,...,n

is satisfied if and only if the convex hull I' of {fy, ..., f,} intersects P°.

Proor. The “if” part is clear. Hence suppose that P°nI'=#. Since
I' is compact and P° is closed, there exists an x € E such that z(I') <
Z(P°). Hence z € P and fi(z)<0, i=1,...,n.

ProrosiTioN 9. Suppose that P is closed and that P — P is dense in E.
Then P is rich if the following condition is satisfied.

Whenever M < E is a linear variety which separates positively the points
of P°, there exist x,, .. .,x, € M such that

max {f(z)} 20, VfeP°®.

1=1,...,n
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Proor. Let F be a dense linear subspace of £ and let p € P. Choose

f, g€ P°~ {0} with f4g. Since P° is proper, it follows from Lemma 7
that we can find a y € F such that 0<(§—2)(f)+(J—p)(g)>0. Hence
F —p separates positively the points of P°. Consequently there exist
Y15 - - -» Y, € F such that

max (@=P)N}z 0, VfePe.

r=1,...,m
This means, by Lemma 8, that there exists a ¥ € F' such that y—pe P,
and hence (P+p)nF+0.

Remark. It follows from this proposition that if P° satisfies the
weakened half-space Borel-Lebesgue property, then P is rich. (This is
also a simple consequence of Propositions 1 and 2.) If for instance P
admits an order unit and every P-positive linear functional is continu-
ous, then P is rich, since, by the corollary of Proposition 3, P° is weakly
locally compact in this case.

By Lemma 8, a converse of Proposition 9 would have the form:
If P is rich, then PnM &0 whenever M <k is a linear variety which
separates positively the points of P°. If this converse were true, then,
since P is rich in the finest locally convex topology, PnM @ whenever
M separates positively the points of the cone P" consisting of all P-pos-
itive linear functionals. And using Proposition 9 it would follow that P
were rich in the weakest topology o(E, PY— PUY) which renders every
g € PY continuous, provided P was closed and P—P was dense in this
topology. What we now actually can prove is the following.

ProrosrrioNn 10.  Suppose that E is equipped with the topology
o(E, P9—PY) and suppose that P is rich. Then MnP+0 whenever
M < E is a linear variety which separates positively the points of P°.

Proor. Let us assume MnP=¢. Then we have M = F +x, where F
is a linear subspace of ¥ and x€ E~F. Let fe E'~{0}. Then f=h—g.
with &, g e P°. If h, g+ 0, there exists an m € M such that k(m) —g(m)=
f(m)£0. And if for instance g=0, then 2h+h and the existence of m
remains valid also in this case. Hence the linear subspace F + Rx gener-
ated by M is dense in E. Define f, on F+ Rx by foly+ix)=—1. We
note that if y+Axe P and ye F, then 1<0, for otherwise A-ly+ze€
MnP. Hence f, is a positive linear functional on F + Rz. It follows from
[5, Proposition 7] that f, admits a positive and continuous extension f
to E. Since f € P°~ {0}, there exists an my € M, say m,=1y,+, such that
f(mg) > 0. But f(mg)=fy(yo+x)= —1, and this contradiction proves our
agsertion.
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ProrositioNn 11.  Suppose that E is equipped with the topology
o(E, PO - PU), that P is closed and rich and that Q < E is a convex, closed
cone such that Q° satisfies the weakened half-space Borel-Lebesgue property.
Then QNP s rich, provided QNP —QnP is dense in E.

Proor. Let F' be a dense linear subspace of ¥ and let x € E. Denote
the linear variety F—x by M. Choose ke °~{0}. Then —h ¢ P°,
for otherwise %,—h € @°+P°<(QnP)°, and this is impossible since
(@nP)° is proper. The linear variety Mnh-1(1) separates positively
the points of P°. In fact, let f, g € P°~ {0} with f+g¢ be given. Since the
convex cone generated by f and g is contained in P°, this cone is proper
and cannot contain —k. Hence, by Lemma 7, we can find a y € F such
that A(y—x)=1, 0<f(y—x)+g(y—x) >0, and this proves our assertion.
It follows from Proposition 10 that there exists an element

P, € PnMnhY(1).

By the condition on @° we infer that there exist p,.....p,e PnM

such that
max {h(p;)} 2 0, Vhe@°.

i=1,...,n

Hence, by Lemma 8, there exists p € PN M n@, and therefore

(PNQ +x)nF + 0.

JOROLLARY. Let the hypotheses on E and P remain unchanged. Let

Q= Qfﬁ([o,oo».

where fy, ..., f, € B, and assume that PnQ —PnQ is dense in E. Then,
whenever F is a dense linear subspace of E and x € E, there exists an ele-
ment y € (P+z)nF, such that f(y)=f(x), i=1,...,n.

Proor. Since @—Q is dense in E, @° is proper and weakly locally
compact. Hence Q° satisfies the weakened half-space Borel-Lebesgue
property. From the proof of the proposition we infer that there exists
an element p € PN@Qn(F —z). Thus p=y—z with y € F, and this y has
the desired properties.

It is easy to give an example which shows that Proposition 11 is not
valid without some sort of restriction on Pn@—Pn@. Then we must
of course assume that E admits at least one discontinuous linear func-
tional, say g. Suppose further that f, € E’ is such that S=/f,-1([0,00))n P
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is a half-line, say S={Ag:420}. Then S cannot be rich. For there
exists an f e E’ such that f(q)+ —g¢(q), and therefore F = (f+g)~1(0) is a
dense subspace such that (S+q)nF=0.
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