CONVEX CONES WITH PROPERTIES RELATED TO WEAK LOCAL COMPACTNESS #### OTTE HUSTAD #### Introduction. The present paper originated from the problem to characterize the polar cone of a rich cone, where a convex cone P in a topological vector space is called *rich* if p+P intersects every dense linear subspace whenever $p \in P$ (see [5] and [6]). During the work with this problem, we found some general properties concerning convex cones. These results are collected in §§ 1 and 2. The main result in § 1 (Proposition 3) states that a convex cone P is weakly locally compact if and only if P satisfies a Borel-Lebesgue property with respect to open half-spaces. We also show (Proposition 7) that P has this property if and only if the polar cone has a certain separation property. Here we make use of the concept of non-support point introduced by Floyd and Klee [4]. Such a point of P is virtually the same as a strictly positive functional on the polar cone. We show in $\S 2$ that if Q is a locally compact convex cone and P admits a strictly positive functional, then P+Q admits a strictly positive functional if (and only if) P+Q is proper. In § 3 we prove some properties about rich cones. If P intersects every linear variety which separates in a certain sense every point pair of the polar cone, then Pis rich (Proposition 9), and a partial converse is also valid. We use this result to show that under some not too restrictive conditions the intersection of two rich cones is again a rich cone. Notation and terminology. Set-theoretic difference between sets A and B is denoted $A \sim B$. The letter E shall always denote a real locally convex Hausdorff topological vector space, and P a convex cone in E, that is $P+P \subset P$ and $\lambda P \subset P$ for each $\lambda \geq 0$. The cone P is proper if P contains no line through zero. A base of P is a convex set $K \subset E \sim \{0\}$ such that P is the convex cone generated by K. A linear functional f on E is (strictly) P-positive or shorter (strictly) positive if $f(p) \geq 0$ (f(p) > 0) for each $p \in P \sim \{0\}$. The polar cone P° of P consists of all positive and continuous linear functionals on E. More generally we define (slightly Received December 10, 1961. different from [1]) the polar set K° of $K \subset E$ as the set consisting of all continuous linear functionals f such that $f(k) \geq -1$ for each $k \in K$. The topological dual of E is denoted E'. An open half-space is a set of the form $\{x:f(x)>0\}$, where $f \in E' \sim \{0\}$. We note that the closure of this set is $\{x:f(x)\geq 0\}$, i.e. a closed half-space. For each $x \in E$ we define \hat{x} on E' by $\hat{x}(f)=f(x)$. E' is always equipped with the weak topology, and extensive use will be made of the identification of E with the topological dual of E'. If $\mathscr{U}=\{U_{\gamma}\}$ is a family of subsets of a topological space, the closure of \mathscr{U} is the family $\{\overline{U}_{\gamma}\}$. If A, B are subsets of E, the real number field, then E is the family E is a family of subsets of E is a family of subsets of E. Otherwise our terminology follows Bourbaki [1]. ## 1. The half-space Borel-Lebesgue property. DEFINITION 1. A subset K of a topological vector space has the (weak-ened) half-space Borel-Lebesque property if each family of open half-spaces which covers $K \sim \{0\}$ contains a finite subfamily (the closure of) which covers $K \sim \{0\}$. Proposition 1. Suppose that P is closed. Then the following two statements are equivalent. - (i) Whenever $X \subseteq E$ is non-empty, convex and disjoint from P, there exists a closed hyperplane separating P and X. - (ii) P° has the weakened half-space Borel-Lebesgue property. PROOF. (i) \Rightarrow (ii). Suppose that (ii) is not satisfied. Then there exists a non-empty subset $A \subseteq E$ with the following two properties. 1° Whenever $f \in P^{\circ} \sim \{0\}$, there exists an $a \in A$ such that f(a) > 0. 2° If $a_1, \ldots, a_n \in A$ are given, there exists an $f \in P^{\circ}$ such that $f(a_i) < 0$. $i = 1, \ldots, n$. Let X be the convex hull of A and choose $x \in X$. Then we can find $a_1, \ldots, a_n \in A$ and $\lambda_i \geq 0$ such that $$x = \sum_{i=1}^{n} \lambda_i a_i$$ and $\sum_{i=1}^{n} \lambda_i = 1$. Because of 2° we can find an $f \in P^{\circ}$ such that $$f(x) = \sum_{i=1}^{n} \lambda_i f(a_i) < 0.$$ Hence $x \notin P$, and consequently $X \cap P = \emptyset$. In view of (i) there exists $\alpha \in R$ and $g \in E' \sim \{0\}$ such that $g(X) \le \alpha \le g(P)$. Since P is a cone we obtain $g(X) \le 0 \le g(P)$. Hence $g \in P^{\circ} \sim \{0\}$ and $g(A) \le 0$, which contradicts 1° . (ii) \Rightarrow (i). Suppose that (i) is not satisfied. Then there exists a non-empty convex subset X of E such that X is disjoint from P and if $f \in P^{\circ} \sim \{0\}$, then we can find an $x \in X$ such that f(x) > 0. Hence, by (ii). we can find $x_1, \ldots, x_n \in X$ such that (1) $$\max_{i=1,\ldots,n} \{f(x_i)\} \ge 0, \quad \forall f \in P^{\circ}.$$ Let K be the convex hull of x_1, \ldots, x_n . Then K is compact and disjoint from P. Hence there exists [1, p. 73] a closed hyperplane separating K and P strictly. This implies that there exists an $f \in P^\circ$ such that $f(x_i) < 0$, $i = 1, \ldots, n$. Since this contradicts (1), the proof is finished. PROPOSITION 2. Suppose that P satisfies (i) in Proposition 1, and let A be a non-empty convex subset of E such that A-P is dense in E. Then E=A-P. PROOF. Let $x \in E$. Then A - P - x is convex and dense in E, and must intersect P, for otherwise we could find an $f \in E' \sim \{0\}$ such that $f(A - P - x) \le 0 \le f(P)$, which is impossible since A - P - x is dense. Let q belong to $P \cap (A - P - x)$. Then q = a - p - x, and thus $x = a - (p + q) \in A - P$. COROLLARY. Suppose that P satisfies (i) in Proposition 1. Then every positive linear functional g is continuous. PROOF. If g is discontinuous, then $g^{-1}(0)$ is dense, and therefore $E = g^{-1}(0) - P$. This implies that $g(x) \le 0$ whenever $x \in E$. Consequently g = 0 and this is impossible since we assumed g discontinuous. LEMMA 1. Suppose that $E' = P^{\circ} - P^{\circ}$ and that $P \sim \{0\}$ is covered by a finite family of open half-spaces. Then P admits a strictly positive continuous linear functional. Proof. By assumption we can find $g_i, g_i' \in P^{\circ}$, i = 1, ..., n, such that (2) $$\max_{i=1,\ldots,n} \{ (g_i - g_i')(p) \} > 0. \quad \forall p \in P \sim \{0\}.$$ Put $g = g_1 + \ldots + g_n$ and let $p \in P \sim \{0\}$. Then $g(p) \ge 0$. If g(p) = 0, then $g_i(p) = 0$ for all $i = 1, \ldots, n$. In view of (2) there exists an i such that $-g_i'(p) > 0$. This is impossible since $g_i' \in P^\circ$. Hence g(p) > 0. The following simple lemma is certainly well known. LEMMA 2. P-P is dense in E if and only if P° is proper. If P is closed, then P is proper if and only if $P^{\circ}-P^{\circ}$ is dense in E'. PROOF. If P-P is not dense in E, there exists an $f \in E' \sim \{0\}$ such Math. Scand. 11 - 6 that f is zero on P-P. Hence $f \in P^{\circ} \cap -P^{\circ}$. Conversely, if P-P is dense and $g \in P^{\circ} \cap -P^{\circ}$, then g is zero on P-P and therefore g=0. This proves the first assertion. The second statement is a consequence of the first one, since $P = (P^{\circ})^{\circ}$ when P is closed. Lemma 3. If P contains an interior point p_0 , then P° is weakly locally compact. PROOF. Since E=P-P, we have that P° is proper. It is therefore sufficient [9, proof of (2) on p. 341] to show that there exists a weak zero-neighborhood V in E' such that $V \cap P^{\circ}$ is weakly compact. $P-p_0$ is, by assumption, a zero-neighborhood, and therefore $(P-p_0)^{\circ}$ is weakly compact. Now we observe that if $q=p-p_0$ with $p \in P$, then $q=\lim q_n$ where $q_n = \frac{1}{n}(np) + \left(1 - \frac{1}{n}\right)(-p_0)$ belongs to the convex hull of $P \cup \{-p_0\}$. From this we conclude that the closure of $P - p_0$ equals the closed convex hull of $P \cup \{-p_0\}$. Hence we obtain, by general properties of polar sets, $$(P-p_0)^\circ = (\{-p_0\} \cup P)^\circ = \{-p_0\}^\circ \cap P^\circ$$. Since $\{-p_0\}^{\circ}$ is a weak zero-neighborhood, the proof is finished. We shall adhere to usual terminology and call an element e of P an order unit provided there exists for every $x \in E$ a $\lambda > 0$ such that $\lambda e - x \in P$. This means that the set $(P - e) \cap (e - P)$ is absorbing. Hence e is an order unit if and only if e is an interior point of P, when E is equipped with the finest locally convex topology. In view of Lemma 3, we can therefore infer that if P admits an order unit and every positive linear functional is continuous, then P° is weakly locally compact. We make use of this result in the following proposition. PROPOSITION 3. Suppose that P is proper and closed. Then the following three statements are equivalent. - (i) P is weakly locally compact. - (ii) P satisfies the half-space Borel-Lebesgue property. - (iii) P satisfies the weakened half-space Borel-Lebesgue property and admits a strictly positive continuous linear functional. PROOF. (i) \Rightarrow (ii). This is a simple consequence of the fact [9, p. 341] that P admits in case (i) a weakly compact base. (ii) \Rightarrow (iii). For every $p \in P \sim \{0\}$ we can find an $f \in E'$ such that f(p) > 0. Hence it follows from Definition 1 that there exists a finite family of open half-spaces covering $P \sim \{0\}$. Applying Propositions 1 and 2 with P° instead of P, we infer, by Lemma 2, that $E' = P^{\circ} - P^{\circ}$. Hence it follows from Lemma 1 that P admits a strictly positive continuous linear functional. (iii) \Rightarrow (i). According to the remark preceding the proposition it is sufficient to prove that P° admits an order unit and that every P° -positive linear functional is continuous. That P° has the last mentioned property follows at once from the corollary of Proposition 2. Let f_0 be a strictly P-positive continuous linear functional. We assert that f_0 is an order unit of P° . Let Q be the set of all λf_0 with $\lambda \geq 0$. Then $Q - P^{\circ}$ is dense in E'. For otherwise we could find an $x \in E \sim \{0\}$ such that $g(x) \leq 0$ whenever $g \in Q - P^{\circ}$. But this implies $x \in P \sim \{0\}$ and $f_0(x) \leq 0$, contrary to the hypothesis on f_0 . Thus, by Proposition 2, $E' = Q - P^{\circ}$, and from this it follows that f_0 is an order unit. COROLLARY. Suppose that P is closed. Then P° is proper and weakly locally compact if and only if P admits an order unit and every P-positive linear functional is continuous. PROOF. The remark preceding Proposition 3 contains the "if"-part. The converse follows from the proof of Proposition 3 when applied to P° instead of P. PROPOSITION 4. Suppose that P_1 and P_2 are two closed convex cones in E, both with an order unit and such that their positive linear functionals are continuous. Then $P = P_1 \cap P_2$ has the same two properties if and only if P - P is dense in E. PROOF. The "only if" part is clear. Suppose therefore that P-P is dense in E. Then P° is proper. Both P_1° and P_2° are, by the corollary of Proposition 3, proper and weakly locally compact. Let B_1 (B_2) be a weakly compact base of P_1° (P_2°) , and let B be the convex hull of $B_1 \cup B_2$. Then B is weakly compact. If $0 \in B$, then $0 = \lambda_1 b_1 + \lambda_2 b_2$ with $b_i \in B_i$, $\lambda_i \ge 0$ and at least one $\lambda_i > 0$, say $\lambda_1 > 0$. Then $$0 \, \neq \, b_1 = \, -\frac{\lambda_2}{\lambda_1} b_2 \in \, {P_1}^{\circ} \cap - {P_2}^{\circ} \, \subseteq \, P^{\circ} \cap - P^{\circ} \, \, ,$$ contrary to the fact that P° is proper. From this it follows that B is a weakly compact base of $P_1^{\circ} + P_2^{\circ}$, and therefore we can conclude that $P_1^{\circ} + P_2^{\circ}$ is closed and weakly locally compact. Since $$P^{\circ} = (P_{1} \cap P_{2})^{\circ} = \overline{P_{1}^{\circ} + P_{2}^{\circ}} = P_{1}^{\circ} + P_{2}^{\circ},$$ the desired conclusion follows from the corollary of Proposition 3. A convex set K in E is called *linearly bounded* if K contains no half-line. PROPOSITION 5. Let $K \subset E \sim \{0\}$ be convex and closed. Then K is weakly compact if and only if K is linearly bounded and satisfies the weakened half-space Borel-Lebesgue property. PROOF. The "only if" part is clear. To prove the converse, let P be the convex cone generated by K. Since we can separate K and $\{0\}$ strictly, it follows that P admits a strictly positive continuous linear functional. It is easy to see that P has the weakened half-space Borel–Lebesgue property. Furthermore it follows from [7, p. 26] that P is closed. Thus by Proposition 3, P is weakly locally compact. Hence K is weakly locally compact, since K is weakly closed. From [9, p. 343] we infer that K is weakly compact. LEMMA 4. Suppose that $M \subseteq E$ satisfies the weakened half-space Borel-Lebesgue property, and that $Q \neq \{0\}$ is a subset of M. Then Q satisfies the same property if the following condition is fulfilled. If $x \in M \sim Q$, there exists an $f_x \in E'$ such that $f_x(Q \sim \{0\}) < 0 < f_x(x)$. PROOF. Let $\{H_{\gamma}\}$ be a family of open half-spaces covering $Q \sim \{0\}$. Then the family $\{H_{\gamma}\} \cup \{f_x^{-1}(\langle 0, \infty \rangle\}_{x \in M \sim Q}$ covers $M \sim \{0\}$. Hence we can find a finite subfamily \mathscr{F} such that the closure of \mathscr{F} covers $M \sim \{0\}$. Then the closure of $\mathscr{F} \cap \{H_{\nu}\}$ covers $Q \sim \{0\}$. PROPOSITION 6. Suppose that K is a convex and closed subset of E, and that K is contained in a hyperplane H with $0 \notin H$. Then K is weakly compact if and only if K has the weakened half-space Borel-Lebesgue property. PROOF. By Proposition 5, we have only to prove that K is linearly bounded if K has the weakened half-space Borel-Lebesgue property. Suppose that this is not true, and let $S = \{\lambda a + (1-\lambda)b : \lambda \ge 0\}$ be a half-line contained in K. Since S is a subset of H, it is easy to see that S cannot have the weakened half-space Borel-Lebesgue property. Hence, by Lemma 4, we have obtained a contradiction if we can prove that whenever $k \in K \sim S$, there exists an $f \in E'$ such that f(S) < 0 < f(k). Let L be the vector space generated by a, b and k. Then either a, b and k are linearly independent or $k = \alpha a + (1 - \alpha)b$, with $\alpha < 0$. In the first case we define f_0 on L by letting $f_0(k) = 1$, $f_0(a) = f_0(b) = -1$, in the second case by letting $f_0(k) = 1$, $f_0(b) = -1$. In both cases we have $f_0(S) < 0 < f_0(k)$. An extension of f_0 to E has the desired property. Following Floyd and Klee [4] we call a point $p_0 \in P$ a non-support point of P if $f \in E'$ and $f(p_0) = \sup f(P)$ implies that f is constant on P. It is evident that if P-P is dense in E, then P cannot be separated from a set which contains a non-support point of P. We now propose to characterize those convex cones which can be separated from every convex set which does not contain a non-support point of the cone. We omit the easy proof of the following lemma. LEMMA 5. Suppose that P-P is dense in E, and let $p_0 \in P$. Then p_0 is a non-support point of P if and only if \hat{p}_0 is a strictly positive linear functional on P° . LEMMA 6. An order unit e of P is a non-support point of P. PROOF. Let $f \in E'$ be such that $f(e) = \sup f(P)$. Then $f(P) \le 0 = f(e)$. Let $x \in E$. Then there exists a $\lambda > 0$ such that $\lambda e - x \in P$. Hence $0 \ge f(\lambda e - x) = -f(x)$, and therefore f = 0. PROPOSITION 7. Suppose that P is closed and that P-P is dense in E. Then the following two statements are equivalent. - (i) Whenever X is a non-empty convex subset of E such that X contains no non-support point of P, there exists a closed hyperplane separating P and X. - (ii) P° satisfies the half-space Borel-Lebesgue property. PROOF. (i) \Rightarrow (ii). By applying Lemma 5, the proof proceeds in much the same way as the proof of the first part of the Proposition 1, and is therefore omitted. (ii) \Rightarrow (i). P° is proper, since P-P is dense. Hence, by Proposition 3 and its corollary, P admits an order unit and every P-positive functional is continuous. Let $X \subseteq E$ be non-empty, convex and without any non-support point of P. Hence, by Lemma 6, X is disjoint from the set of all order units of P. This set is the same as the interior of P when E is equipped with the finest locally convex topology. By Eidelheits separation theorem [2, p. 22] there exists a linear functional g on E such that $g(X) \leq g(P)$. Hence g is P-positive and therefore continuous. This shows that P and X can be separated. ### 2. Strict separation. Klee shows in [8] that if P and Q are proper, closed convex cones in E, $P \cap Q = \{0\}$, and Q is locally compact, then P and Q can be separated by a closed hyperplane. He further shows that if P is locally compact or E is a separable normed space, then it is possible to separate P and Q strictly, i.e. there exists an $f \in E'$ such that $f(Q \sim \{0\}) < 0 < f(P \sim \{0\})$. Several times in the preceding, especially in Lemma 4, we have encountered problems of this sort. Now we have the following result. PROPOSITION 8. Suppose that P and Q are proper, closed convex cones in E, that Q is weakly locally compact, and that $P \cap Q = \{0\}$. Then it is possible to separate P and Q strictly if and only if P admits a strictly positive continuous linear functional. PROOF. Since the "only if" part is trivial, let us assume that $g \in E'$ is strictly P-positive. Then $M = P \cap g^{-1}(1)$ is a closed base of P. Let K be a weakly compact base of Q, and let B be the closed convex hull of $M \cup (-K)$. Since, by [8, p. 313], P - Q is closed, one proves easily that P-Q is the convex cone generated by B. We are going to prove that $0 \notin B$. Suppose that this is not true. Then there exist nets $\{m_{\nu}\} \subset M$, $\{k_{\nu}\}\subset K$ and non-negative numbers λ_{ν} , μ_{ν} with $\lambda_{\nu}+\mu_{\nu}=1$, such that $\lambda_{\gamma} m_{\gamma} - \mu_{\gamma} k_{\gamma} \to 0$ weakly. Since K is weakly compact, there exists a subnet $\{k_i\}$ of $\{k_i\}$ such that $k_i \to k \in K$. Since $\{\mu_i\} \subset [0,1]$, there also exists a subnet $\{\mu_{\alpha}\}\$ of $\{\mu_{i}\}\$ such that $\mu_{\alpha} \to \mu \in [0,1]$. Hence $k_{\alpha} \to k$, $\lambda_{\alpha} = 1 - \mu_{\alpha} \to k$ $1-\mu$ and $\lambda_{\alpha}m_{\alpha}-\mu_{\alpha}k_{\alpha}\to 0$. Suppose first that $\mu=0$. Then $\mu_{\alpha}k_{\alpha}\to 0$ and therefore $\lambda_{\alpha}m_{\alpha} \to 0$. Hence $m_{\alpha} = \lambda_{\alpha}^{-1}(\lambda_{\alpha}m_{\alpha}) \to 1 \cdot 0 = 0$, which contradicts the fact that M is closed and $0 \notin M$. And if $\mu > 0$, then $\lambda_{\alpha} m_{\alpha} \to \mu k$ and therefore $\mu^{-1}\lambda_{\alpha}m_{\alpha} \to k$. Since $\mu^{-1}\lambda_{\alpha}m_{\alpha} \in P$, this gives the contradiction $0 \neq k \in P \cap Q$. Hence $0 \notin B$. Therefore there exists an $f \in E'$ such that 0 < f(B), and one verifies directly that $f(Q \sim \{0\}) < 0 < f(P \sim \{0\})$. COROLLARY. Suppose that P is closed and admits a strictly positive continuous linear functional. Let Q be a proper weakly locally compact convex cone in E. Then P+Q admits a strictly positive continuous linear functional if and only if P+Q is proper. PROOF. If P+Q is proper, then $P \cap -Q = \{0\}$, and every $g \in E'$ with the property $g(-Q \sim \{0\}) < 0 < g(P \sim \{0\})$ is strictly positive on P+Q. ## 3. Some properties of rich cones. Another formulation of the weakened half-space Borel-Lebesgue property of a subset K of E is the following. If M is a subset of E' such that there exists for each $k \in K \sim \{0\}$ an $f \in M$ such that f(k) > 0, then there exist $f_1, \ldots, f_n \in M$ such that $$\max_{i=1,\ldots,n} \{f_i(k)\} \ge 0, \quad \forall k \in K.$$ A weakening of this property has bearing on the richness of a convex cone. DEFINITION 2. Let K be a subset of E and M a subset of E'. We say that M separates positively the points of K if, whenever $p, q \in K \sim \{0\}$ and $p \neq q$, there exists an $f \in M$ such that $0 < f(p) \neq f(q) > 0$. LEMMA 7. Let M be a dense linear subspace of E', $g \in E'$ and p, $q \in E \sim \{0\}$ with $p \neq q$. Suppose that the convex cone Q generated by p and q is proper. Then, whenever $x \in E \sim (-Q)$, there exists an $f \in M$ such that $$(f+g)(x) = 1$$ and $0 < (f+g)(p) \neq (f+g)(q) > 0$. PROOF. Let L be the vector space generated by x, p and q, and let $M \mid L$ denote the set of all $f \mid L$, where $f \in M$ and $f \mid L$ is the restriction of f to L. Since $M \mid L$ is a dense linear subspace of L', we have $L' = M \mid L$ and hence $M \mid L+g \mid L=L'$. Therefore the proof reduces to showing that there exists an $h \in L'$ such that h(x) = 1 and $0 < h(p) \neq h(q) > 0$. This is clear if the dimension of L is one or three. Suppose therefore $\dim L = 2$. We can assume that p and q are linearly independent, since the case when p and q are linearly dependent is easily settled. Hence we have $x = \alpha p + \beta q$, with at least one α or β positive, since $-x \notin Q$. Therefore we may and shall assume that $\alpha > 0$. Define h on L by first choosing $0 < h(q) < \min\{|\beta|^{-1}, |\alpha+\beta|^{-1}\}$ and then $$h(p) = \frac{1 - \beta h(q)}{\gamma}.$$ One then verifies readily that h has the desired properties. LEMMA 8. (Cf. [3, p. 618].) Suppose that P is closed and that $f_1, \ldots, f_n \in E'$ are given. Then the condition $$\max_{i=1,\ldots,n} \{f_i(p)\} \ge 0, \quad \forall p \in P,$$ is satisfied if and only if the convex hull Γ of $\{f_1, \ldots, f_n\}$ intersects P° . PROOF. The "if" part is clear. Hence suppose that $P^{\circ} \cap \Gamma = \emptyset$. Since Γ is compact and P° is closed, there exists an $x \in E$ such that $\hat{x}(\Gamma) < \hat{x}(P^{\circ})$. Hence $x \in P$ and $f_i(x) < 0$, $i = 1, \ldots, n$. PROPOSITION 9. Suppose that P is closed and that P-P is dense in E. Then P is rich if the following condition is satisfied. Whenever $M \subseteq E$ is a linear variety which separates positively the points of P° , there exist $x_1, \ldots, x_n \in M$ such that $$\max_{i=1,\ldots,n} \{f(x_i)\} \ge 0, \quad \forall f \in P^{\circ}.$$ PROOF. Let F be a dense linear subspace of E and let $p \in P$. Choose $f, g \in P^{\circ} \sim \{0\}$ with $f \neq g$. Since P° is proper, it follows from Lemma 7 that we can find a $g \in F$ such that $0 < (\hat{y} - \hat{p})(f) \neq (\hat{y} - \hat{p})(g) > 0$. Hence F - p separates positively the points of P° . Consequently there exist $y_1, \ldots, y_n \in F$ such that $$\max_{i=1,\ldots,\,n} \{(\hat{\boldsymbol{y}}_i - \hat{\boldsymbol{p}})(f)\} \, \geqq \, 0, \qquad \forall f \in P^\circ \; .$$ This means, by Lemma 8, that there exists a $y \in F$ such that $y - p \in P$, and hence $(P + p) \cap F \neq \emptyset$. Remark. It follows from this proposition that if P° satisfies the weakened half-space Borel-Lebesgue property, then P is rich. (This is also a simple consequence of Propositions 1 and 2.) If for instance P admits an order unit and every P-positive linear functional is continuous, then P is rich, since, by the corollary of Proposition 3, P° is weakly locally compact in this case. By Lemma 8, a converse of Proposition 9 would have the form: If P is rich, then $P \cap M \neq \emptyset$ whenever $M \subseteq E$ is a linear variety which separates positively the points of P° . If this converse were true, then, since P is rich in the finest locally convex topology, $P \cap M \neq \emptyset$ whenever M separates positively the points of the cone P^{\square} consisting of all P-positive linear functionals. And using Proposition 9 it would follow that P were rich in the weakest topology $\sigma(E, P^{\square} - P^{\square})$ which renders every $g \in P^{\square}$ continuous, provided P was closed and P - P was dense in this topology. What we now actually can prove is the following. PROPOSITION 10. Suppose that E is equipped with the topology $\sigma(E, P^{\square} - P^{\square})$ and suppose that P is rich. Then $M \cap P \neq \emptyset$ whenever $M \subseteq E$ is a linear variety which separates positively the points of P° . PROOF. Let us assume $M \cap P = \emptyset$. Then we have M = F + x, where F is a linear subspace of E and $x \in E \sim F$. Let $f \in E' \sim \{0\}$. Then f = h - g, with $h, g \in P^{\circ}$. If $h, g \neq 0$, there exists an $m \in M$ such that $h(m) - g(m) = f(m) \neq 0$. And if for instance g = 0, then $2h \neq h$ and the existence of m remains valid also in this case. Hence the linear subspace F + Rx generated by M is dense in E. Define f_0 on F + Rx by $f_0(y + \lambda x) = -\lambda$. We note that if $y + \lambda x \in P$ and $y \in F$, then $\lambda \leq 0$, for otherwise $\lambda^{-1}y + x \in M \cap P$. Hence f_0 is a positive linear functional on F + Rx. It follows from [5, Proposition 7] that f_0 admits a positive and continuous extension f to E. Since $f \in P^{\circ} \sim \{0\}$, there exists an $m_0 \in M$, say $m_0 = y_0 + x$, such that $f(m_0) > 0$. But $f(m_0) = f_0(y_0 + x) = -1$, and this contradiction proves our assertion. PROPOSITION 11. Suppose that E is equipped with the topology $\sigma(E, P^{\square} - P^{\square})$, that P is closed and rich and that $Q \subseteq E$ is a convex, closed cone such that Q° satisfies the weakened half-space Borel-Lebesgue property. Then $Q \cap P$ is rich, provided $Q \cap P - Q \cap P$ is dense in E. PROOF. Let F be a dense linear subspace of E and let $x \in E$. Denote the linear variety F-x by M. Choose $h \in Q^{\circ} \sim \{0\}$. Then $-h \notin P^{\circ}$, for otherwise $h, -h \in Q^{\circ} + P^{\circ} \subset (Q \cap P)^{\circ}$, and this is impossible since $(Q \cap P)^{\circ}$ is proper. The linear variety $M \cap h^{-1}(1)$ separates positively the points of P° . In fact, let $f, g \in P^{\circ} \sim \{0\}$ with $f \neq g$ be given. Since the convex cone generated by f and g is contained in P° , this cone is proper and cannot contain -h. Hence, by Lemma 7, we can find a $g \in F$ such that h(g-x)=1, $0 < f(g-x) \neq g(g-x) > 0$, and this proves our assertion. It follows from Proposition 10 that there exists an element $$p_h \in P \cap M \cap h^{-1}(1)$$. By the condition on Q° we infer that there exist $p_1, \ldots, p_n \in P \cap M$ such that $$\max_{i=1,\ldots,n} \{h(p_i)\} \ge 0, \quad \forall h \in Q^{\circ}.$$ Hence, by Lemma 8, there exists $p \in P \cap M \cap Q$, and therefore $$(P \cap Q + x) \cap F \neq \emptyset.$$ Corollary. Let the hypotheses on E and P remain unchanged. Let $$Q = \bigcap_{i=1}^n f_i^{-1}([0,\infty\rangle) .$$ where $f_1, \ldots, f_n \in E'$, and assume that $P \cap Q - P \cap Q$ is dense in E. Then, whenever F is a dense linear subspace of E and $x \in E$, there exists an element $y \in (P+x) \cap F$, such that $f_i(y) \ge f_i(x)$, $i = 1, \ldots, n$. PROOF. Since Q-Q is dense in E, Q° is proper and weakly locally compact. Hence Q° satisfies the weakened half-space Borel-Lebesgue property. From the proof of the proposition we infer that there exists an element $p \in P \cap Q \cap (F-x)$. Thus p = y - x with $y \in F$, and this y has the desired properties. It is easy to give an example which shows that Proposition 11 is not valid without some sort of restriction on $P \cap Q - P \cap Q$. Then we must of course assume that E admits at least one discontinuous linear functional, say g. Suppose further that $f_0 \in E'$ is such that $S = f_0^{-1}([0, \infty)) \cap P$ is a half-line, say $S = \{\lambda q : \lambda \ge 0\}$. Then S cannot be rich. For there exists an $f \in E'$ such that $f(q) \neq -g(q)$, and therefore $F = (f+g)^{-1}(0)$ is a dense subspace such that $(S+q) \cap F = \emptyset$. #### REFERENCES - N. Bourbaki, Espaces vectoriels topologiques, Chap. 1-2 et 3-4 (Act. Sci. Ind. 1189 et 1229), Paris 1953 et 1955. - M. M. Day, Normed linear spaces (Ergebnisse d. Math., N. F., Heft 21), Berlin · Göttingen · Heidelberg, 1958. - K. Fan, I. Glicksberg and A. J. Hoffman, Systems of inequalities involving convex functions, Proc. Amer. Math. Soc. 8 (1957), 617-622. - E. E. Floyd and V. L. Klee, A characterization of reflexivity by the lattice of closed subspaces, Proc. Amer. Math. Soc. 5 (1954), 655-661. - O. Hustad, On positive and continuous extension of positive functionals defined over dense subspaces, Math. Scand. 7 (1959), 392-404. - O. Hustad, Linear inequalities and positive extension of linear functionals, Math. Scand. 8 (1960), 333-338. - V. L. Klee, Boundedness and continuity of linear functionals, Duke Math. J. 22 (1955), 263–269. - 8. V. L. Klee, Separation properties of convex cones, Proc. Amer. Math. Soc. 6 (1955), 313-318. - 9. G. Köthe, Topologische lineare Räume I, Berlin · Göttingen · Heidelberg, 1960. UNIVERSITY OF OSLO, NORWAY