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EXTENSION OF POSITIVE LINEAR FUNCTIONALS

OTTE HUSTAD
Introduction.

Let P be a convex cone in a real locally convex Hausdorff topological
vector space K, and let F be a closed support space of P. Suppose that
PnF admits a supplement @ (Definition 1) in P such that @ is a closed,
locally compact convex cone. Then we prove (Proposition 2) that every
positive and continuous linear functional defined on F admits a positive
and continuous extension to K. A considerable part of the rest of the
present paper is concerned with the problem of finding conditions which
ensure that PnF admits such a supplement . When P is locally com-
pact we use the Krein—Milman theorem to obtain a condition expressed
by topological properties of the set of extreme points of a base of P.
We use this condition to prove that, among the closed finite dimensional
convex cones, only the pyramids have the property that such a supple-
ment exists for all closed support spaces. In § 2 we attack the supple-
ment problem in another way. First we prove that if PnF is locally
compact and P satisfies a decomposition property, then there exists for
every pe P a g € PnF given as the greatest element in PNF which is
less than p. The mapping p — q is a projection, and the inverse image of
zero is a supplement of PnF. With an additional assumption on P we
prove that this supplement is closed. A consequence of these results is
that if P is a locally compact ‘“‘topological semi-lattice’”, then PnF
always has a closed supplement. Motivated by the above mentioned
results we deal in § 3 with the problem of extending a positive and con-
tinuous linear functional defined on a closed subspace M to the closed
support space generated by M. One of our results here states that every
finite dimensional pyramid has the property that its linear sum with
any closed subspace is closed. This gives a counter-example to a con-
jecture of A. Bastiani [1, p. 283].

Noration. E and P shall always be as above, and all sets considered
shall be subsets of E. The line, the segment and the open segment be-
tween two different points x and y shall be the sets consisting of all
points of the form Ax + (1 — A)y, where respectively —oo<4< oo, 0= AZ1,
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and 0 <A< 1. A subspace is always a linear subspace, a linear variety is
a translation of a subspace. If K is a convex subset and x € K, then the
facet of x in K, F (K), is the set consisting of = and of points ¥4« in K
such that the line between x and y contains an open segment contained
in K and containing 2. The set of all extreme points of K will be denoted
e(K). The linear variety L is called a support variety of K if L inter-
sects K and if L contains the facet of x in K whenever x ¢ KnL, or
equivalently if L contains every open segment contained in K and inter-
secting L. A support variety which is a subspace will be called a support
space. All convex cones considered shall contain 0, and have 0 as vertex.
The convex cone P will be called proper if p, — p € P implies that p=0.
Otherwise we use the same notation as in [8].

1. Use of a general extension theorem.
Prorosition 1. Suppose that f 1s a positive and continuous linear func-

tional on the subspace F of E, and that
(1) (fU)+P)nF < (f~Y(0)+P)nF.
Then f admits a positive and continuous extension to K.

Proor. According to [8, Theorem 2] it will suffice to show that f is
non-negative on the left hand side of (1). Since f is continuous on F
we get from (1)

F((FHO+PynF) = f((f*O+P)nFnF)
< f((f~4O+P)n F) .

This gives the desired result since F is a positive linear functional and
therefore non-negative on

(f-(O)+P)n F.

We shall say that a linear functional g on ¥ is strictly positive provided
g(p) >0 whenever p € P~ {0}.

CoroLLARY. Suppose that P and F are closed and that P s locally
compact. Then a strictly positive and continuous linear functional f on F
admits a positive and continuous extension to K.

Proor. The subspace f-1(0) is closed. Since f is strictly positive, we
have f-1(0)nP={0}. Hence we conclude from a theorem of V. L. Klee
[9, (7, 5), p. 4562] that f-1(0)+ P is closed, and thus (1) is satisfied.

The following lemma is a slight extension of the above cited result of
V. L. Klee.
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Lemma 1. Let S be a locally compact closed convex cone and F a closed

subspace such that FnS=1{0}. If M is a subset of F, then
i M+S=M+8
i) M+S)nF =M.

ProoF. Let x € M +8. Then there exist nets {m,j<M and {s,}<8
such that m,+s, >. Since {m,}<F, we conclude from the proof of
[9, (7, 5), p. 452] that there exists a subnet {s} of {s} such that s, —
se 8. Since m,+s, - z, we infer that m, - m € M, and thus x=m+se
M+8. Hence M+S<M+8. The converse inclusion being clear, we
have proved (i). Hence we have

(M4+8)nF = (M+8S)nF = M+SnF =M.

DEeriNITION 1. Let @ and S be two convex cones such that  and S
are subsets of P, QnS={0}, and @ +S=P. Then we shall say that@
and 8 are supplementary subcones of P and that 8 is a supplement of @
in P.

PropositioN 2. Suppose that the subspace F is closed and that there
exists a closed locally compact convex cone S such that S is a supplement
of PnF in P. Then a positive and continuous linear functional f on F
admits a positive and continuous extension to E.

Proor. According to Proposition 1 we are through if we can prove that
(fHUO)+P)nF < (fYO)+P)nF.

Putting M =f-1(0)+ PnF, we have f-1(0)+P=M +8. Since SnF={0]

and M =(f-1(0)+ P)nF, the desired result follows from Lemma 1 (ii).

ProrosiTioN 3. Let F and S be as in Proposition 2. Then F+ P is
closed.

Proor. We have
F+P=F+FnP+8=F+S8,

and hence the result follows from Lemma 1.

ProrosiTioN 4. If F is a support space of P, then PnF admits a sup-
plement in P. Conversely, if P is proper and F is a subspace such that
PnF admits a supplement in P, then F i3 a support space of P.

Proor. To prove the first assertion we shall show that the set
8=(P~F)u{0} is a supplement of PnF in P. This is clear if we can
prove that 8 is a convex cone. It is easy to see that if 120 and s §,
then As e S. Therefore it suffices to prove that

Math. Scand. 11 — 5
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if s8€8, then z= §s+s)efl.

We may and shall suppose that s+s" and s,8'4+0. Hence s,8' e P~ F.
Suppose ¢ §. Then = € F, and since F is a support space we obtain the
contradiction 8,8’ € F. Suppose conversely that P is proper and that
is a supplement of PNnF in P. Let a,b be two different points in P,
and suppose that x=2a+ (1 —-A)b € F, where 0 <A< 1. We then have to
prove that a,be F. We can find p,p’ € PnF and ¢,¢' € @ such that
a=p+q, b=p"+q'. Hence

x=2Ap+(1-A)p +¢g+(1—-A)q" .
Since z, Ap+(1—24)p' € F we get
Mq+(1-2)q € @nF = {0}.
From this it follows that
q=A-1)2"% € @Qn-Q < Pn—-P = {0}.
Hence g=¢' =0 ,and therefore a=p and b=p'.

DEeriNiTION 2. Let K be a convex set and suppose that A and B are
convex subsets of K such that AnB=0@ and such that K is the convex
hull of AuB. Then we shall say that 4 and B are complementary, and
that B is a complement of A in K.

DeriniTioNn 3. If K is a non-empty convex subset of P such that
P=[0,0)K and K is contained in a hyperplane not containing zero,
then K is called a base of P.

We remark that if P admits a base, then P is proper. We also observe
that if P is proper, then P is locally compact if and only if P admits a
compact base, and that P is closed in this case [11, p. 341].

ProrositioN 5. If F is a subspace and K is a base of P, then PnF
admits a supplement in P if and only if KnF admits a complement in K.

Proor. Let B be a complement of KnF in K. If B=0, then K< F
and therefore P < F, so that {0} is a supplement of PnF in P. In case
B0 it is easy to see that [0,00)B is a supplement of PnF in P. Suppose
conversely that S is a supplement of PnF in P. We shall show that
Kn&8 is a complement of KnF in K, and in order to do this we only
need to verify that K is the convex hull of (KNnF)u(KnS). Let ke K.
Then k=p,+p, where p, e PnF, p,e€S. We can find 4,,4,20 and
ki, ko e K such that py=2Ak;, py=24k, If 4,=0 or A,=0, then
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ke (KnS8)u(KnF). We can therefore assume that 1,,4,>0. Then
ky=A"1p,e KnF, ky=2,"1p, € KnS, and k=2A,k, + A,k,. Consider
A y)
— o k1+ A
Ay +2y Ayt A,
Then k' lies in the convex hull of (KnS)u (KnF) and k=(A;+4,)k".

If k+%', then the line joining k and %’ contains zero and this contradicts
the fact that K is contained in a hyperplane not containing zero.

kl

ky .

CoroLLARY. If K is a compact base of P, then PnF admits a closed locally
compact supplement in P if and only if KnF admits a closed complement
m K.

Proor. This follows from the preceding reasoning and the fact that if

B is a compact convex set not containing zero, then [0, o) B is closed and
locally compact [11, p. 341].

ProPposiTION 6. Let K be a convex compact set, and suppose that M is
a closed support variety of K. Then KnM admits a closed complement
in K if and only if
(2) e(Ky~MnM =0.

Proor. Suppose that B is a closed complement of KnM in K. Since
K is the convex hull of (KnM)uB, we conclude from a theorem of
Milman [3, Chap. 2, p. 84] that e(K)<(KnM)uB. Hence ¢(K)~M < B,
and so E—

e(K)y~MnM < BnM =90.

Suppose conversely that (2) is satisfied. Let C be the closed convex
hull of ¢(K)~M. Since e¢(K)<=Cu(KnM), it follows from the Krein—
Milman theorem that K is the closed convex hull of Cu(KnM). Now,
since C and KnM are compact convex sets, it follows by a proposition
in [3, Chap. 2, p. 80] that the convex hull of Cu(KnM) is compact, and
hence equals K. Therefore C will be a closed complement of KnM if
we can verify that CnM =0. Again we conclude from the theorem af
Milman that ¢(C)<e(K)~ M. Since C is a subset of K we have on the

other hand eK)~M < eK)nC < ¢C).
Hence ¢(C)=e(K)~ M, and therefore ¢(C)nM =@. The conclusion then

follows from the following lemma, and the fact that if CnM +¢, then
e(CnM)+0.

LemMma 2. Let K be a convex set, M a support variety of K, and C a
convex subset of K. Then

(3) e(MnC)= Mnel).
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Proor. We have
Mne(C)y=MnCne(lC) < e(Mn0).

Suppose on the other hand that x ee(MnC). If x is not an extreme
point of C, we can find two different points a,b € C such that x is con-
tained in the open segment between a and b. Since a,be K, xe MnK
and M is a support variety of K, it follows that a,b € MnC. This con-
tradicts the fact that = is an extreme point of M nC.

COROLLARY 1. Suppose that P admits a compact base K and that F is
a closed support space of P. Then PnF admits a closed locally compact
supplement in P, if and only if

(4) e(E)~FnF =0.

Proor. If PnF = {0}, the assertion is obvious. In case PnF + {0} the
conclusion follows from Proposition 6 and the corollary of Proposition 5.
together with the fact that F' in this case is also a support space of K.

A half-line extending from zero and passing through a point of P
different from zero is called a generatriz of P. The generatrix is called
extreme if the line generated by it is a support space of P. We remark
that if P admits a base K, then a generatrix is extreme if and only if its
intersection with K is an extreme point of K [11, p. 341].

COROLLARY 2. Suppose that P admits a compact base K. Then an ex-
treme generatriz G of P admits a closed locally compact supplement in P
if and only if its intersection p with K is an isolated point of e(K).

Proor. If F is the line generated by @, then PnF =G and
e(K)y~FnF = e(K)~{p}n {p}.

The result then follows from Corollary 1.

CoROLLARY 3. Suppose that P admits a compact base K, that e(K) s
closed, and that F is a closed support space of P. Then PnF admits a
closed locally compact supplement in P if and only if Fne(K) is an open-
closed subset of e(K) in the induced topology.

Proor. Since ¢(K) is closed, the condition (4) is equivalent with
eK)y~FneK)nFnelK)=0.

This condition expresses that Fne(K) is an open subset of e(K) in the
induced topology. On the other hand, Fne(K) is always closed in this
topology since F is closed.
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CoroLLARY 4. Suppose that P admits a compact base K and that e(K)
18 closed. Then a finite intersection of closed support spaces, each having
the property that its intersection with P admits a closed locally compact
supplement in P, is a support space with the same property.

Proor. This follows immediately from Corollary 3.

DEFINITION 4. A convex cone P in E is said to have the supplement
property in E if PnF admits a closed supplement in P whenever F < E
is a closed support space of P.

ProrosiTiON 7. If P is locally compact and has the supplement property
in E, then every positive and continuous linear functional defined on a
closed support space of P admits a positive and continuous extension to K.

Proor. This is an immediate consequence of Proposition 2.
In § 2 we shall show that some ‘“‘semi-lattice’” cones have the supple-
ment property. At this point we deal with the finite dimensional case.

Lrmma 3. Suppose that P has the supplement property in E and that F

i8 a closed support space of P. Then PnF has the supplement property
in F.

Proor. Let L<F be a closed support space of PnF. Then L is a
closed support space of P. Hence PnL admits a closed supplement ¢
in P. The cone ¢@nF is a closed supplement of (PNnF)nL in PnF.

PropositioN 8. Suppose that P is a proper, closed, finite dimensional
convex cone in E. Then P has the supplement property in I, if and only
if P has a finite number of extreme generatrices.

Proor. First we observe that, since P is locally compact, P admits a
compact base K. If P has a finite number of extreme generatrices, then
e(K) is a finite set. Hence it follows from Proposition 6, Corollary 1
that P has the supplement property in E. Suppose conversely that P
has the supplement property in £. We use induction with respect to the
dimension of P. Assume therefore that whenever @ has dimension <n
and @ has the supplement property in some vector space, then @ has a
finite number of extreme generatrices. Suppose that P has dimension
n+1, and that P has an infinite number of extreme generatrices. This
means that ¢(K) is an infinite set. Hence we can find a k € ¢(K) such that
every neighborhood of k contains a point from e(K) different from k.
It is easy to see that every extreme point of K is a boundary point of K.
Hence k belongs to the boundary of K. We may and shall assume that
K is contained in a linear variety H not containing zero, and of dimen-
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sion n. It is well known [6, p. 20] that there exists a support variety L
of K such that k belongs to L, and such that L is contained in H and has
dimension n—1. Let F be the vector space generated by L. Then F is
a support space of P. For let x=4a+(1—21)b e F, where a,b € P and
O0<A<l. If a or b=0, then a,b € F. We can therefore assume a,b=0.
Then there exists a',b' € K and «,f>0, such that a=«a’, b=p4b". Let
x'=(Ax+(1—2)p)x. Here we have that 2’ belongs to the open segment
between a’ and &', and that " € HnF. Since HnF =1 it follows that
a’,b' € L and consequently that a,b e F. By Lemma 3, PnF has the
supplement property in F. Since PnF has dimension =<n it follows from
the induction assumption that PnF has only a finite number of extreme
generatrices. Since KnL is a base of PnF, it further follows that
e(KnL)is finite. By Lemma 2 we conclude that Lne(K) is finite. Since
P has the supplement property in K, it follows from Proposition 6,
Corollary 1 that

(5) 0=eK)~FneE)nF =e(K)~LneE)nL.

This is a contradiction, since every neighborhood of k£ contains an in-
finite number of points from e(K), such that k belongs to the right hand
side of (5).

ExampLES

(i) Let X be a compact space, let .#(X) denote the vector space of
all Radon measures on X, #+(X) the convex cone of all positive Radon
measures, and .#,*+(X) the convex set of all positive Radon measures u
such that u(l)=1. We equip #(X) with the vague topology. Then
M ,1(X) is a compact base of #+(X) and its set of extreme points is the
set {¢,:2 € X}, where ¢, is the measure with the unit mass placed at x
[11, p. 337]. This set is homeomorphic with X by the correspondence
z — ¢, and is thus compact. Now let FF<.#(X) be a closed support
space of #+(X). From Proposition 6, Corollary 3 it follows that
Fn.#+X) admits a closed supplement in #+(X) if and only if the set
{xe X :¢, € F} is open-closed in X.

(ii) Let & denote the vector space of all real valued functions on
[0,1], .# the convex cone consisting of all non-negative, increasing func-
tions on [0, 1], and let .#, denote the convex set of those f € .# such that
J()=1. We equip # with the topology of pointwise convergence.
Then £, is a compact base of £, and e(.#,) is compact and consists of all
functions of the form f,. where

0, A
fA(x) = 1: :;A .
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and where either 4=[0,a] with 0<a<1, or 4=[0,a) with 0gax1
(and where [0,0)=0) [5, p. 240]. We identify e(.#,) with the set con-
sisting of all such intervals 4, by identifying f, with A. Now we observe
that whenever 0 <2 <y <1 then the set of all 4 such that [0,x]=A4 <[0,y)
is open, and that the same is true for the set consisting of the one element
[0,0). We want to show that every closed hyperplane F which is a sup-
port space of # has the property that #nF admits a closed supplement
in £. If we have proved this, we also know by Proposition 6, Corollary 4
that a finite intersection of such hyperplanes has this property. There
exists a positive and continuous linear functional @ on & such that
F=®-1(0). According to (3, Chap. 4, p. 75] we can find points 0=
<...22,=1, and real numbers ¢,,...,p, such that

o(f) = ﬁl%f(x,-), Vfe F .

Let 05k, < ... <k,<n be those numbers k such that

29:=0.

>k
In particular we have k.=n. Now one finds that f, belongs to F if
and only if either [0,2;]<A <[0,2,1) for some j=1,...,r, or in case
k,=0, 4=[0,0). (By definition ;=0 and x,,,=1.) Hence the set
Fne(#,) is open-closed in e(.#,), and thus, by Proposition 6, Corollary 3.
Fn.# admits a closed supplement in .#. We can use this result in the
following situation: Let y,,...,y,,€[0,1] and vy,,....y, € B be given,
and define ¥ on .# by

() =§ vl W), feF.

Suppose that ¥(f)=0 whenever fe #nF. Then the restriction of ¥ to
F is a positive and continuous linear functional, and admits therefore,
by Proposition 2, a positive and continuous extension ¥ to #. Since
¥ and ¥ coincide on F =®-1(0), there exists a real number « such that
Y=Y _x®. In other words: If

gl’l)if (y) 2 0

whenever fe £ and
n
2 oiflx) =0.
=1

then there exists a real « such that

% viof (%) 2 ail«PJ(xi), vfe.s .

=1
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In concluding we remark that the condition of being positive imposed
on @ is equivalent with the condition

This can be proved either by an elementary induction argument, or by
appealing to the Krein—-Milman theorem.

2. Cones with a decomposition property.

We recall that if x,y € E, then x>y means that x—y € P. In the se-
quel a support space shall always mean a support space of P.

ProrositioN 8. Let F be a subspace of E. Then F is a support space
if and only if 0<q=<pe F, implies that g F.

Proor. Suppose that F has the stated property. Let a,be P and
x=Aa+(1—-2)be F, where 0<i<1. Since 0<ia =<z, we obtain Aa e F.
Therefore @ € F, and in the same way b € F. Hence F is a support space.
The converse statement is a consequence of the following.

Lemma 4. If 0<q<p, then q belongs to the facet F,(P) of p in P.

Proor. The case g=p being trivial, we may assume g=p. Let
a=2p—q and b=1%(p+q). Then a,b € P, a+b and a,b belong to the line
joining p and ¢. Since p=4a+ 3b we have q € F(P).

CoroLLARY. Let M be a subspace of E. Then the set s(M) defined by
$(M) = {xeE:m=Zx<m' for some m,m' € M}
18 the support space generated by M.

Proor. By Proposition 8 it is clear that s(M) is a support space
containing M. Let F be a support space containing M and let m <z <m/,
with m,m' e M. Then 0<x—m<m'—mecF. Hence x—meF and
x=(x—m)+mel.

DerinitioN 5. The convex cone P has the decomposition property if
p+qg=r+s, where p,q,r,8 € P, implies that there exist a,b,¢,d € P such
that a+b=p, c+d=¢q, a+c=r, b+d=s.

We observe that the argument given in [4, p. 20] shows that if P is
proper and satisfies

(i) inf{a,b} exists in P whenever a,be P,

(ii) inf{a+b,a+c}=a+inf{b,c} whenever a,b,ce P,
in the induced ordering, then P has the decomposition property. We
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shall call P a semi-lattice cone if P is proper and satisfies the conditions (i)
and (ii) above. (P is “une monoide semiréticulé” [2, p. 24].)

LeMMA 5. Suppose that P has the decomposition property and that F is
a support space of P. Then the following is true. If p,q € PNF and p,q<u
for some w € P, then there exists a ve PnF such that p,q <v=u.

Proor. Let py=u—p and qy=u—q. Then py,q,€ P and w=p+p,=
q+q,. By the decomposition property there exist a,b,c,d € P such that
a+b=p, c+d=py, a+c=q, b+d=q, Since p,ge FnP and a,b<
a+b=p, cSa+c=q, we have a,b,ce FnP. Hence v=a+b+cec FnP.
Since p,gsvsa+b+c+d=p+p,=u, the proof is finished.

When p,q € P and p<q we denote the set of all z such that pszx=q
by [p,q]. We have [p,q]=(p+ P)n(g— P) and hence, [p,q] is closed if P
is closed.

ProposITION 9. Suppose that p € P, where P is proper, closed and has
the decomposition property. Let F be a support space of P such that PnF
18 locally compact. Then the set of all ¢ € PN F such that ¢ < p has a unique
greatest element.

Proor. Since P is proper, the uniqueness is obvious. To prove the
existence we first note that [0,p]nF is closed since PNF is a proper
locally compact convex cone, and therefore closed. Hence [0,p]nF is
a locally compact, convex set which contains zero. If we can prove that
[0,p]nF contains no ray issuing from zero, then it follows from [10,
p. 736] that [0,p]nF is compact. Let 0%y € [0,pInF. If ny e [0,p]nF
for all n=1,2,..., then y—n-1p<0 for all n. Since P is closed, we ob-
tain the contradiction 0 <y <0. Hence [0,p]nF is compact. If now
vy, .. .50, €[0,p]nF, then it follows by induction from Lemma 5, that
there exists a v € [0, p]nF such that v,,...,v, Sv. This implies that the
family {[v,p]nF : ve[0,p]nF} has the finite intersection property.
Since each [v,p]nF is a closed subset of the compact set [0, p]nF, there
exists an element ¢ e[0,p]nF such that ¢ e [v,p]nF whenever ve
[0,p]nF. This q is the desired greatest element.

In the sequel p¥ shall denote this unique greatest element of [0,p]nF,
and we shall denote the mapping p - p¥ from P to PnF by @. A
projection on P is a mapping 7' from P to P such that T%?=T, and such
that T'(Ap+ uq) =AT(p) +uT(q) whenever p,ge P, ,u20. T is called
order preserving if p <q implies T'(p) =T(q).

Prorosition 10. Let P and F be as in Proposition 9. Then the mapping
D : p — p¥ is an order preserving projection on P.
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Proor. The property @2=® follows from the very definition. Further
it is easy to see that (Ap)F=Ap¥, whenever 120. Now let p,qge P.
Then p¥=<p, ¢F<q, and hence pF+gF <p+gq. Therefore pF+g¢F<
(p+q)¥. Suppose on the other hand that » € PnF and r<p+q. Then
there exists a rye P such that r+ry=p+gq. Let a,b,c,d € P be such
that a+b=r, a+c=p, b+d=q. Then a<p, b<q, and a,b<r. From
Proposition 8 it follows that a,b e F. Hence a<pF, b<q¥ and thus
r=a+bzp¥f+9F. This shows that (p+¢)F=pF+q¢F. If we assume
p=q, then p¥ <q and by definition p¥ <¢F.

CorOLLARY 1. The set @-1(0)={pe P : p¥ =0} is a convex cone with
the property that if 0<q<p e @-1(0), then q € D-(0).

Proor. Obvious.

CoroLLARY 2. Every p € P can be written uniquely in the form p=q+4¢’,
where g € PNF, q¢' € @Y(0). More precisely, we have ¢ =p¥ and ¢’ =p— p¥.
In particular, ®=1(0) is a supplement of PnF in P.

Proor. If p=q+4¢’, with g€ PnF, ¢’ € -1(0), then
Pr=q"+@V =q¢"=9q.

On the other hand we have p=pF+r, where r=p—pF e P. Hence
pF=pF +7rF, and thus r € @-1(0).

ProrositioNn 11. Let P and F be as in Proposition 9. Consider the
Sfollowing statements.
(1) The mapping @: p — p¥ is continuous.
(ii) The graph of @ is a closed subset of E x E.
(iil) @-1(0) 48 closed.
Then (i) == (ii) and (ii) = (iii). If in addition we suppose that P is locally
compact and that F is closed, then (iii) = (i).

Proor. That (i) = (ii) and (i) =~ (iii) is immediate. Suppose there-
fore that P is locally compact and that ¥ and @-1(0) are closed. Then
®-10) is a closed locally compact convex cone and @-1(0)nF={0}.
Now let {p,} be a net in P such that p, - p. We have to prove that
D (p,) > D(p). It is sufficient to prove that every subnet has a subnet
which converges to @(p). Let {®(p,)} be a subnet of {®(p,)}. It suffices
to prove that {p} has a subnet {p,} such that &(p,) > P(p). Now
p,=D(p,) +p,, where ®(p) € PnF, p € ®-1(0). Since p, > p, we conclude
as in the proof of Lemma 1 that {p,} has a subnet {p,’} converging to
p’ € @-Y(0). Since p, =P(p,) + P, — P, we obtain ®(p,) >q=p—p'e PnF.
Hence p=g+p’. and therefore @(p)=D(q) =q.
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ProposiTiON 12. Let P and F be as in Proposition 9 and assume in
addition that P has the following property:
(A) Given the met {p}<=P, where p,~>pecP and given Ve ¥7(0),
q € [0,p], there exists a y such that q € [0,p,]+PnV.
Then @-1(0) 18 closed.

ProoF. Suppose that p, — p, where {p }=®-1(0). Let V e ¥'(0) and
g €[0,p]nF. According to the hypothesis there exists a y such that
g=r+v, where r€[0,p,], ve VnP. Since 0=sr=<qe F, we have re F.
Hence 0<7=<pF=0, and consequently g=ve VnP. Since V is ar-
bitrary, this implies that ¢ =0 and therefore p¥ =®(p)=0.

If P is a semi-lattice cone such that the mapping p — inf{p,q} from
P to P is continuous for every g € P, then we shall call P a topological
semi-lattice cone.

ProrosrtioN 13. If P is a topological semi-lattice cone, then P satisfies
the condition (A) of Proposition 12.

Proor. Let p,—>p, Ve”?(0) and ge[0,p]. Then inf{p,q}—
inf{p,g}=q. Therefore we can find a y and a ve —V, such that
inf{p,q}=q+v. Hence —v=q—inf{p,,q} e VnP, and thus

q= inf{py,q}~v e [0,p]+VNnP.

ProposiTioN 14. A locally compact topological semi-lattice cone P has
the supplement property.

Proor. Let F be a closed support space of P. Then P and F satisfy
the hypothesis of Proposition 9. Proposition 10, Corollary 2 shows that
@-1(0) is a supplement of PnF, and this supplement is closed by Propo-
sitions 12 and 13.

We conclude this section with a result of a negative nature. It shows
that in an infinite dimensional disk space (espace tonnelé) there exist
no locally compact, generating cones. This result might be well known.
but I have been unable to find a reference.

ProposITION 15. Suppose that E is a disk space, that P is locally com-
pact, and that E=P — P. Then E is finite dimensional.

Proor. Let V e ¥7(0) be symmetrie, convex, and such that VnP is
compact. Then VNP~ VnP is symmetric, convex and compact (since
VnP—-VnP is the image of the compact set (VnP)x(VnP) by the
continuous mapping (z,y) - x—vy). Now let € E. Then x=p—gq, with
p.ge P. We can find a A>0 such that Ap,ig € VnP. Hence
Az e VNP —VnP, and consequently this set is a disk and is therefore a
compact neighborhood of zero.
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3. The closed support space generated by a subspace.

In the sequel s(M) denotes the support space generated by a subspace
M. We deal in the present section with some rather simple aspects of
the following general problem: Let f be a positive and continuous linear
functional on M. Find conditions which ensure that f admits a positive
and continuous extension to the closed support space generated by M.
We split this problem into two new problems in the following way.
According to a result of I. Namioka [12, p. 8], f admits a positive exten-
sion f to s(M). First problem: Find conditions which ensure that f is
continuous. If f is continuous, then f admits, by a result in [8, p. 336] a
positive and continuous extension to s(M), provided Pns(M)<Pns(M).
Second problem: Find conditions which ensure that s(M) is a support
space.

LemMa 6. When M is a subspace of E, then

s(M)=M~+Pns(M).
Proor. This follows from the corollary of Proposition 8.

ProrositioN 16. Suppose that M is a closed subspace, that s(M)nP is
[finite dimenstonal, and that P is closed. Then s(M) is closed, and a positive
and continuous linear functional f on M admits @ positive and continuous
extension to s(M).

Proor. s(M) is, by Lemma 6 and the hypothesis, the direct sum of M
and a finite dimensional subspace E,, and is therefore closed. The co-
rollary of Proposition 8 shows that every positive element in s(M) is
dominated by an element from M. Hence it follows from [12, p. 8] that
f admits a positive extension f to s(M). Since E, is a topological supple-
ment of M in s(M), and the restriction of f to E, is continuous, we con-
clude that f is continuous.

CoroLLARY. Suppose that P is proper, closed and finite dimensional,
and that P has only a finite number of extreme generatrices. Let M be a
closed subspace of E. Then every positive and continuous linear functional
on M admits a positive and continuous extension to E, and M + P 1s closed.

Proor. The first statement is a consequence of Propositions 7, 8 and
16. The second statement then follows from [8, p. 336].

Applied to E in the case E is equipped with the finest locally convex
topology, this corollary gives a counterexample of a conjecture of
A. Bastiani, concerning what she calls ‘“pyramide stricte” [1, p. 283].

We use this opportunity to give a characterization of a .7 -pyramide
as defined by A. Bastiani [1, p. 273].
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ProprosITION 17. Let P be a convex cone. Then the following statements
are equivalent.
(1) P is a T -pyramide in the sense of Bastiansi.
(ii) P+ M is closed whenever M is a finite dimensional subspace.
(iii) Ewery positive linear functional defined on some finite dimensional
subspace admits a positive and continuous extension to E.

Proor. The equivalence of (i) and (ii) follows from a remark in
{1, p. 273]. The equivalence of (ii) and (iii) follows by just the same
argument as we used in the proof of Proposition 2 in [8].

ProposiTION 18. Suppose that E is a disk space, that P is weakly locally
compact, and that M is a closed subspace of H, such that s(M)=E. Then
a positive and continuous linear functional f on M admits a positive and
continuous extension to E.

Proor. According to [12, p. 8], f admits a positive extension f to E.
We shall show that f is continuous. Let &> 0 be given. Choose V as a
weak zero-neighborhood such that V is symmetric, convex, closed, and
has the following properties: VnP is weakly compact and |f(x)| <¢
whenever x € VnM. Let W be the set

W=VnM+VnP)n(VnM-VnP).

Then W is symmetric and convex, and if y € W, then |f(y)| <e. Hence
we are through if we can prove that W is a disk. That W is weakly
closed follows from the following fact: If K is a compact set and C a closed
set, then K +C is closed [11, p. 158]. Therefore it remains to show that W
is point absorbing. Let z € E. Then z=m+p=m'—p’, where m,m’ € M,
p,p’ € P. There exists a 1> 0 such that Am, Am’, Ap, Ap" € V, and hence
Ace W.

ProposiTioN 19. Suppose that M is a closed subspace fulfilling the
following requirements:

(i) Pns(M) is weakly locally compact.
(ii) Pns(M)=Pns(M),
(iii) s(M) is a disk space.
Then s(M) is the closed support space generated by M, and a positive and
continuous linear functional f defined on M admits a positive and con-

tinuous extension to s(M).

Proor. The first assertion follows from (ii) together with Proposition
8. Now we observe that s(M) is the same as the support space generated
by M with respect to the cone Pns(M). Since Pns(M) is assumed
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weakly locally compact, it follows from Proposition 18, that f admits a
positive and continuous extension to s(M). The desired result then follows
from (ii) and the argument used in [8, Proposition 3, p. 336].

REFERENCES
1. A. Bastiani, Cones c et pyramides ¢ 8, Ann. Inst. Fourier Grenoble 9
(1959), 249-292.
2. N. Bourbaki, Algébre, Chap. 6 (Act. Sci. Ind. 1179), Paris, 1952.
3. N. Bourbaki, Espaces vectoriels topologiques, Chap. 1-2 et 3—4 (Act. Sci. Ind. 1189 et
1229), Paris, 1953 et 1955.
4. N. Bourbaki, Intégration, Chap. 1-4 (Act. Sci. Ind. 1175), Paris, 1952.
5. G. Choquet, Theory of capacities, Ann. Inst. Fourier Grenoble 5 (1953), 131-292.
6. H. G. Eggleston, Convexity, Cambridge, 1958.
7. O. Hustad, On positive and continuous extension of positive functionals defined over
dense subspaces, Math. Scand. 7 (1959), 392-404.
8. O. Hustad, Linear inequalities and positive extension of linear functionals, Math.
Scand. 8 (1960), 333-338.
9. V. L. Klee, Convex sets in linear spaces, Duke Math. J. 18 (1951), 441-466.
10. V. L. Klee, Strict separation of convex sets, Proc. Amer. Math. Soc. 7 (1956), 735-737.
11. G. Kéthe, Topologische lineare RGume I, Berlin - Gottingen - Heidelberg, 1960.
12. I. Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc. 24,
Providence, R.I., 1957.

UNIVERSITY OF OSLO, NORWAY



