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ON THE DIOPHANTINE EQUATION &2-2m2n? = —1

CHR. U. JENSEN

On considering the diophantine equation &%—2m%y?2= —1 for a pre-
scribed natural number m, one may, as it is well known, without re-
striction assume m being an odd prime p since the above equation is
solvable if and only if the equations arising by replacing m by any of
its prime factors are solvable. Now an obvious necessary condition for
the solvability of the equation

*) £-2php = —1

is that p=1 mod4, which, however, is by no means sufficient; on the
other hand it is not hard to show that (*) has solutions in £ and # for
all primes p=5 mod8; from now on p will therefore be assumed to be
=1mod8. For such primes (*) may be solvable or not, and in fact,
what is contained in the following, the solvability cannot be predicted
from the residue classes (modulo any rational integer) to which p belongs.

However, in an old paper by Perrott [3] which seems to have been
overlooked for a long time, the question has been settled for the primes
=1 mod8 but =1 mod 186, that is, p=9 mod 16, in terms of the represen-
tation of p by a simple binary quadratic form:

THEOREM 1 (J. Perrott). Let p be a prime =1 mod8 represented by
the quadratic form p=u?+2v?; a necessary condition for the solvability of
(*) ¢s that 8|v; for p=9 mod 16 this condition is also sufficient.

In his rather long proof of this theorem Perrott actually deals with
what one to-day would call Jacobian sums, which are known to be fairly
disagreeable to handle.

In the following we shall in particular sketch how Perrott’s result
may be proven by means of class field theory, and moreover obtain a
more general criterion deciding the solvability for primes p=1 mod 16
but =1 mod32, that is, p=17 mod32. In the statement of the theorem
we need, of course, only consider primes satisfying the necessary condi-
tion given by Perrott, i.e. the primes representable by the form p=
u?+128v,2. For p=1 mod 16 this involves that 2 is a biquadratic residue
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modp which, in turn, by a well-known result of Gauss implies that the
representation of p as a sum of two squares takes the form p =22+ 6442

After these prefatory remarks the theorem may be formulated as fol-
lows.

THEOREM 2. Let p be a prime =1mod16 satisfying the necessary con-
dition of Theorem 1, i.e. representable by the form p =2+ 128v,2 and hence
also by p=a%+64y®. Then a necessary condition for the solvability of (*)
is that y+v,={(p—1) mod 2; for p=17 mod 32 this condition is also suf-
ficient.

2. Proofs of the theorems.

The question of solvability of (*) is equivalent to that of deciding
whether the norm of the fundamental unit in the order of conductor p
in the real-quadratic field P(2!) is +1 or —1. By means of elementary
transformations this may as well be settled by the following

LemMMA. Let e=1+2t denote the fundamental wnit in P(2t) and let
2Hlp—1; then a necessary and sufficient condition for the solvability of (*)

is that
P02 = 1 modp.

First we apply this lemma to the theorem of Perrott. We immediately
deduce that for primes =9 mod16, (*) is solvable if and only if ¢¥#r-V=
~1 mod p, while £¥?-D= 4 1 modp is a necessary condition for the solv-
ability if p=1mod16. In view of the known splitting theorems from
algebraic number theory this means that we have to find the primes
splitting fully in the (non-normal) extension P(2%,¢%) and those splitting
fully in P(2t,¢t) but inert in the extension P(2%,¢%)/P(24,61). Recalling
that all primes considered are =1 mod4, we may as well consider the
splitting of p in the more convenient absolute normal extension Q=
P(2%,4,6t). Here it might be worth while to point out that, since this
field is clearly non-abelian, it is an easy consequence of the general
class field theory (Takagi’s inversion theorem) that the primes looked
for cannot be described by any congruence group in the field of rational
numbers.

However, considering Q over the imaginary quadratic field P((—2)!)
we get an abelian extension, its Galois group being in fact cyclic of order
8. It therefore becomes our main task to determine the class groups
©: and §, of the two extensions P(et,2},4)/P((—2)}) and Q/P((—2)}).
When first these have been computed, theorem 1 follows almost im-
mediately.
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To this purpose we first remark that, since the above extensions may
be generated by adjoining square roots, resp. 4th roots of units, the
conductors of the two class groups must be powers of the prime divisor
of 2 in P((—2)}), thus of (—2).

Since the extensions are cyclic of order 4, resp. 8, the general theorem
on the isomorphism between the Galois group and the factor group of
the group of all ideals with respect to the corresponding class group
implies that $, and 9, contain all 4th, resp. 8th powers of ideals, in par-
ticular, that the conductors must divide (— 2)?/2, resp. (—2)%2.

Now an easy calculation shows that the principal ideal (5) belongs to
9, which in view of the fact that 5 and the global unit —1 are genera-
tors of the group of dyadic units implies that §,; must contain all ideals
generated by rational numbers.

According to these remarks, §, contains the residue classes 1,3,...,15
mod 8( —2)* (precisely: the ideals generated by the numbers in these
residue classes) and the dyadic 4th power (9+4(—2)*) and hence the
residue classes k(9+4( - 2)*), k=1,3,..., 15, as well. The group formed
by these has index 4 in the full group of ideals and must therefore be
identical with the class group §, looked for. The elements of $, may
clearly be characterized as the ideals generated by the numbers in the
order mod 4, that is the numbers a + b(— 2)} for which b= 0 mod 4.

The computation of the second class group 9, is facilitated if we make
use of a sort of crossing method. In fact, we remark that the prime
ideals splitting fully in Q are exactly the primes splitting in P(et,2%,7)
which furthermore either split in both of the two extensions P(2})/
P(et,24,4) and P((2¢)1)/P(et,2},4) or are inert in both of them. Now the
class group for P(2%)/P((— 2)}) consists of all ideals (a+b(— 2)}) for which
a= +1mod8, b=0mod?2 (this is merely an easy transformation of well-
known criteria concerning the biquadratic residue character of 2), while
the class group for P((2¢)!)/P((—2)!) consists of the ideals (a-+b(—2)!)
for which b= 0 mod 8 (this is verified by an obvious generalization of the
argument by which §,; was determined). From these facts it readily
follows that ©, consists of the ideals (a+b(— 2)t) for which b =0 mod4
and }(a®—1)+3b=0mod2. By combining this result with the lemma
theorem 1 is easily obtained.

Before we set out to prove theorem 2 we note that a necessary and
sufficient condition for the solvability of (*) for primes =17 mod32
cannot be expressed in terms of a single quadratic form; indeed, in view
of the lemma this follows at once from the fact that the field P(e}, 2%,7)
is no abelian extension of P((— 2)) or of any quadratic field at all. Since
we only deal with primes =1mod16 in theorem 2, we may as well
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consider the field A=P(et,24,¢27/16). Now, A being an abelian extension
of the cyclotomic field P(2%,4)=P; (the field of the 8th roots of unity),
a criterion may be obtained by working in this field. However, this
would lead to very cumbersome calculations and the practical value of
such a criterion might be somewhat questionable. Fortunately, in this

1 A 1
K(23) \/rkuzen)
K 1
1 Pa((ZB)E)
Py(23)
P8
1
P(s) P(—2)2)

P

particular case we are able to describe the class group for A/Pg entirely
in terms of the two quadratic fields P((—2)!) and P(i) the compositum
of which is exactly P;. To this end we use a similar device as in the com-
putation of §,, namely a crossing by K(2}) and K((2¢)*), where K stands
for the field QP,;=Q(e2*/16); in fact the primes splitting fully in A are
the primes which split in K and either split in both K(2}¥)/K and
K((2£)§)/ K or are inert in both of these. Equivalent to this requirement
is that p should split in K and either split in Pg(2%) and Py((2¢)¥) or be
inert in Py(2¥)/Pg(21) and Py((2¢)!)/Ps((2¢)!) (note that 2¢ belongs to K
since 2¢= (¢*/1° 4 ¢727/1%) ¢~}) The point is now that the question of
splitting may in this way be reduced to the behaviour of the primes in
the abelian extensions Pg(2%)/P(i) and Pg((2¢)!)/P((—2)!). The Galois
groups of these two extensions are cyclic of orders 8 and 16, resp.

The first class group &, consists of all ideals (c+di) for which d=0
mod8 and 3(c2—1)+3d=0mod2. Due to an idea of Aigner [1] this is
readily proven by means of the relation 2i=(1+1)* and subsequent use
of the biquadratic law of reciprocity in P(i); for
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holds for all prime ideals p in P(z) splitting in Pg.

The second class group &, can be computed by a method due to
Aigner and Reichardt [2]; the details are similar to those in the deter-
mination of §,. Indeed, one first proves that &, contains all 16tk powers
of ideals in P((—2)*); next one shows by considering the generators of
the dyadic units that all rational ideals belong to &,. From this it is
not hard to infer that @, is the group of ideals generated by the numbers
in the order mod 16, that is the ideals of the form (a+b(—2)t), b=0
mod 16.

Combining these two class groups according to the indications given
above, we conclude that the primes splitting fully in A are characterized
as those whose components (a+ b( —2)t) and (¢ +di) in P((— 2)t) and P(3)
satisfy the relations =0 mod8, d=0mod8, }b+ }d=0 mod2.

Finally, by means of the lemma it is only routine work to verify
theorem 2.
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