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HOMOGENEOUS UNIVERSAL MODELS

MICHAEL MORLEY and ROBERT VAUGHT!

In two recent papers (8], [9], B. Jonsson has established sufficient
conditions for the existence and uniqueness up to isomorphism of rela-
tional systems of power x, which are homogeneous and universal relative
to a given class .# of relational systems. (Notions mentioned in the
introduction are defined precisely in Sections 1-3). Fraissé [6] had dis-
cussed related questions for o =0.

We shall show in Section 3 that the conditions of Jonsson are met by
the class .# of models of an arbitrary complete theory, or, rather, by a
certain variant of .#. It follows that (1) assuming the GCH (Generalized
Continuum Hypothesis), a complete theory has up to isomorphism exactly
one homogeneous universal model in each power g, ,;. In a similar way.
we also establish (2) a number of related results concerning the existence
or uniqueness in arbitrary powers of models satisfying various conditions
weaker than homogeneous-universal.

One consequence of (1) is a considerable improvement (Theorem 4.1)
of a theorem of [8], which dealt with the problem of the existence of
universal systems in powers >R, for general classes .#. Our improve-
ment is subject to the condition that .# be an EC j;-class. But this
condition is met, for example, by the class of distributive lattices and
the class of demigroups, for both of which the problem was left open
in [8].

On the other hand, the principal value of (1) and (2) seems to be for
the study of models of complete theories itself. It will be seen in 3.6,
3.7 and 3.8 (which is due to H. J. Keisler) that (1) and (2) stand in an
interesting relationship to recent results of model theory due to A. Robin-
son, E. Specker, and R. Lyndon. In Section 5, some results concerning
theories categorical in power will be inferred from (1) and (2). Finally,
by means of some of the results (2) (one of which is due to W. Craig),
we establish in 6.2 what may be called a ‘“Léwenheim-Skolem theorem
for two cardinals”.
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The applications to model theory have called our attention to various
peripheral results obtainable by variants of Jonsson’s and Fraissés argu-
ments. These deal with questions such as (2) above, the situation when
there are as many relations as elements, and the problem of avoiding
the GCH when possible. For this reason we shall recapitulate much of
Jénsson’s (and Fraissés) work in Section 2, paying attention to these
various matters. For the most part the improvements obtained are
rather obvious from a careful reading of [8], [9] and [6]. However, in
some cases, such as Theorem 2.10 or the notion ‘“‘special” and results
concerning it, an essential modification of old arguments is needed.?

1. Preliminaries.

AB is the set of all functions on B into 4. A is the power or cardinal
of A. Id, is the identity function on 4. Each ordinal is the set of all
its predecessors. The letters m, n (possibly with primes) denote natural
numbers, i.e., members of w. «,f,y, & », { denote ordinals, & being
reserved for (non-zero) limit ordinals. u and A denote arbitrary cardinals
(initial ordinals), while » denotes an infinite cardinal. Cfx, the character
of confinality of x», is the least 1 such that » can be expressed as
(me/& < 1), where each u,<x. »x is regular if cfx=2x; otherwise, » is
singular. x* is the least A>x. x%=3(x"/u<2) and »*=3 (2*/2<x). The
Beths 13, are defined by the conditions: 3,=0 and, if &40, 3,=
2 (23[n < &).

The following statements are well-known or easily verified (cf., e.g., [1]).

Lemma 1.1. (a) If the GCH holds then »=ax*.

(b) s*d*=u*,

(c) x¥=u if and only if x=x* and x is regular.

(d) If ASx, then there are at most x- functions f into A such that the
domain of f is a subset of A of power less than A.

(e) /%> s,

(f) »=x* if and only if x=2x% or x is of the form 1,

(8) (29<€=2~

Let I be an arbitrary set and ¢ € w!. A system A={4,R,);.;, formed
by a non-empty set A and ¢;-ary relations R; over (i.e., among the ele-
ments of) A, is a relational system, having similarity type t"=t, index
set Iy=1I, universe |A|=A, i-th relation R™=R, (for i e I), and power

2 Some of the results presented here were announced in [23] by the second author,
who then learned that closely related, overlapping results had been found in 1955 by the
first author.
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A=4. The letters %, B, € will always denote relational systems. We
write A~ B to mean that f is an isomorphism of A onto B (to be under-
stood in the obvious way).

If 0+ X < ||, we denote by A|X the subsystem B of A with universe
X, ie., the system (X,8;); ;, such that Sz,...z,_, if and only if
R, .., ;, whenever i€ Iy, n=t2, and x,,...,2,, € X. Under the
same conditions we write B<A. If, moreover, the set (=singulary
relation) X coincides with R;¥, for some i € I, then we call 8 a relativiza-
tion of A.

Ufé<0) is a chain if A,<A, whenever &<n<d. The wunion
U(%/& < 9) is the system

U(el/E < 0), URMVE < 0))iery, -

The J-reduct ATJ of A is the system (A, R,*); 100s- On the other
hand, if, for k € K, 8, is a finitary relation over ||, then we denote by
(U, Si)kex the system (U, R;r0ux, Where R,=RX, if iely, and
R;=8;, if ie K. It is understood that K is to be replaced by another
index set (in some standard way), if necessary, so that IynK =0.

Let .# be a class of relational systems. #(.#) is the class of all iso-
morphs of members of A. M |J={U1J|Uec .4}, M, ={Aec HU<x},
L) ={B/BcA} and L (A)=U{FN)Nec 4} We put & 4A)=
{BcUA/Be A and B<x}; L4A) and & (A) are to be understood
analogously. For a set X we also write #(X)={Y/Y c X}, ete.

In some auxiliary constructions we shall want to deal with systems
of the more general form {(4,R;d;);s rcx>» Where A=(4,R), , and
each d, € A. We denote such a system by D= (,d;);.x; its similarity
type is (¢",K); and d,®=d,, for k€ K. All the notions above extend in
an obvious way to such systems. (D <D’ requires d®=d?).

We turn now to metamathematical preliminaries (which are not
needed until Section 3). Suppose tew’ and t'={,K) (=t if K=0).
Corresponding to ¢’ is a first order language L,, whose (distinct) symbols
are ~, A, V, -, &, 3, V, ~, the (individual) variables v,,...,v,,...,
the ¢;-placed relation symbols P, , for ¢ € I, and the individual constants
¢, for ke K. A (wellformed) formula ¢ of L, is open if no quantifiers
oceur in it; ¢ is universal if it is of the form Vv, ... Yv,0, where 0 is an
open formula; ¢ is a senfence if it has no free variables. We write
Fo®[%gs - « -»%,1], to mean that ¢ has at most the free variables v, ...,
vy, tP=t, and x,,...7,_, are members of |D| which (in the usual
sense) satisfy ¢ in D, when z,, is assigned to v, for each m<n. D is a
model of a sentence ¢ (or a set X of sentences) if ¢ (or each member
of X) is satisfied in ®. The theory of D, ThD, is the set of all sentences
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of which D is a model. The diagram D(D) is the set of all open sentences
of which the system (D,a),p is a model.

D and D' are elementarily equivalent, written ® =%D’, if Th® =Th®".
® is an elementary subsystem of ®’ (written D <D’) if DD’ and
(D,0)4e19|=(D",@)ge|p- If for some similarity type ¢ and some set X' of
sentences (or universal sentences) of L;,, .# is the class of all models of X,
then we write # € EC, (or # € UC,). We say that .# is an elementary
type (# € ET) if, for some infinite A, M ={B/B=U}. Clearly .# € ET
implies # € EC, and # € EC, implies S (M)=.4.

Lemma 1.2, (a) If D=D’, then for some D'=D we have D, D’ e
FF (D).

(b) Suppose D=D'; x, € |D|, for each ke K; and S, is a finitary
relation over |®’|, for each ke K'. Then there is a system D" =D such
that, for some yu(keK) and Ti(ke€K'), (D, )rerx= (D" Yp)rex and
(D, 8 ke s = (D", Tilger ®

Proor. By considering D(®) and D(D’), (a) becomes a special case
of (b). In view of the completeness theorem, it suffices for (b) to show
that any finite subset of Th(®,z, ), xUTh(®’, S;)rcx 18 consistent.
(We can assume KNK'=0.) This easily follows from the observation
that if x;, ..., satisfy ¢ in D, then D and hence also D’ are models
of Jv,...3v,_ 1.

An elementary type # is called x-categorical if A, B e A and Y=P ==«
implies A~ B; model-complete if A, Be A and A<B implies A<B.
(Cf. [13], [15].)

2. Classes fulfilling Jénsson’s conditions.

Henceforth we denote by A a class of similar relational systems con-
taining members of arbitrarily large powers and such that S(M)=.4# (cf.
conditions (I) and (II) of [9]). I ¢ is the index set for members of .#.
We allow ] ¢ to be arbitrary.® (In most applications one has [ ¢#<o:
however, that assumption would yield very little simplification.) Consider
now the following conditions on .#:

(III) If A, B € #, then there exists € € M with U, B € S F(€).

3 1.2 (a) is due to A. Robinson [15, Theorem 4.2.2) and R. Fraissé [6]; 1.2 (b) to A. Rob-
inson [16].

4 In [6] it is assumed that 7.4< w and in [8], [9], [23] that Tvlg . C. C. Cha.ng found
that by a device involving ultraproducts he could infer from 4.1, below, for I g=<m
its own extension to arbitrary T _a- Later, the authors saw that the proofs in [8], [9], [23]
can all be extended to arbitrary I g; for elementary types (cf. Section 3) Keisler had
noted the same possibility.
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(IV) If A, Be A, Az N and A, A =B, then there exist € € .4 such
that € 2B and there is an tsomorphism g2 f of B into €.
(V) The union of any chain of members of M belongs to M.

(VL) If e A and X € &, (|U]), then X <|B]| for some B e L 4 (N).

These conditions (and their numbering) are from [9], except that IV
1s slightly weaker than either IV or IV’ in [9]. However, the conjunction
of our III and IV is obviously equivalent to the conjunction of IIT and
IV’ of [9].

Various familiar classes were shown in [8] to have these properties.
For example, the class of all groups was shown to have III, IV, V, and
VI, for x> . We mention here one other example, namely, the class of
all metric spaces. From each metric space (X,d) we can obtain a rela-
tional system (X,R,), p, where Rf is the set of rationals and Ry if
and only if d(z,y) <r. If .# is the class of all systems thus obtained, then
# obviously has V and VI . That .# has IIT and IV is in essence shown
in Sierpinski [17]. By a construction related to the proof of (4) below,
Sierpinski established from the GCH the existence of universal metric
spaces in each power > . From 2.8 below we can conclude that in fact
there is up to isometry exactly one special (cf. 2.2) metric space in each
power > o, assuming the GCH. This example differs from any of those
discussed in [8] in the fact that .# ¢ EC,.

The following Lemmas 2.1 (a), (b) are proved in [8, Lemmas 2.6, 2.5].

Lemwma 2.1, (a) If A has V and VI, then A has VI, for every 1> x.
(b) If M has VI, e #, and A =x, then A is the union of some chain
of members of M.

2.1. (a) will be used henceforth without explicit reference.

DEFINITION 2.2. Let Y =x. (a) A is M -homogeneous (of degree 1) if
A e .M and any isomorphism of a member of L,#4(N) (of F#(N)) into A
can be extended to an automorphism of U.

(b) A is M-universal if e 4 and M, . < FSLN).

(¢) U is M, 2-homogeneous if Ne M, 2= S, A4N), and the following
conditions hold:

(i) L(2)nAc2. B
(i) 2 is cfx-directed, i.e., whenever 2'c 2 and 9' <cfx, there exist
B e 2 with 2'< L(B).

(iii) A s the union of some chain of members of 2; and

(iv) whenever B,=6, € 2, By 2, and B, = ,B,, there exist f'2f and

€, € 2 such that €, ~,C,.

(d) W is . -special if, for some 2. W is M. 2-homogeneous and . H < -7 (2)
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If A is A-homogeneous and #-universal, we will say simply that 2 is
A -homogeneous-universal. The following remarks clarify the relation-
ship between the new notions (c) and (d) and the notions, .#-homogene-
ous and .#-homogeneous-universal, respectively (which are from [9]).
Suppose # has V and VI, A e A, and Y=x, and put 2=L4).
Conditions (i) and (ii) obviously hold, and (iii) holds by 2.1 (b). If %
is #-homogeneous, then clearly also (iv) holds; if, moreover, % is .#-uni-
versal, then obviously % is .#-special. From 2.4 (a), (d), proved below,
we see that two converse statements are also valid. Thus the notions
(c) and (d) are direct generalizations of (a) and (b). Moreover, if U is
M, 9’'-homogeneous, then, by (i) and (iii), ¥, #(%A) < 2’'; and hence,
if » is regular, 2'=%,#(%A). Thus the new notions differ from the old
only when x is singular.

2.3 (a), (b) (and also 2.5 (a), (b)) below are generalizations of Cantor’s
two famous arguments concerning the order of the rational numbers.

THEOREM 2.3. Suppose M has V and VI, N is M ,2'-homogeneous
and Y=Y ==x.

(a) If S,4A)= S (2') then e L (W).

(b) If A is M,2-homogeneous, F(2)=I(2'), Uy 2, W/ €2', and
‘2[0;,0?{0’, then, for some f2f, A=~ A'.

Proor. (a) By 2.1 (b) we can obviously express 9 as the union of a
chain (/£ <cfx) of members of (A). By hypothesis there is an iso-
morphism f, of %, onto a member of 2’. By (transfinite) recursion we
shall define isomorphisms f, of 2, onto members of 2’ in such a way
that f.cf,, for £<n<¢fx. By 2.2 (ii) (iii), we can put f,=U(f,/n <d).
Let f,,, be the “first” (say, in a fixed well-ordering of ¥ ¥ (4ud’)u
2v.2’) isomorphism g 2f, of U, ,, onto a member of 2’. To find such a ¢
we can obtain, by hypothesis an isomorphism % of %, onto a member €
of 2. Then we apply 2.2 (iv), with f,oh-1 for “f” and € for “G,”, to
obtain f’, and take g=f'oh. Clearly f,, is the desired isomorphism of A
into A’. (Note that for (a) we needed neither 2.2 (iii) nor the assumption
A =x.)

(b) By 2.2 (iii) we can express A and A’ as unions of chains
(B,/& <cfxy and (B,'[& < cfx) of members of 2 and 2', respectively. By
recursion we shall define 2, ., f, for 1<&<cfx in such a way that
Ace2, A €2 and Az, A/ . Put f=U(f,/n<d) and similarly for %,
and %A,. If & is even, then by 2.2 (ii) we can let A, , be the “first”
member of 2 such that A, B,<,,,. Exactly as in the proof of (a) we
can take for f, , the “first” isomorphism of ,,, onto a member of 2
extending f,; and for %,,," we take the image of f,,,. When & is odd we
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work instead from A’ toward A, ensuring that B, < A,,,". Then clearly
F=U(f,/n<cfx) is as desired.
From 2.3 (and the remarks after 2.2) follows at once:

CorOLLARY 2.4. Suppose M has V and VI, A e A, and A==x.

(a) If A is M -special, then N is M -universal.

(b) Any two M -special (or, a fortiori, M -homogenous-universal) systems
of the same power are isomorphic.

(c) If A is M, 2-homogeneous, then W is M -homogeneous of degree cfx.

(d) A sufficient (and necessary) condition for A to be M -homogeneous
is that: whenever B,, B, € &, 4(A) and B, < B,, then any isomorphism of
B, into A can be extended to one of B, into A.

(e) A sufficient (and necessary) condition for A to be .4 -homogeneous-
universal s that: whenever Ve A, X<|B|, and either X=0 or
B | X € S4N), then there exists an isomorphism fo2Idy of B into A5

The next theorem, 2.5, asserts that when & (A#)<.# and the two
gystems have the same cardinality one can replace certain subsystems
by single elements in 2.4 (d), (e). (However, this does not seem to apply
to the notions involving 2.) That 2.5 holds for x> ® was brought to
our attention by Keisler.

THEOREM 2.5. Suppose S (M) M, Ne M and Y =x.

(a) A is A -homogeneous if (and only if), whenever 0+ X € & (|U|) and
ac|U|, any isomorphism of | X into N can be extended to one of
A | (Xufa}) into A.

(b) A is M -homogeneous-universal if (and only if) whenever X € &
(1U]), Xu{c}=I|€|, € € A, and either X =0 or A | X cC, then there exists
an isomorphism f2Idy of € into A.

The proofs are similar to those above, but proved ‘“‘an element at a
time”’.

THEOREM 2.6. Suppose M has IV, V, and V1, U, € M, and Wy=x=x*.

(@) If 2, L #N,) and Zy<x, then there exist AW, and 222,
such that A is M, 2-homogeneous and W= x.

(b) If x is regular, then there is an .#-homogeneous system A=Ay such
that P =x.

ProoF. (b) follows from (a), by 2.4 (c). Alternatively a short direct

5 2.4 (e) and 2.4 (b) for .#-homogeneous-universal are due to Jénsson (8], [9]. For the
case when F(H)S A, fﬂ<w=x, 2=%,%), and P=%,N), 2.3, 2.4, and 2.5 (a),
below, are in Fraissé [6]. The special case of 2.3 (b) stated later in 6.1 (b) and a related
special case of 2.3 (a) are due to Craig [3].
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proof of (b) is obtained by simplifying in an obvious way the proof of (a)
which we now give.
We first show that there exists a system 9, such that

UysU, €M, and, whenever B<Ce 2, B' €2, and B,V

@)\ there exist g=f and &' < 4, such that €=, 6",

By VI, we can clearly assume 2,+0. From 1.1 (c), (d) we easily infer
that there is a list (f)., (possibly with repetitions) of all isomorphisms
between members of 2,. Proceeding by recursion, we put %A, =%, and
A, = U(QI,{/?)<(5), if 6<x. If &<, then, by IV and VI ,, we can take
for A,,,’ the “first” (in a fixed well-ordering of {A € .#/|A| < |yl UL (x)})
system with %, U,,," € .4, and such that there exists an isomorphism
g2f: of %Ay into A,,,". Then clearly A, =A,’ satisfies (3).

Now we define 9, and 2, by recursion in such a way that, for
E<nZcfu, Nee M, 2.2F4N,), .ng, A, cNU,, and 2,c2,. We put
Ws=U(,/n<d) and 2,=U(2,/n<b). Let A, be the “first” system
related to A, as A, is to A, in (3). Let 2., consist of all systems A’ for
which one of the following four conditions holds: (i) U’ e L(Z,)n.#.
(i) For some 2'c 2,, 9’ <cfx and W' is the “first” member of F,#4(%,)
with 2'< L (A’) (such an A’ exists by VIL). (iii) A’ is one of the entries
in the “first” ¢fx-chain of members of & -#(4,) whose union is %, (such
a chain exists by 2.1 (b)). (iv) For some %3, 8, f, € as in (3) with 2, for
“2,”, W is the “first” system €’ as in (3) with U,,, for “%A,”. By 1.1 (b),
(d) and our assumption that x=zx*, it is clear that Z -2

Taking A=A, and 2=2,,, all conditions of (a) are now obvious
except 2.2 (iii). But by our construction there are chains (€, ., of
members of 2 with %A, =U(C,./¢ <cfx) for each n<cfx. By 2.2 (ii) we
can define ¥, recursively as the “first’” member of 2 such that, for each
n<é B, €,sB, Then clearly A=U(B,/E<cfx) snd (a) is proved.

Lemma 2.7. (a) If T _y <% then the set of isomorphism types of M, has
power = ux*,

(b) If x is regular, W< »*, and M, I F(N), then the set of isomorphism
types of M, has power = ux*.

(c) If A has IIL, V, and VI, and if the set of isomorphism types of
M, has power <x* then for some N e M, Y=x* and M < I F(N).

Proor. (a) is easily checked. (b) follows from 1.1 (b), (d). To prove
(c) we first note that, by VI, and our assumption that .# has arbitrarily
large members, .# has a member B, of power »*. Form a list (A),_,.
of members of .#, containing at least one of each isomorphism type.
Put 8,=U(B,/n<9d). By III and VI, we can let B,,, be the “first”
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(in a fixed well-ordering of {®B € A [|B| < |B,|uF(x*)}) member of A
such that %, € S (B,,,), B.S B, and B, =»*. Then clearly A=V,
is as desired.

THEOREM 2.8. Suppose A has 111, IV, V, and VI, and x=x*. Suppose
that the set of isomorphism types of M, has power <x (or, a fortiori, that
i ¢ <#)- Then there is up to isomorphism exactly one M -special system
of power x. W is M-universal and is M-homogeneous of degree cfx.

Proor. By 2.7 (c) there exists N, .# and 2,c &, #(%,) such that
Wo=%, Z9<x, and A, < .#(2,). The proof is now completed by applying
.6 (a) and 2.4 (b), (a), (c).

=l

[

For x regular it is clear that 2.8 can be proved without any reference
to notions involving 2. The same can be said for » singular, if we assume
that the GCH holds and, for some %' <, 4 has VI, and I 4< »'. Indeed.
there then exists a system U of power » which is the union of a chain
(A, [" £ A< x), where each U, is .#-homogeneous-universal and of power
A*; moreover (as one easily sees by applying the proofs of 2.3 (a), (b)
specialized to 2=U(%4(U,)/x'<i<x)), such an A is #-universal,
-#-homogeneous of degree cfx, and unique up to isomorphism.? However.
by using the 2-notions, we have obtained in 2.8 a result which avoids
altogether the GCH when » =23, (cf. 1.1 (f)).

As regards the existence of ‘“universal’” systems, the following strength-
ening of 2.8 can be made:

If 3=23* is omitted from the hypotheses of 2.8, one can still conclude
that there is a system W€ .# of power =ux* with M . IS (N)."

To see this, apply 2.7 (c) and 2.6 (a) after modifying the latter as follows:
assume that §I_0, §0§x*; omit 2.2 (iii) from the conclusion; and omit
the condition (iii) from the construction in the proof. Finally, note the
parenthetical remark at the end of the proof of 2.3 (a).

The next theorem, 2.8’, is an addendum to 2.8 and 2.6 which will be
needed when we apply the latter to elementary types in Section 3.

THEOREM 2.8'. Suppose MA' has V and V1. Suppose that #'c
M F(M'); or, more generally, that (i) M' 11 ,<.HcSF (M 11 ,) and

(4)

¢ For & regular and I:yl<"' 2.8 is due to Jonsson [9]. A special instance of the case
I g=x=w was in [24].

7 In [8, p. 201] a closely related argument is used to obtain under these hypotheses
the existence of an .#-universal system of power »x. The question is raised there whether
one can replace the hypothesis VI, by VL.

8 Assuming .# ¢ EC, and I A=, this result was obtained in 1955 by the first author.
A similar strengthening of 4.1, below, can also be made.
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(ii) whenever B' € MA' and B’ ]IjgiB € M there exists &' € M' such
that B'<C€" and B<C' 11 ,. Then in 2.6 (a), (b) and 2.8 we can find
Aed' 11,

Proor. It clearly suffices to deal with 2.6 (a). By (i) we can assume
that A,=A," 11, where %A, € #’. Now by (ii) the existence of an A,
for which (3) holds implies the existence of an U, and ;" such that (3'):
(3) holds, 2, =%," 11 ,, and A," € #’. Now we define A, A,’, and 2,
recursively by imposing the same conditions on .2, as before and requiring
that A=A 11 ,, A/ =U(,/n<d), and U,  is related to A, as Ay’
is to %Ay’ in (3'). Then clearly A=A, =N, 11 , is as desired.

Theorem 2.10 (b) below, is an immediate consequence of 2.6, 2.4 (c).
and 1.1 (e) if the GCH and VI, (rather than VI ,) are assumed. The
remainder of this section will be devoted to establishing it in the ab-
sence of those assumptions. The reader who wishes to may go directly
to Section 3.

Lemwma 2.9. Suppose A has V, W' € A, and g is an isomorphism of A’
into itself. Then there exist Ne M and an automorphism f of W such that
W, gef, and A =Y.

Proor. Let A’ >,y and put A, =A" and fy=g. It is immediate that
there exist A, 2 A, and f, 2 f, such that Ay~ 5, A;. (A, and f; could even
be explicitly defined.) Proceeding inductively we obtain yc...c
A, c...and fyc...sf, < ... such that A, ,, =~ A,, for each n. Clearly
A=U(A,/n € 0) and f=U(f,/n € ») are as desired.

TaEOREM 2.10. Suppose M has IV, V, and VI, A, € A, and Yy=x.

(a) If % is a family of isomorphisms between members of F#(U,) and
@G < x, then there exists W € M such that A, <N, A ==x, and every member of
G can be extended to an automorphism of .

(b) If x2=1x, then there exists W € M such that o< A, A=z, and U is
M -homogeneous of degree A.

(c) If A’ has V and VI i and 2.8" (i), (ii) kold, then in (a) and (b) we
can find e #' 11 ,°

Proor. (a) We shall first assume that ¢ has a single member f,. Let

9 For the class # of all groups and with F =1, 2.10 (a) was proved (in a different way)
by G. Higman, B. H. Neumann and H. Neumann, J. London Math. Soc. 24 (1949),
pp. 247-254., Lemma 2.9 and the special case of 2.10 (a) in (6) below were obtained
by the first author in 1955. (An alternative “back and forth” proof of (6), avoiding 2.9,
was suggested by A.Ehrenfeucht; the proof above of 2.10 (a) for Z =1 could also be thus
modified.) Svenonius [20] found (6) independently; using his result Craig [3] found
independently some special cases of 2.10 (b).
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and an isomorphism f; of A,’ into A" such that A’ <A, and fy<f;.
By recursion we easily obtain Ay'c...c%,'c... and fyc...cf,<...
such that, for each n, %A,’ € A4 and f, is isomorphism of oA,’ into A,,,,".
Hence g=U (f,/n € w) is an isomorphism of A’ = U (,’/n € o) into itself.
By applying 2.9 the desired U is obtained.

Now suppose ¥ is arbitrary. Since 2.10 (a) is trivial when ¥ =0, we
may put ¥={g,/é<x}. By recursion we shall define €, and A, for
n<x'w. Write n=2x-n+§&, where §<x. If n=0, put €, =9 and h,=g,.
If n=m+1, then for €, we take the “first” member of .# ., with
U(€,/¢ <n)€,, having an automorphism f24, ,,..; and for h, we take
the “first” such f. Let A=U(C,/n<k-w). Then, for each &<x,
U (h,.n1efn € w) is an automorphism of 2 extending g,.

(b) By recursion we shall define, for 1 <& <cfx, a system A, and func-
tions {f; , Dp<e t<n If £<cfx, then by 2.10 (a) we can take for U, the
“first”” member of .#,, such that .=, , and, whenever n<é& and
{ <, there is an automorphism g of %,,, extending f, , ,; we take for
fes1,n,c the “first” such g. Moreover (cf. 1.1 (d)) we let (f¢ 1 ¢ Decn bE
the “first” list (with repetitions) of all isomorphisms between members
of ##(U,,). (We can assume there are some, as the theorem is trivial
if 4(N,)=0.) Put A,=U (U [y<6) and f,, .=U(f,, [r<9) for n<d
and {<x. Then A=, is as desired. Indeed, suppose g is an isomor-
phism of B e &,;#4(N) into A. By 1.1 (e), B<cfx, and hence BN,
for some & <cfx. Therefore g=f, , ., for some {<zx, and fy, . is an
automorphism of 9 extending g.

(¢) is obtained by modifying the above arguments in a way analogous
to the proof of 2.8'.

3. Elementary types.

If @ is a formula of Ly, and m is the smallest number such that the
free variables of @ are among v, ...v,_;, then we denote by ¢" the
m-ary relation such that ¢¥z,...x,_; if and only if pyg[x,,...,%,,]
For any relational system 2, we put A* = (A, p"), .5, where F is the set
of all formulas of Lg. We also write #*={A*/Ac.#}. One easily
verifies the following lemma:

Lemma 3.1. (a) The following are equivalent:
A< B, A* < B*, A* < B*.

() If X<|¥|, Y<|VB|, and f is a function on X onto Y, then
| X ~ B*| Y if and only if (U,7)pex=(B, f(@))rex-
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THEOREM 3.2. Suppose A" € ET. Then: N has arbitrarily large mem-
bers. /' * € ET and & (AN '*)e UC,. N* has 111, IV, V, and VI, where
» =max (w, TJV)' F(AN*) has 111, IV, V, and VI,

Proor. The first assertion is well-known (cf. [22]). Clearly 4"* € ET':
it follows, by a theorem of L.o§ [14] and Tarski [21], that (A "*) € UC,
and & (A4"*) has V. The statement that A4"* has V is translated by 3.1 (a)
into a theorem of Tarski [22] on unions of ‘“<-chains’’. That #(A*)
has VI is trivial. That A4"* has VI is, by 3.2 (a) the Lowenheim—
Skolem theorem, as formulated by Tarski [22]. Since 4 °* € ET, 1.2 (a)
tells us that A4"* has III; it follows trivially that &(A4"*) also has ITI.
That each of #"* and & (A"*) has IV also follows at once from 1.2 (a).
applied now to systems of the form (%*,x),. x, where A € 4" and X < |U|.

We shall say that U is simply universal, homogeneous (of degree 1), or
special if A is infinite and if A* is L (A"*)-universal, F (A4 *)-homogene-
ous (of degree 1), or (A *)-special, respectively, where ./ is the elemen-
tary type of A. By means of 3.1, each of these notions has an obvious
translation which avoids the passage to *. Thus, for example, if 3= x.
then A is special if and only if

There exists 2< L(|U]) such that F(2)< 2,2 is c¢fu-directed, ||
is the union of a chain of members of 2, and whenever X € 9.
XcYed(B), and (N, x),cx=(B,x),.x, there exists a function
f2Idy on Y onto a member of 2 such that (B,y),cy =(A, f¥))yey-

(5)

3.3 and 3.4, below, elucidate the relationship between some of these
notions and certain apparently weaker conditions. 3.4 is due to Keisler
(cf. [11]).

THEOREM 3.3. Suppose Y=x> o, Iy, and let N be the elementary type
of . Then A is special (homogeneous-universal) if and only if WA* is
N "*-special (AN *-homogeneous-universal).

Proor. “Only if”’ is obvious for “homogeneous-universal”; for ‘‘spe-
cial” a straightforward argument is needed, which we leave to the reader.
For the converse, suppose A* is A"*, 2’-homogeneous and A * < F(2').
Let 2 be the set of all X such that for some € € 2', X< |€|. Then 4
obviously fulfills all but the last clause of (5). To see that it is also ful-
filled, let (U, 2),c x=(B,2),ex, XY € F(|B]), and X € 2, ie.,, X |E|.
where §* € 2'. Since #* has VI, by 3.3, we can clearly assume 3 < x.
By 1.2 (a), there exist B’ > € and an isomorphism f2Idy of B into an
elementary subsystem of 8’. By VI, for 4"* we can take B’ <x. By
hypothesis, there exist €'* € 2’ and g;Idm such that B'~,€’. Thus
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g restricted to Y is as desired in (5). The parenthetical case follows by
taking 2'=F£A*(A*).

THEOREM 3.4. If A =x, then N is homogeneous-universal if and only if
the following condition holds: whenever X € £(|U|), B=(A,x),.x, and X
18 a set of formulas of L,y each having only v, free, if every finite subset of X
18 satisfiable in B then so is Z.

Proor. Using the completeness theorem and 3.1 (and the observation
at the end of the proof of 1.2) one easily checks that the condition above
is equivalent to the condition in 2.5 (b) (with S (A47*) for “.#”).

By 3.2 we can apply each result of Section 2 to an elementary type
A, either taking A4"* for “.#” or else taking S (A *) for “.4” and A*
for “.#’” (in 2.8" and 2.10 (c)). Thus, for example, by applying 2.10 (a),
(¢) (with @=1) in the second way, we obtain at once:

If (W) e x = (U, f(2))ye x> where f € |NX and W=2x2 Iy, then there
18 a system W' > W of power » which has an automorphism extending f.

(6)

(The second way is sometimes available when the first is not, since
&L(A*) has VI, for every »; hence we have followed it in defining
“universal”, ‘“homogeneous”’, etc.) We shall not enumerate all such
consequence of Section 2 and 3.2, but we will state explicitly the following
theorem, which is the principal result of the paper.

TrEOREM 3.5. Suppose & € ET and I ySn=u*. Suppose that the sef
of isomorphism types of S (A*) has power =x or, a fortiori, that w,
I - <x. Then there is up to isomorphism exactly one special system A € A~
of power x. U is universal and is homogeneous of degree cfx.1°

In the remainder of this section we shall describe some additional
properties which are possessed by special. or homogeneous-universal.
systems.

10 Tn the first two abstracts of [23], only .#* was considered, while in the third and in
[24], the case x=w of 3.5 was derived directly (rather then being inferred from Fraiseé-
Jénsson type results). Using (6), proved directly, we saw that an 4 *-homogeneous-
universal system A, of power x>w= Ig, did in fact have the homogeneity property for
arbitrary subsets. Later Keisler [10], [11], proceeding directly, constructed at once such
a system C with the stronger homogeneity. He also obtained the alternative characteriza-
tion 3.4 with “‘one element at a time”’ property (which, as he noted, also allows a simplifica-
tion in the existence proof). We had erroneously thought this was a speciality of x=w.
Recently we found that &(A4*) could be used in place of 47*, thus ensuring the same
advantages for the indirect method. Only-then did we realize that by using F(.A"*) the
case x=w of 3.5, dealt with in [24], could also be obtained indirectly.

Math. Scand. 11 — 4
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THEOREM 3.6. T'o 3.5 we can add the cfssertion: Moreover, N is relation-
universal, i.e., whenever B 11y=N and Iy < x, there exists € =B such that

Proor. Given any such 9B let 4" be the elementary type of 8. By
1.2 (b) (and 3.2), the hypothesis of 2.8" hold with #(A"*) for “.#”’ and
with the class #™'* for “.#"”’. Therefore, by 2.8', there is a special system
A with A =x and A' e A" [Iy. But A'~UA, so also Ae N 11,, as
desired.

3.6 can be regarded as a strengthening of Robinson’s Theorem [16]:
If /' N' N €ET and N |1, /" V1A, then (A7 11 )N
(N 11 4)%0.

THEOREM 3.7. If A is special or homogeneous universal, the same applies
to any reduct of W and to any infinite relativization of A (and the latter must
have the same power as N).

Proor. Suppose ¥=x and J<l, If A is homogeneous-universal
then it is immediate from 3.4 that %A ]1J is, also. We could argue simi-
larly for U special if we had formulated the obvious analogue of 3.4 for
the notion “special”’. Alternatively, if 2 and o are as in (5), then one
can show that 2 and % 1J also satisfy the last clause of (5) by a straight-
forward argument using 1.2 (b) (the rest of (5) for 2 and A 1 is obvious).

A well-known argument using the completeness theorem shows that
if R;" is singulary and infinite, then, for some 8=, E;®=x. Since A
is universal it follows that I—Eju=x. That 9 | R,” is special or homogene-
ous-universal can be proved in a way analogous to the above, or it can
rather easily be inferred from the result conderning reducts.

We could also modify 3.6 by strengthening the notion of relation-
universal to include reducts of relativizations. But one can see directly
that any relation-universal system 9 has also the new property. (One
passes from a system B with larger universe than % to one with the same
universe as U plus an inner universe, relations like those of B on both
universes and an isomorphism function as still another relation.) 3.7
(and 3.8 ,below) obviously can be extended to systems whose universes
and relations are of the form ¢%, as one sees at once by passing from A
to A*.

Theorem 3.7 can be viewed as a strengthening of the following theorem.
essentially due to Specker:
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If j1,jo€ Lo, Ry " and R, ® are singulary f,, fo€ I, and (RR 3 ie g
(1) { =R, Ry )"y then there exists B =N such that (B; B, Ry (s =
<Rfsm’ sz(i)%>ié~7'n

To prove (7) when R; ¥ is infinite, find a special 8 =9(, by 3.5. Then,
by 3.7 both (R;® R, %>, and (R;® R, >, , are special and have
the power of 9, so they are isomorphic. If R;™ is finite, then one can
take B=9U, by [21, Theorem 1.4].

Any universal system 9 obviously has an isomorphism f with a proper
elementary subsystem of itself. As the first author noted in 1955, it
follows, by 3.5 and the Lowenheim-Skolem theorem applied to (U, f),
that:

If T <, then there is a system A =B, of power x, isomorphic to a proper
elementary subsystem of itself.

D. Scott raised the question whether there is a system elementarily
equivalent to €,=(w,+,+, <) which is isomorphic to a proper initial
segment of itself. The general form of (7), above, was formulated by
the second author just in order to give an affirmative answer. Indeed,
let €, be a proper elementary extension of €, and, considering €, and ¢,
as relativized reducts of A =(€,,w), apply (7).

The following theorem is due to Keisler [11]:

TaEOREM 3.8. If A=W, A and A’ are special (and similar), and every
positive sentence true in A 18 true in W', then A’ is a homomorphic tmage
of A.

Roughly speaking, 3.8 is established by a generalization of the method
of proof of 2.3 (b). We refer the reader to a forthcoming paper by Keisler
for the proof (and to [12] for the definition of *“‘positive sentence’” and
“homomorphism’).12

As Keisler has shown in [12], the following immediate consequence
of 3.8 and 3.5 can be considered as a form of a well-known theorem of
R. Lyndon: If every positive sentence true in A is true in (the similar
system) A, then some elementary equivalent of A’ is a homomorphic image
of an elementary equivalent of .

11 (7) was established by Specker [18], [19] in a slightly less general form. There are a
number of different proofs of (7). One is similar to Ehrenfeucht’s proof of (6), described
in footnote 9. (Note that (6) is a special case of (7)). Scott has found a very short proof,
directly from Robinson’s Theorem, which is presented in [19].

12 Keisler proves only the case when and Y’ are homogeneous-universal, but it is
completely straightforward to deal similarly with % and B special.
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4. Elementary classes.

For classes .# € EC,, we can apply 3.5 to obtain the following im-
provement of the results of [8] (cf. 2.8 above) concerning the existence
of .#-universal systems of power x> w. (Cf. footnote 4).

TueorEM 4.1. If M cEC, and o,I ,<x=x*, then there is an M-
universal system of power » if and only if M has III.

Proor. Let X be a set of sentences whose class of models is .#, and
let 2=max (w, J .,l)' Since there are at most 2* sets of sentences (of Lt )
the family E = {4" € ET|A" <.#} has power at most 2*<». From 3.5 we
infer that there are (pairwise disjoint) systems 2 ,. for 4" € B such that
‘lIJV e N and, if 'ﬁ#gw, then —Q’—I./sz and QIJV is universal (and hence
certainly, #"-universal). If .# has III, then clearly ZuU(D(X ,.)/A4" € E)
is consistent and hence has a model U of power ». U is obviously .#-
universal.

The converse is easily derived from the completeness and Lowenheim—
Skolem theorems.

The rest of this section is devoted to two metamathematical results
concerning the general classes .# of Section 2.

TuroreM 4.2. Suppose A has 11T, IV, V, and VI, A =x, A and B
are M-special, and N<B. Then A<VB.

Proor. First assume that B is .#-homogeneous of degree x, rather
than .#-special. Let 2 be as in 2.2 (d) for A. Suppose X € &, (|U|)
and ye|B|—|A|. By [22, Theorem 3.1], in order to establish that
A< B, it will suffice to show that there is an automorphism f2Idy of
®B such that f(y) € |A|. To this end, we first choose A, € 2 so that
X<|¥,| (by 2.2 (iii)). Next, by VI, we find B, € &, #(B) such that
1Ws|u{y}s|B,]. By 2.2 (d), there exist Ay € 2 and g=1Idy, such that
B, ~,A,. Since B is homogeneous of degree x, g can be extended to an
automorphism f of ¥B; and f is as desired.

Now assume the hypothesis as stated, and let =4. By 2.8 there is
an .#-special system € of power, say, 3, , and € is homogeneous of
degree 4 and universal. Since € is universal we can in fact take € 2%B.
But then, by what we proved above, Y <€ and B< €. It easily follows
(cf. [22, Theorem 1.8 (iii)]) that A< B.13

18 Let p=min (cf. A, cf. B). 4.2 can be strenghtened to assert that B is an elementary
extension in the sense of the language L* having expressions of arbitrary length <pu.
The argument is the natural extension of that above. First one must extend in a straight-
forward way to L¥ [22, Theorem 3.1] (already extended by Tarski to the “weak second-
order” language). A weaker form of 4.2 follows directly from [7, Theorem I]. (See [7]
for definitions and references.)
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Thus, for example, if & is the class of all groups, then by 4.2, there is
a certain elementary type # <& containing all non-denumerable %-
special systems. By 2.6 and 3.5 there exist in each power x=x*>w
groups §;, , € # of power » such that &, is %-special while @&, is
special. We do not know whether or not ¢, and &, are the same
(up to isomorphism). However, the first author has found an example
of an EC ,-class A with | 4=, having III, IV, V (and VI, ;) such
that the .#-special system of a certain power >w is not special. On
the other hand, we can prove:

THEOREM 4.3. Suppose M € EC , M has 111, IV, V, and VI, I:j<w.
and A" s the elementary type of M -special systems. Then N is w-categorical
and model-complete ; and hence, for any A € A", W is M -special if and only
if A is special.

Proor. By 2.8 there is a denumerable .#-homogeneous-universal
system ,. As is well-known, we can construct, for each Be.#,, a
sentence oy which is true in an arbitrary € € .# if and only if 8 € S F(€).
Similarly, if %B,,8,c.#, and B,< B, we easily construct a sentence
0’ p,, 8, Which is true in a system € € .# if and only if, whenever B, >,
B," =€, there exists an isomorphism g=f of B, into €. By 2.4 (b), (e),
all these sentences are true in 9, and all their models belonging to .
are isomorphic; thus A4 is w-categorical. By 4.2 it follows that if
A BeAN,, and A<B then A<YB. This implies that A" is model
complete (since if ', B' e A", A' cB’, and A' K B’, then Th((B',[A']))
would have a denumerable model). Hence, by 3.3, the last assertion of
the theorem obviously holds if 9y >w. On the other hand, since
IL(N*) S IS (A*), certainly the number of isomorphism types of
(A *) has power <o. Hence, by 3.5, some and hence all denumerable
members of .# are special, as well as .#-special.

5. ®-categorical elementary types.

A number of such elementary types are familiar, for example (for
%> w) the class of all algebraically closed fields of characteristic zero:
(For other examples, see, e.g., [13].) All of these exhibit in common a
number of strong properties, but to establish corresponding general
theorems appears to be difficult. For instance, each known 4" € ET
which is x-categorical for some x> w is so for all x>w; L.o§ [13] raised
the question whether this is a general theorem. Similarly, in known cases,
every member of .4 is homogeneous, but no general theorem is known.
Using the results of Section 3, we can make some (limited) progress on



54 MICHAEL MORLEY AND ROBERT VAUGHT

these problems. For the sake of simplicity, in the remainder of the paper
we consider only relational systems with countable index sets.
From 3.2 and 2.10 (b), (c¢) follows at once

THEOREM 5.1. If an elementary type N~ is x-categorical, N € N, and
A =2x, then A is A-homogeneous whenever »* = .14

Thus, by 1.1 (g), (b), A is ut-homogeneous if » = 2*, cfx-homogeneous
if x=x* and w-homogeneous in any case. However, even if the GCH
is assumed, 5.1 leaves open whether 9 is (fully) homogeneous when x
is singular. The next theorem throws some light on this case, and also
makes a slight contribution toward the problem of ¥.0§ mentioned above.

THEOREM 5.2. Suppose A" € ET, x=13;, and there are arbitrarily large
<0 such that A" is 3,,,-categorical. Then A" is x-categorical, and its
members of power x are homogeneous.

Proor. It will suffice to show that an arbitrary member A of A4 of
power » is homogeneous-universal. By the Lowenheim—Skolem theorem,
it is clear that A *<c L (UA*). Hence by 3.3, 3.4, and 2.4, we only
need to show that, if B; <€, <A, B, <A, B, =~,B,, and €, <, then f
can be extended to an isomorphism of €, onto an elementary subsystem
of A. By hypothesis, 4" is 3, -categorical for some 7 such that §, < 2,
By the Lowenheim-Skolem theorem, there exists A’'<9 such that
A'=3,, and €, B,<A'. But by 5.1, A’ is homogeneous of degree 3,*,
so f can clearly be extended as desired.

Ehrenfeucht [5] has established the following result:

If an elementary type N is x-categorical for some x, then the set of

(8) isomorphism types of £, (AN *) has power <.

From (8) and 3.5 follows at once:

THEOREM 5.3. If an elementary type A~ is x-categorical for some x.
then there is a denwmerable homogeneous-universal system A € N".15

(8) may also be applied in conjunction with 5.1. For example, suppose
x=x" N is x-categorical, A e A", X< |¥|, and X <w. Then, by 5.1,
the elementary type A4 of (U,x),.y is also x-categorical, and hence, by
(8), the set of isomorphism types of &, (4"'*) has power < w.1®

14 For %= this isimmediate from Ryll-Nardzewski’s characterization of w-categorical
elementary types (cf. [24]).

156 That 4" has a denumerable universal member (if x = 2%) was already shown in [4].

16 We noted this originally only for x=2* A remark of Dana Scott showed us the ex-
tension to % =x%, which in turn led us to the general form of 2.10 (b).
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6. A Lowenheim-Skolem theorem for two cardinals.

Lemma 6.1. (a) If /" € ET and J<I ., then there is a denumerable,
homogeneous system N e A 1J.

(b) If A and A’ are homogeneous and denumerable, A=A’, and £ L, (A*)
=S5, (A'*), then A= A'. (Cf. footnote 5).

(e) If Ay<UWy<... <A, <... and eack U, is homogeneous and de-
numerable, then so is U (U, [n € w).

ProoF. (a) By 3.3, 1.2 (b), 2.6, and 2.8". (b) By 3.3 and 2.3 (b).
(c) easily follows from 3.3 and 2.4 (d).

With the aid of 6.1 we can establish the following result (announced
in [25]):

TrEOREM 6.2. If R is singulary and o < R;¥ <3, then there exists a
system B=9 such that =, and R;®=w,.

Proor. By the Lowenheim-Skolem theorem, there exists 8,<U
such that R*<|®B,| and B, =R;. By (7) there exists a system (B,,C) =
(2, [%B,]) such that, for some f, B,~B,|C. By 6.1 (a), there exists
(Ay, Ag,9)= (DB, C, f) such that A, is denumerable and homogeneous.
Put Ay=A, | 4, Then A, and A, are isomorphie, %A, is a proper elemen-
tary extension of %, and R =R™, because all of these facts are ex-
pressable in sets of elementary sentences and so are retained from
(%[, l%ll) and (%2’0:].)'

By recursion we shall define systems %.~9%, such that R;% =R,
A <A, and A+, if £<y<w,. Indeed, since A=A, we may take
Ug,y, to be a system related to A, as A, is to Ay, If d<w,, let A=
U(¥,/n<d). By 6.1 (c), A, is homogeneous (and denumerable). More-
over, S, (U*)=SF,(Uy*), because any member of & (Us*) belongs
to &,(A,*), for some 5 <4, and by hypothesis A, ~UA,. Consequently.
by 6.1 (b), A, =N, It is now clear that the system B=U(A,/&<w,)
has the desired properties.

In general, we may ask,

9 If the hypothesis of 6.2 holds and x <A, must there exist a system
) B=U with =2 and R®P=x?

Raphael Robinson discovered the following examples showing that
the answer is sometimes negative: Let X be any infinite set; let Exy
if and only if xe X, yc X, and z€y; and put A=(XuS(X), E, X).
Then (by the axiom of extensionality), in any system (U,F,Y)=%, we
must have U <2¥. By iterating this construction any finite number
of times, analogous situations are obtained having instead the inequali-

ties U < 22}—?, U< 222P, etc.
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On the other hand, these examples are, roughly speaking, the only
limitations we know on positive answers to (9) (say, assuming the
GCH). The Lowenheim—Skolem theorem obviously implies that we can
lower 9 whole keeping R, fixed. Recently, by an interesting new
method, Chang and Keisler [2] have obtained positive answers to (9) in
some additional cases (i.e., other than that just mentioned and 6.2).
For many cases, however, the answer is still unknown. For example
it is not known whether w, and w; in 6.2 can be replaced by =x
and xt.
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