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RECURSIVE ARITHMETIC OF SKOLEM

H. A. POGORZELSKI

Following the fundamental paper of Th. Skolem [5] which introduced
recursive arithmetic, we extend the Skolem arithmetic up through the
unique resolution theorem with respect to exponent chains of Mycielski
numbers.—The author should like to acknowledge his thanks to L. Henkin
and V. Vuckovié for their counsel.

We shall, of course, deal exclusively with the set of natural numbers
0,1,2,.... Throughout we employ the following notation: ™" (a modi-
fied Bourbaki notation for negation); a (conjunction); v (disjunction):
<3 (equivalence); A (universal quantifier); V (existential quantifier):
u (operation of minimalization).

Firstly, we state a list of definitions and properties which we shall
need:

1) y|v<Vzsa{r=yzaz>0};
(2) Pr(z) <222 A Aysa{y™r| avy=1vy==x}:
(3) y = ged(xy, @y, . . .,2,)
< Ar<nfy |z, A Az £ min(a,, . ..,z,){z2%"2,vz | y}}:
(4) Vr <nfymon| zz,} vy | ged (zzy, . . ., 22,);
(5) ged (zxy, . . .,2x,) = zged (g, .. .,2,):

E(x,?ﬁ 191) <% =Y,

E(x,y; 1,n) false for n > 1.

E(z,y; m,1) false for m > 1,

E(x’y’ m+ 1’n+ l) <~ (an-l:ynirl) A E(%?/? myn) .

Let [z,y]=2¥. Using the notation of W. Neumer [4], we define expo-

nent chains [%,,%,_,, . ..,2,] for 0 <z, 1 Sk =<n, as follows:
(7) [xl] = xl 4
[xn+1’xm .. "xll = [xn-u’ [xn’ e ’xl]] .

We now proceed to define a class of natural numbers introduced by
Jan Mycielski [3]:
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(8) ylz < Vzszx{x=[y,z]az>0ay >1}
(y1x means that x is a power of y);
(9) My (x) <> 222 A Ay S x{y™Mavy=1x}
(My () means that x is a Mycielski number);
(10) my; = 2

My = Mz < [2,2,n+11{z >m, AMy(2)}

(m,, is the nth Mycielski number).
The following array of lemmata lead to a proof of the unique resolu-
tion theorem with respect to exponent chains of Mycielski numbers.
First we simply state the following two obvious lemmata.

(11) LEMMA.

o = T (g, x]8 Ar<u{Pr(g)}aMy (m)}vgcd(al,...,zx#) ~1.

lsrsp
(12) LEMMA.
non{[x,y]=[w,z]Ay | 2} vwizx .

We prove the following crucial lemma.

(13) LEMMA.
monimA[x,y] A My (m)} vmiz .

Proor. Let [z,y]l=[m,2]=11,cr<,.[@r], 2=1Ic,<,[90B,], M=
H1§r§u[qw 7'1-] and Ar s M{Pr (q’)} Clearly
Ar S ufo, =By} A Ar <o, =y,2}

so that it is easy to see that Ar=u{y |y,2}. Hence, by virtue of (4),
y | ged(y2, . . .,y,2), and furthermore on the basis of (5), (9) and Lemma
(11) we have

ged ¥4z, . - ,v,2) = 2ged(yy, - ,7,) = 2,

which means that y |2. Therefore, on the strength of Lemma (12) it
follows that m1z.
The next two lemmata are easy to prove:

(14) LEMMA.
ronim1(q,, .. .,q1]A My(m)} vmig, .
(15) LEMMA.
"o m1(q,, - - 1] A Ar = u{My(q,)} AMy (m)} v q, = m .
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Finally, we prove our unique resolution theorem:

(16) THEOREM.

[qy’ Q1>+ - >q1]mm= [qy’3 qi:—-l” T ’QII]
vVr = pu{o"My (q,)}vVs < v {""My (q,)} vE(g,¢"; 7).

Proor. The proof is by induction. First we prove the theorem for

u=1. From , , ,
¢ =[5 -,0.'1AMy(q)) AAs =v{My(q,)} ,

on the grounds of Lemma (15) we obtain ¢,=g¢,’. Since ¢;=¢,’ and

7:1=[g,,[q,—', - . .,¢,']], it follows that [g,,",...,q,’]=1, and so it is
impossible for » >1.

Let us assume that the theorem is true for some y. Then from the
assumption of the theorem we have

[9uirs -] = [0 @ IAN S e+ 1{My(q,)} AAs <v{My (g,)} ,

and consequently

L 1a) s - TAAs v {My (¢,) ) A My (¢,,41) 5

from which it follows that g,,,=g¢," by virtue of Lemma (15). Further-

more, since [q,’.q,,,...,¢,'1=[9,",[¢,;’, . . -.41"], we have [9s - - - )=
[g,45...,¢,"], from which, by applying the inductive hypothesis, we
obtain

(9,41=9") AE(g,q"; v —1) <> E(q,q"; u+ 1) .

In conclusion, we should like to remark that it is easy to see that the
class of consecutive prime numbers is in fact a subclass of the class of
consecutive Mycielski numbers. It is equally evident that the class
of Mycielski numbers can be successively extended in the following way.

Modifying somewhat the so-called Hilbert—Ackermann class of primi-
tive recursive functions [2,1], we introduce the class of primitive recursive
functions &(x,y)=[x,y], &(x, y) =[], where [@z]=1 and [,,,x]=[=z,[,]]
and such that each successive primitive recursive function is defined by
the following primitive recursive scheme:

’5k+1(x’0) =1,

(17) Ernl@y+1) = £ Ea(@.9) -

Using the above class of Hilbert—Ackermann functions, we can easily
define the following class of relations (k=1,2,...):

(18) Ru(x,y) <> Vzszfe=E&(y,2)A2 > 0Ay > 1},
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(19) My(x) <> 222 A Ay Sz{™"R (2, y)va=y} .

where R,(z,y) is the relation y 12 and M,(z) is the relation My (x), and
so on. Finally, we define the recursively definable class of natural
numbers we mentioned above (k=1,2,...):

* = 9
(20) " ’
m®, = uz < [2,2,n+1]{z >m, DA M(2)} .

where m,® is the nth Mycielski number and so on.

So, evidently, Skolem’s recursive arithmetic can be even more con-
siderably extended in the way we have outlined in this paper following
the methods of Th. Skolem.
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