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A VERTEX PROPERTY FOR BANACH ALGEBRAS
WITH IDENTITY

LARS INGELSTAM

1. Introduction.

Bohnenblust and Karlin [2] proved that any complex Banach algebra
with identity has the vertex property: Every unit sphere belonging to a
natural norm has the identity as a vertex point (in the complex sense).
For real algebras this is not true in general and the main object of this
paper is to investigate when a real algebra has the corresponding property
(with vertex taken in the real sense). Our first result is

THEOREM 2. A real Banach algebra has the real vertex property if and
only if exp(ax) ts an unbounded function of the real variable o for every
x3+0.

Theorem 3 shows that exp (axx) ts unbounded for every x + 0 in the radical.

From these can be deduced some results involving conditions of a
more directly algebraic nature (for definitions of strongly real type and
complex type, see p. 28):

TreorEM 4. A real Banach algebra of strongly real type with identity
has the vertex property.

TrEOREM 5. A4 real Banach algebra containing a sub-algebra of complex
type with identity does not have the vertex property.

I am very grateful to H. Radstr6m. who proposed this line of research
and continuously guided the work.

2. Preliminary remarks.

This section deals with Banach spaces (and algebras) over the real or
complex numbers.

As usual, two norms, N, and N,, are called equivalent if there exist
two real numbers, ¢ and C, so that for all x+0
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(1) 0<ecs®

Ny ()
Two norms define the same topology if and only if they are equivalent.
Two complete normed spaces with the same elements and equivalent
norms will be regarded as the same Banach space.

A vertex of a convex set, K, is a point, z,, belonging to the boundary
of K with the property that no straight line through z, is a tangent of
K. The notion of a straight line is of course different when real or com-
plex scalars are regarded (a complex straight line is a real two-dimensional
affine subspace). Accordingly we shall speak of a real vertex or a com-
plex vertex as the case may be.

Bohnenblust and Karlin [2] give the following precise definition for
the special case of the unit sphere.

DEerFiniTION 1. A point, u, is said to be a vertex of the unit sphere
defined by a norm, N, if N(u)=1 and y(x)=0 only if x=0, where

(2) y(z) = max &(6a),
6]=1

where @(x) is the Gateau differential

3) ®(z) = lim N(u+ox) — N(u) .

a—>+0 o2

(This definition is valid both in real and complex spaces where in real
spaces |0|=1 means §= +1.)

This paper will deal only with associative algebras with a two-sided
identity, mostly denoted e.

By a natural norm we mean a norm satisfying

(4) llegll = llll-|lyll,
(8) flefl = 1.
The notation ||-|| is reserved for such norms. By use of the left regular

representation of the algebra (i.e. as an algebra of linear operators on
itself) Gelfand [4] proved that for every Banach algebra there exists at

least one natural norm defining the topology. If N is any given norm
then

Jel) = sup 2CY)
y+0 N(y)

is an equivalent natural norm.

For a given natural norm, we will investigate whether the unit element
is a vertex of the unit sphere.
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A Banach algebra is said to have the vertex property if for all natural
norms defining the topology the identity is a vertex of the unit sphere.
The vertex property is a topological-algebraic property and does not
depend on any specific metric.

We recall that in a Banach algebra we can always define

[oo] xn
(7) expr =e + 3 — ,
no1 !

since this series is absolutely convergent. If x and y commute we have

(8) exp(r+y) = expx-expy .

3. A condition for vertex.

In this section we formulate a necessary and sufficient condition for
the identity to be a vertex of the unit sphere. The technique used is to
a large extent taken from Bohnenblust and Karlin [2]. A slight improve-
ment is possible because of the following:

Lemma 1. Let h(2) be a real-valued function defined either on the real
axis or on the complex plane.

1f
(9 M(Ay+245) S h(Ag) +R(4y),
(10) h0) = 0,
(1) i A <o,
a—>+0 o2
then
h(2) = 0.

ProoF. Assume that (1) > 0 somewhere, let A(4,) > 0. By repeated use
of (9) we find
h(4
(_9/_@ > h(d) > 0
1/n

for every positive integer n. When n — oo this contradicts (11). Thus
h(A)<0. But from (9) and (10) we have

0 = h(0) = h(A-4) £ BA)+h(—4) =0
so equality must hold everywhere and h(1)=0.

THEOREM 1. In a real or complex Banach algebra with a given natural
norm, ||-||, the following conditions are equivalent:
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(8]
St

1° The identity ts not a vertex of the unit sphere.

2° There exists x+0 so that for all scalars A the equation |lexp (Ax)||=1
holds.

Proor. With

o) = tim 1ol

a—>+0 &

we have, since exp (ax)=e+ ax + O0(a?), x — 0,

o) = tim 1PPEDN=1

a—> +0 &

We also have log(1+t)=t+O(t?), t - 0, so
1
B(z) = lim IR

x—> 40 &

For a fixed « we put h(A)=log|exp(ix)||. Because of (4), (5) and (8),
h(2) satisfies (9) and (10). The condition y(x) =0 in Definition 1 is equiv-
alent to @(Ax) £0 for each A, that is

h(oA

im M4 <o
a—>+4+0 &

Now assume that 1° holds, i.e. there exists an x50 with y(2)=0. Lemma
1 shows that
(12) log lexp (iz)] = 0.

Conversely, if an z + 0 satisfying (12) exists, we get immediately @(Ax)=0
and y(x)=0, which proves the theorem.

We can now give an alternative proof of Bohnenblust and Karlin’s [2]
result for complex algebras.

CorOLLARY 1. A complex Banach algebra has the complex vertex property.

Proor. Suppose that, for a given x, we have |exp(iz)||=1 for all
complex 4. But exp(iz) is a bounded algebra-valued entire analytic
function of the complex variable 2. Then it must be a constant, according
to Liouville’s theorem. In particular, the coefficient of 4 in the power
series expansion is zero, so that z=0.

CoroLLARY 2. If in a complex Banach algebra with identity and more
than one dimension the topology can be defined by an inner product (i.e. the
Banach space i3 a Hilbert space) the corresponding norm is not natural.

Proor. We prove that no point can be a vertex of the corresponding
unit sphere.
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Let the norm be N(x)=(x,x)! and % an element with N(u)=1. Then
Nu+ox) = (u+ox,u+ox) = 1+« Re(u,z)+0(a?), x—> +0,
so that (cf. (2) and (3))

O(x) = Re(u,2), (@) = |(u,2)] .

For every x in the hyperplane perpendicular to u we have p(x)=0
which shows that « is not a vertex. According to Corollary 1, however,
the identity e will be a vertex if NV is natural. Hence N is non-natural.

4. Vertex property in real algebras.

For real algebras it is not generally true that for all natural norms
the unit sphere has the identity as a real vertex. For instance the com-
plex number system, as a real algebra, possesses a natural norm with
this property (/£ +4n||=|£|+|n|) and another one without it (|&+1in|=
V& +7?). However, with the help of Theorem 1, it is possible to formulate

a condition, suitable for analytic considerations, for an algebra to have
the vertex property.

THEOREM 2. 4 real Banach algebra has the real vertex property if and

only if exp(ox) 18 an unbounded function of the real variable « for every
0.

Proor. If for every a0 it its true that exp(ox) is unbounded it is

impossible that, for any norm, |lexp(ax)||=1 holds. So the algebra has
the vertex property.

Conversely assume that there exists an xy+0 so that exp(xwz,) is
bounded. For a certain norm (which can be chosen natural according
to Ch. 2) we then have a constant K so that

llexp(xxy)]] < K for all real o .
We will now re-norm the algebra in two steps. We first put

N(x) = sup|lexp (o) ]|

which is a norm. It is also equivalent to ||x|| since
llzll = llexp(0zo) x|l = N(x) = Kl .

In general N(z) is non-natural; we therefore repeat the ‘‘naturalization”

process (6) and form el = sup YD)
y+0 N(y)
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which is equivalent to N(x) and |jz|. Moreover,
sup [lexp (Bx,) - exp (xzo) - /|

sup A
y+0 sup [lexp (yz,) ¥l
Y

[llexp (&) ]|

sup [lexp (B + )]yl

sup -2
y+0  Sup|lexp (yzo) -yl
b4

Using Theorem 1 we find that the algebra has a natural norm, |[||-|||,
for which the identity is not a vertex of the unit sphere. So the given
condition is necessary and sufficient and the theorem is proved.

From Theorem 2 we see that in a real algebra the set of elements «
which make the function exp(ax) bounded is of interest. The inter-
section of this set with the radical of the algebra is only the origin as is
shown in the following theorem.

THEOREM 3. If x40 belongs to the radical of a real Banach algebra,
exp (o) 18 an unbounded function of the real variable .

Proo¥. Assume exp(xx) bounded. Since x belongs to the radical

lim,_, (N (z*)¥/»=0 for every norm N(z). Let f be any continuous
linear functional and put

#(@) = fexp(aa)) = o)+ 3 —f@@) = Ta, .
For the coefficients we have -
‘an|1/n — lf(xn)llm < (N(f))l/n (N(x'n))l/n -0, n — 00 .

Thus ¢(x) is represented as a power series with infinite radius of con-
vergence; it can then be continued analytically to an entire function in
the complex plane. As an entire function it is at most of order 1, mini-
mum type, that is for every é>0 we have

lp(x)] = O(expdlx]).  [x] =00

To prove this, we first notice that

7ol S 3 fonl

By comparing coefficients we now find that for every 6> 0 the series of

|p(x)| is majorized by that of expd|x| except possibly for a finite number
of terms.
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A Phragmén-Lindelof theorem (Boas [1, p. 84]) shows that a func-
tion of this kind, bounded on the real axis, is a constant. This implies
that a,=0, that is f(x)=0 for every continuous functional f. Hence
x=0 against the assumption. Therefore exp (xx) is unbounded for every
%0 in the radical.

CoroLLARY. If an identity is adjoined to a radical Banach algebra, the
resulting algebra (with the usual topology) has the vertex property.

Proor. Let the radical algebra be R and the new algebra 4. Then R
is the radical of A. Every x € A can be written

x = ye+a,
where x’ € R. A norm for 4 is

N(x) = N(ye+2') = [y|+ ||| ,
where |jz'|| is the norm for ' in R. Moreover

exp(ax) = exp(aye+ax’)
= exp(xy) exp(xz’)
= exp(ay)-[e+r(x)], rix) e R,
and
N(exp(awx)) = exp(ap)(1+]r(«)]) -

If y + 0 this function is obviously unbounded and if y =0 but 2’ +0 it is
unbounded according to the theorem. So exp(xx) bounded implies 2= 0.
and the algebra has the vertex property.

5. Some criteria in real algebras.

We begin with some definitions for real algebras, applying also to
algebras without identity.

DerFINITIONS.

2. The realization of a complex algebra is the real algebra with the
same elements obtained when only real scalars are admitted.

3. A real algebra is of complex type if it is the realization of a complex
algebra; it is of real type if it is not of complex type.

4. A real algebra is of strongly real type if, for every z, the element
—? is quasi-regular.

In order to justify the notation we prove

LeMMA 2. A non-radical Banach algebra of strongly real type is of real
type.
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Proor. Let 4 be strongly real and P a primitive ideal. Then A/P is
a primitive, strongly real Banach algebra. An argument by Kaplansky
[6] (proof of Theorem 4.8, p. 405) shows that AP is isomorphic with
the reals. If 4 is at the same time of complex type then to every «
belongs y,, satisfying 2= g,
Since this relation is preserved under homomorphisms we find that
every x is mapped on 0 in A/P, i.e. z € P for every primitive P. Then
every = belongs to the radical, against the assumption.

For algebras with identity e the property of complex type is equivalent
to the requirement:

There exists an element j in the center of the algebra with j2+e=0.

The same statement is true of Banach algebras, i.e. a real Banach
algebra with identity can be regarded as the realization of a complex
Banach algebra if and only if such a j exists. To prove this it only
remains to show that a real-normed space is complex-normable. A com-
plex norm can easily be constructed (see for instance Kaplansky [5])

N(x) = supl|(e cosp+j sing)x||
@

where ||-|| is a natural real norm; then N(z) is a complex-homogeneous
norm equivalent to ||z|. Strongly real for algebras with identity means
that e+ 2 is regular for every z; it was used in this form by Gelfand [4].

It is now possible to formulate some criteria making it possible to
decide in some cases whether a given real Banach algebra with identity
has the vertex property or not.

THEOREM 4. A real Banach algebra of strongly real type with identity
has the vertex property.

Proor. Let the algebra be B and its radical R. B'=B/R is semi-
simple and strongly real; according to a theorem by Kaplansky [5] it is
then necessarily commutative. Belonging to every maximal ideal in B’
there is a continuous (canonical) homomorphism &’ — I'(z’), mapping B’
on the real numbers (see for instance Gelfand [4]). Then we have

I'(exp(ax')) = exp(«I'(x')) .

Now assume that we have an x € B making exp(xx) bounded. Then in
B’ (exp(xx))’ =exp(ax’) is bounded and therefore exp(al'(z’ )) is bounded
in the field of real numbers. Then I'(z’)=0 for every canonical homo-
morphism, giving #’ =0 since B’ is semi-simple. Thus x € R, and accord-
ing to Theorem 3, x=0.
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As mentioned above not all real algebras have the vertex property
and the next theorem will characterize a class of algebras lacking this
property. This class will contain every algebra of complex type but also
several of real type. For convenience we first prove a lemma.

LemMA 3. A real algebra contains a sub-algebra of complex type with
identity of and only if there exists an element k in the algebra satisfying
B=—k

Proor. If such an element exists, the elements «k?+ gk form a sub-
algebra of complex type with identity — k2. If, on the other hand, such
a sub-algebra exists with identity e’, there exists by definition an element
k with k2= —e'; so k3= —k.

THEOREM 5. A real Banach algebra containing a sub-algebra of complex
type with identity does not have the vertex property.

Proo¥F. According to Lemma 3 there exists an element k with k3= — k.
Then exp(ak) = e+k sinax+ k%1~ cosx)
is a bounded function of . So according to Theorem 2 the algebra does
not have the vertex property.

6. Concluding remarks and examples.

In this paper one necessary and sufficient condition for a real Banach
algebra to have the vertex property has been given (Theorem 2). Fur-
ther one necessary and one sufficient condition have been formulated
in more directly algebraic terms. Neither of these conditions are both
necessary and sufficient and it does not seem possible to change them in
any obvious way to give such conditions. This will be illustrated by
Examples 1 and 2. Finally, in Example 3 it is shown that for two-
dimensional real Banach algebras with identity the vertex-free natural
unit spheres are all ellipses.

In Examples 1 and 2 will be considered closed sub-algebras of real
Banach algebras, C(Q); C(£2) consists of all complex-valued continuous
functions on a compact Hausdorff space £2, the topology defined by the
maximum norm.

ExaMrLE 1. Q2=the closed unit disc of a complex z-plane. The sub-
algebra consists of all functions analytic for |z| <1 and taking only real
values at the point z=1.

This algebra is not of strongly real type (for instance z2+1 has a zero
in the disc and so has no inverse) but it does have the vertex property.
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For if exp(«f(z)) is bounded, then Ref(z)=0. Since f(z) is analytic it is
a constant with real part zero. This constant is also=f(1)=real, leading
to f(z)=0. This algebra contains a non-zero sub-algebra of complex
type but without identity, namely the set of functions satisfying f(1)=0.

ExampLE 2. 2=closed interval [0, 1] of the real line. The sub-algebra
consists of those functions taking only real values at 1. This algebra
does not have the vertex property (take f(x)=i(1—2x), 0<x<1; then
exp(«f(x)) is bounded) but still does not contain any non-zero sub-
algebra of complex type with identity. An identity ¢’ satisfies e2=¢’
and since it is a continuous function either e'(z)=0 or ¢'(x)=1. In the
first case the sub-algebra is zero and in the second case it cannot be of
complex type, since then 7e’ would take an imaginary value at z=1,
against the assumption.

ExameLe 3. It is well known that any two-dimensional real algebra
with identity is isomorphic to one of the three following (see for instance
Dickson [3]):

(a) The direct sum of the real line with itself. This algebra is of strongly
real type, it has thus the vertex property (Theorem 4).
(b) The algebra of number pairs with the multiplication

(@,b)+(c,d) = (ac,ad +bc) .

This algebra is obtained when an identity is adjoined to the radical
algebra of real numbers with trivial multiplication. The Corollary
of Theorem 3 now shows that this algebra has the vertex property.

(¢) The complex numbers. Let ||| be a natural norm and xy=&;+17,% 0
an element with

llexp (ao)|| = exp(xo)*[lcos oo+ sinaupgl| = 1.

This implies £,=0 and, since 7,0, |[cosp+1 sing||=1, for every ¢,
that is ||&+ 7| =l/m Hence the usual absolute value is the only
natural norm for the complex numbers for which the unit sphere
does not have a vertex at the identity.

Considering all three cases we have the conclusion: A natural unit
sphere for a two-dimensional real Banach algebra with identity is either
an ellipse or has a vertex at the identity.
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