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PLANES OF CURVATURE IN RIEMANNIAN SPACES

FOLKE ERIKSSON

0. Introduction.

We consider n-dimensional Riemannian spaces V, with positive defi-
nite metric. The sectional (or Riemannian) curvature of the space with
respect to a 2-dimensional direction at a point P is determined by the
formula
(00) %=13 2 Rypip™,

ik he

if the 2-direction is given by a simple (cf. p. 6) bivector p¥ of norm 1
and R;;, is the Riemann—Christoffel curvature tensor at P. (See e.g.
Cartan [1, p. 195]. The definitions of R, differ in sign with various
authors. Thus Cartan’s — R, is here denoted by R;;.) In the form
(00) the formula is valid in any coordinate system. However, we use
throughout this paper—when not explicitly stating the contrary—co-
ordinate systems which are locally cartesian (orthonormal) at the point
P considered. (Only local properties are studied here.) In such a system
covariant and contravariant components coincide, and thus we may use
only lower indices in the following. The N = (3) independent components
of a bivector p may be numbered by a single index in an arbitrary order
chosen once for all. We number the six first components as follows:

(01) Py=Pas; P2=P31» P3=P12» Ps=Piss Ps=Pa> Pe=Dss-

We thus consider our bivectors p as vectors in an N-dimensional space
E,, where we use the Euclidean norm [p|2=3 p,2 Correspondingly,
the index pairs (75) and (k%) appearing in E,;;, may be replaced by single
indices running from 1 to N. We thus write

Rijkh = Rst .

In order to avoid confusion, we here denote the Ricci tensor 3;R,;;;
by K. Because of the well-known symmetry properties R ;,=
—R;yn= — Ry, the N x N-matrix R=(R,) contains all independent
components R,;,. Further, the identity R,;,= Ry, shows that R is
symmetric. The remaining identity
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Bijin+ Ry + Bypp, = 0
is in our notation for n=4
(02) R+ Ros+Byg = 0.

For n> 4 it yields (;) analogous relations.
In our notation the formula (00) for the sectional curvature is written

* =2 Rupipr,
or with the symbol (u,v) for the scalar product in £,

(03) x = (Bp,p) .

If we introduce in £, a new orthonormal system with eigenvectors of R
as basis vectors, the formula is simplified further, R being reduced to
diagonal form. Then the variation of the sectional curvature of V,, at
P with the 2-direction can be represented very simply in £,. The eigen-
values of B may be called principal curvatures of V,, at P.

However, only simple bivectors represent 2-directions. A bivector p
is called simple, if it is the alternating product of two vectors u and v:
P = ¥uv,—uw,). For n=4 a bivector p is simple, if and only if it
satisfies (}) conditions, which in the ¥, -notation are very similar to (02).
One of them is

(04) P1Ps+ PaPs+ PsPs = O

(cf. Cartan [1, p. 11]). Now the eigenvectors of R need not satisfy these
conditions, and thus need not represent 2-directions in ¥,. Then the
principal curvatures may lack direct interpretation in V,. Therefore it
is natural to ask, under what conditions the eigenvectors of R represent
2-directions. The eigenvalue problem Ep=Aip seems not to have been
studied from this point of view before. H. S. Ruse calls the eigenvalues
“g-roots” [7, p. 11]. He uses the various cases of degeneracy which arise
from equalities among the eigenvalues as one of the tools for a classifi-
cation of curvature tensors. His results are given in terms of the
quadratic complex R;;,p"pk" =0 of lines in §,_; which corresponds to
directions p of zero curvature in V,. In [2] R. V. Churchill splits the
matrix R into two parts for the case n=4 and considers the eigenvalue
problems for each part separately.

In § 2 we deal with the question: Under what conditions does there
exist in £y an orthogonal basis of eigenvectors of R all of which are
simple bivectors? Such a basis corresponds in ¥, to a set of N 2-direc-
tions, which may be called planes of curvature of V, at the point P con-
sidered. These planes of curvature are then orthogonal also in ¥V, in
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the sense that each plane contains some vector orthogonal to every
vector in the other plane (conditional orthogonality). In fact, it is well-
known that this orthogonality in ¥V, is equivalent to the orthogonality
in By (Cartan [1, p. 9], cf. also Churchill’s theorem 3 [2, p. 132]).

The condition (04) expresses the vanishing of a certain quadratic form
and may be written (Bp,p)=0 with a symmetric N x N-matrix B. The
question dealt with in § 2 is therefore, for n=4, of the following general
type. Under what conditions on two symmetric N x N-matrices 4 and
B does there exist an orthonormal basis {v,} of eigenvectors of A4 all of
which satisfy the condition (Bv,,v,)=0% In § 1 we prove that a necessary
and sufficient condition is that all matrices BA¥*, k=0,1,2,...,N—1,
have trace zero. We consider also the analogous problem needed in § 2
for n> 4, where we have several conditions of the form (B,p,p)=0.

For n=3, N(=3) orthogonal planes always intersect in n(=3) ortho-
gonal lines. For n> 3, however, N planes may be orthogonal to each other
without being the coordinate planes of an orthogonal system. In Z, for
example, the basis vectors e; and the vectors a=e, +e,, b=e, —e, yield
by alternating multiplication the six bivectors [e,e,], [e,e,], [e.€,], [€s€,],
[e,a] and [e,b]. These represent planes which are obviously pairwise
orthogonal, but have sixz different lines of intersection, of which for
example e; and a are not orthogonal. This leads to a question studied
in § 3: What are the conditions for a V,, to have, at a point, N planes
of curvature, which are the coordinate planes of an orthogonal system ?
If such a system exists, it is easily proved that its basis vectors deter-
mine principal directions in the sense of Ricci [5], i.e. they are eigen-
vectors of the Ricci tensor K. In fact, in a system where the matrix
R, has diagonal form, we have R, =0 unless (3,5) = (k, ) or (3,j) = (h, k).
Then for ¢ +k, all terms in K, =3,R,;  vanish. The solution of § 3 is
not complete, and in § 4 an alternative and more complete one for the
4-dimensional case is given. In § 5 we give some examples of spaces
satisfying the conditions of § 2-4. Among spaces having, at every point,
N planes of curvature, forming coordinate planes of an orthogonal
system, we find all conformally flat spaces C,,.

I wish to thank Professor Werner Fenchel for stimulating discussions
and suggestions of improvements.

1. Matrices with eigenvectors lying on given cones.

As stated in the introduction, we study here the possibility of finding
in B, an orthonormal basis {v,} so that for two given symmetric N x N-
matrices 4 and B '
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a) all », are eigenvectors of 4,

b) all v, lie on the cone (Bv,v)=0.
A vector v such that (Bv,v)=0 will be called isotropic for B. As a prep-
aration for the first theorem we give a proof for the following known
fact.

LemMmA. An orthonormal basis {v,}, consisting of vectors isotropic for
an N x N-matriz B, exists in Ey if and only if B has trace 0.

Proo¥r. The condition is necessary since the trace of B is

N N
trB=3b, =2 (Bv,v,).
v=1 v=1

We prove the sufficiency by induction. If tr B=0, the quadratic form
(Bv,v) is not definite. Therefore an isotropic unit vector v, exists. In-
troducing an orthonormal basis {u,} with u, =v,, we have

N N
0 = t’r‘B = (Bvl7v]) + Z (‘Bu”uv) = Z (Buw uy) .
=2 =2

This shows that the restriction of the form (Bw,v) to the subspace By _,
orthogonal to v, has trace 0. Suppose now that the statement is true
for spaces of dimension N —1. Then there exists in Ey_, a basis of
isotropic vectors. Together with v, this gives a basis of isotropic vectors
in Ey. Since the case N =1 is trivial, this proves the lemma.

THEOREM 1. A symmetric N x N-matriz A has diagonal form in some
orthonormal system in Ey all the vectors of which are isotropic for another
N x N-matriz B if and only if

(10) tr(B4¥) =0 for k=0,1,2,... N—1.

Proor. If the basis vector v,, v=1,...,N, is isotropic for B and cor-
responds to the eigenvalue 4, of A, we have for every integer k=0
tr(BA¥) = 3 (BA*v,,v,) = > 1*(Bv,,v,) = 0.
This shows the necessity of the condition.
To prove the sufficiency we choose a basis {v,} of eigenvectors of A
with corresponding eigenvalues A,. We denote the distinct 4, by gy, . - -, 4,

and put
Yi = 2 (va’vv) ’
Av=Xi)
where the sum is taken over those » for which 4,=21,. The p first condi-
tions (10) may then be written
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P
3ty =0 k=01..p-1.
=

Since the determinant of this system of linear equations is the Vander-
monde determinant of the 1, and thus different from zero, it follows
that all y,=0. Now y,=0 means that the restriction of (Bv,v) to the
eigenspace of A belonging to 4 has trace 0. According to the lemma
there exists therefore, in this eigenspace, an orthonormal basis of vectors
isotropic for B. Taken together, such bases in the various eigenspaces
form a basis of E, with the required properties.

REMARK. As the proof shows, it is sufficient that the condition
tr (BA¥) =0 be satisfied for k < p, the number of distinct eigenvalues of 4.
It follows also that this implies tr (BAk)=0 for any integer k= 0.

We shall be interested also in the corresponding problem, where the
basis vectors are required to be isotropic for several matrices B, simul-
taneously. Applying theorem 1 for each B; separately we get

THEOREM 2. For the existence of an orthonormal basis of eigenvectors of
a symmetric N x N-matriz A all of which are isotropic for the N x N-
matrices B;, t=1,...,m, it is necessary that

(11) tr(B;A*¥) =0 for ¢=1,...,m; k=0,1,...,N-1.
These conditions are sufficient if all eigenvalues of A are distinct.

Proo¥. The necessity is clear. On the other hand, if the conditions
(11) are satisfied, there exists according to theorem 1, for each i, an
orthonormal basis of eigenvectors of A which are isotropic for B;. If
the eigenvalues of A are distinct, there is (up to changes of sign) only
one orthonormal basis of eigenvectors of 4, and this must satisfy the
requirements.

If A has multiple eigenvalues, the conditions (11) are in general not
sufficient. For example, an orthonormal basis {v,} of eigenvectors of
the 3 x 3-matrix 4 =diag(1,1,2) may contain any pair of orthogonal
unit vectors v, and v, in the “xy-plane’”. Thus there exists such a basis
on any circular cone with three ortogonal generators one of which is the
‘“2-axis”’. But no such basis lies simultaneously on two general such
cones.

2. Conditions for the existence of planes of curvature.

We now try to answer the question: Under what conditions does R have
diagonal form in some orthonormal basis in E, consisting of simple
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bivectors? For n =4 we obtain the complete answer by applying theorem
1 with A=R and B twice the matrix of the quadratic form in (04), i.e.
(in our coordinate system) the 6 x 6-matrix

(20) B=(2€>,

where I is the unit 3 x 3-matrix. The first two conditions
trB = O, tr(BR) = 2(R14+R25+R36) == O

are here automatically satisfied—the latter is (02). We can thus for-
mulate the result as

TurorEM 3. The curvature matrix R of V, has diagonal form in some
orthonormal basis in Eg consisting of simple bivectors if and only if

tr(BR¥) = 0 for k=23,4,5,
where (Bp,p) =0 s the condition (04) for a bivector p to be simple.

For n >4, we can apply theorem 2 in the same way and get the follow-
ing partial answer:

THEOREM 4. If the curvature matrixz R of V,, has diagonal form in some
orthonormal basis in Ey consisting of simple bivectors, then

(21) tr(BR¥) =0 for ¢=12,...,(3); k=0,1,2,... ,N—1,

where (Bp,p)=0 are the conditions for a bivector p to be simple. If all
etigenvalues of R are distinct and (21) holds, then the eigenvectors of R are
simple bivectors. (The conditions (21) for k=0 and 1 are automatically
satisfied.)

The question whether the conditions (21) imply the existence of N
orthogonal planes of curvature also if n>4 and multiple eigenvalues
occur, remains open. We give an affirmative answer for eigenvalues of
multiplicity less than or equal to 2.

We use here the usual notation p;; with two indices for the components
of a bivector p, and write the conditions for a simple p

1Bijn(P) = PPt PP+ PaPin = 0, 1,j,h,1 distinet .
They are not independent but satisfy n(";') linear identities:
Osinim(P) = PijBiim(P) + PirnBjum(P) + PaBjim(P) + PimBinu(p) = 0 .
We denote by B;;, also the matrix of the form B (p).
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Consider now a double eigenvalue A of the N x N-matrix R which
satisfies the conditions (21), that is, tr(B,;;;,R*) =0. Take an orthonormal
basis of two bivectors p and q in the corresponding eigenspace. For
each set of 4 distinct indices ¢, j, k, I we get

(22) Biju(p)+ Byn(q) = 0,

as we obtained y;=0 in the proof of theorem 1. ILooking for a simple
bivector of the form

p' = pcosx+qsina,
we have to find an « satisfying the equations
Bijm(p') = Byn(p) cos®x + 2(By,p,q) sinx cosx + Byy(q) sinx = 0,
or, because of (22),
(23) Byju(x) = Byju(p) cos2a + (Byyp,q) sin2x = 0.
A common solution of these equations exists if all the determinants
D:rz]k’;} — gum((l’) (BijuP»q)
mieaf(P) (BmigsP>q)

vanish. First we prove this for those determinants, where three of the
indices in one row are equal to three indices in the other. We have, in
fact

Bijhz(P)(BijhmP, q)
= Byn(P)(Didrm + Prmis + Pindmj + PrmiQin + Pim@in + PinGim) -
Expressing py,Biju(P); PjmBim(P) and pg,,Byju(p) by means of the iden-

tities Opgjm(P) =0, 0 P) = 0 and 0,,,;,(p) =0, respectively, and treating

OmBim(P) = = OmBin(@)s qijijhl(p) and 9¢mBi1hz(P) in the same way, we
get

B P)(Bijnm P> 9q)
= —q4;[PniBrim( P) + PriBinna( P) + PruBijmn(P)]
+ 4in[25iBimm P) + PinBimi (P) + PuBimns (P)]

)
)
~ [ PisBmin( P) + PinBpmjar(P) + PuaBmjns (P)]
+ Pis (9 Brima (@) + @i Binm (@) + QuBijmn ()]
— Pinl835Bmn (@) + GnBims (@) + G Bimnj ()]
+ Pinl i Bmin (@) + 9inBmja (4) + QaBnjni (9)] -

Because of (22) and the obvious anti-symmetry of B, (p) with respect
to its indices, this reduces to
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Bijnm{ PNQ4iP0 + Qinli; + Pain + Pijm + Partij + 9aPin)

= Bijnm P Byup,9q) -

For n=>5 this applies to all the determinants, and then the equations
(23) have a common solution «, and obviously another one, o+ }x.
The corresponding simple bivectors p’(x,) and p’(x+ 47) constitute the
required basis.

For n = 6 it remains to exclude the possibility that two of the equations
(23) with at least two indices different could lack common solutions.
Suppose for example

Bijn(x) = 0, Bijnlxg) + 0,

24
(24) Bijmi(q) * 0, Bijmi(xg) = 0.

Since, as proved above, D¥} = D¥*m =0, this would imply Bj,,(x,)=0,

B.. =0 and thus
ian{%2) Bijpm(x) = 0.
Analogously

Bijim(®) = Bijpx) = Byylx) = 0.

We prove now that also, for example, B;,,.(x)=0. For suppose
Bijim(*)=0. Then as above B;,.(x)=0, and because of (24) the identity
O:inmi(P’) =0 would yield p’;,(4)=0. Analogously p’y(x)=0. Then

Biju(x) = 20"55(0)p' () = P'yslxy) = 0 or P'ylay) = 0.

Bium(*) = 20 im(6)P o) = Pimlery) = 0 or p'yey) = 0,

Bi(x) = 2p"()p' () = P'alxy) = 0 or p'ylay) = 0.
Thus p'j(x,) =0, because By,,.(x;)+0. Analogously p's(x;+$7)=0.
because

Biju(x +1m) = —Byp(x) = 0.
Since p'j(x) = Py cOsx +¢y sinx, this is possible only if p'p(x)=0. We
would thus have p'p(x)=7p";(x)=p 4(x) =0, which implies B,;,,(x)=0.
The identity 6;,,;,(p')=0 would now reduce to
P im(®)Byjnlx) = 0,
and imply p';,.(x)=0 because of (24). Analogously we would get
P ulx)=0. Using the equations
Bijmi(x9) = Bipmi(%g) = Bymlxg) = 0

we would then get B;;,;(x)=0 just as we obtained B,,(x)=0. Since
this contradicts (24), the statement is proved for n==6.
For n27 we encounter a new possibility of the type
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(25) Bijn(xy) = 0, Bij(ag) + 0,
Bimkg(o‘l) * 0, Bimkg(o‘2) =0.

Since (24) is impossible, this would imply
Bijm(®) = Bijim(x) = Byym(x) = 0.

Then the identity 0, (p)=0 would yield p’;,(x)=0. Together with
the analogous results p’;(x) =0, p';,(x) =0, this would imply B, (%) =0,
contradicting (25).

The last possibility, represented by

(26) Bijuley) = 0, Biim(ag) *+ 0,
Bmkgf(‘xl) + 0, Bmkgf(‘xz) =0,

appears for »>8. Since (25) and (24) are impossible, this would imply
for example

Bijhm(‘x) = Bi]'lm(o‘) = Biym(x) = Bijmk(o‘) =0.

As above, we would get p’;,,(x) =0 by means of the identity 0,;3,,(p")=0,
and analogously for example p;;(x)=0. Then

0= Bijmk(o‘) = 2P'fj(0‘)P'mk(fX) = P'ij(“) =0 or pula) =0,

0 = Bypi(®) = 20" ()P i) = P'gplx) = 0 or p'ppfa) = 0,

0 = Byu(x) = 2p'g(0)p i) = P'gla) = 0 or p'pyla) = 0.
Because B, (x)=0 by (26), it would follow that p’,,.(x)=0. Analo-

gously p',,(x) =p'ps(x) =0, and thus B, (x) =0, which contradicts (26).
The proof is thus completed. )

Remark 1. The conditions (21) for k>0 are (})(V—1) in number.
Already for n=6 this number exceeds the number of independent ele-
ments of a symmetric N x N-matrix, which is (¥;!). Thus, in general,
our conditions cannot be independent.

REMARK 2. It is not difficult to write the conditions (21) in theorem 4
in invariant form. With the usual notation of R with four indices, and
distinguishing between lower (covariant) and upper (contravariant) in-

dices, we have
(R2)sl = strRtt = %z Rijuvakh >
T By

(Rs)sl = z 'RsthaRal = i z R’iij'wgo'Roakh ’

By ¥,0,0

etc. The conditions tr(B,;R)=0 are the well-known identities

Bijin+ By + By = 0,
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which with a notation of Schouten [9, p. 14] may be written

Rijkn = 0.
The corresponding conditions on R% R3, ... take the forms
33 BijiwBuny = 2 (Rigu B+ Rig B35+ Rip o B5) = 0 .
"y v 1234
2 Rigjul o By = 0,
Hs 7,0, 0

ete.

3. A condition for the diagonalizability of the curvature matrix
by an orthogonal transformation in the tangent space of V.

As we saw in the introduction, the coordinate axes of an orthonormal
system S in the tangent space 7', at a point of V,, in which R has diag-
onal form, must determine Ricci directions. Now, the linear transforma-
tion of the vectors in 7',, which is effected by the n x n-matrix K with
the components K, of the Ricci tensor as elements,

v—-> Kv,
induces in the space of bivectors the transformation
[uv] > [KuKv].
The components of this transformed bivector are
[Kqu]ij = (Ku)(Kv);— (Ku);(Kv);
= g K,-vu,-g K,-ﬂv“-—yz Kj,u,,-g K,»,

= E (Kil'Kf[l - Ki”Kh)u,'U” = E (K’iijy - Ki"ij)(uvU” - ?l/'u'U‘,) .
v, u r<p
If we here, as in (01), replace the index pairs (4j) and (vu) by single indices
8 and 7, respectively, and put

(30) Q“ = Kii‘K]'ﬂ_—Ki[l v )
we get the bivector transformation expressed by this N x N-matrix @:
ps' = 2 Qstpr .

It is obvious that the coordinate planes of § correspond to eigenvectors
of @, with the products g,0; of the Ricci curvatures as eigenvalues. If
now these coordinate planes are also planes of curvature, i.e. correspond
to eigenvectors of R, the matrices B and @ must commute. In fact, it
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is well-known (cf. e.g. [10, p. 189]) that two symmetric matrices commute
if, and only if, there exists an orthonormal system in which both have
diagonal form. We have thus proved the first part of

THEOREM 5. If the curvature matriz R can be reduced to diagonal form
by an orthogonal transformation in T, then

RQ = QR,
where Q is the matrixz defined by (30).
If RQ=QR and all the products p,0,, * <k, of the Ricci curvatures g; are
distinct, then R can be reduced to diagonal form by an orthogonal transfor-
mation in T,.

PrROOF OF THE SECOND PART. Because RQ)=QR, there exists in Ky an
orthonormal system in which both R and @ have diagonal form. Because
of the other assumption, ¢ has diagonal form in only one system (up
to changes of sign), namely that system which is determined by the
Ricei principal directions of V.

One cannot dispense with the assumptions that all products g0, are
distinct. If the Ricci directions are unique, but the eigenvalues of @
degenerate because of some equality p;0;,=g,0,,, then @ has also eigen-
vectors which do not correspond to a plane determined by two Ricei
directions, and it may happen, that R and @ can be simultaneously
diagonalized only by using such an eigenvector in the basis. We give an
example in 4 dimensions.

ExampLE 1.
1m0 o0 12 0 0
0 7 0 0-12 0 -7 0 0 0
0O 0 7 0 0 0 07 0 0
B=11s o o-21 o ol K= 0 0o 2 o’
0—-12 0 0 -1 0 0 0 0 —25
0o 0 o0 o0 o0 7

Q = diag(175, — 175, — 49,175, — 175, — 625) .
Here the only basis in Eg, which diagonalizes both R and @, is
{10-(3e, +e,), 57}(2e,— €;), €5, 10-H(e; — Be,), 5-H(e, + 2€;), e}

The corresponding principal curvatures are 15, 13, 7, —25, —17, 7,
respectively. Only the third and sixth of these are sectional curvatures
for planes of curvature in V,, of the six new basis vectors only e; and eg
being simple bivectors.
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Example 1 thus also shows that the condition RQ =@QR does not imply
the existence of NV planes of curvature forming a basis in £,. Now one
might ask whether the existence of such a basis could make the assump-
tion p,0; % 0,0,, dispensable in theorem 5. This is not true in general.
We give a counter-example in 5 dimensions.

ExampLE 2. The correspondence (01) between index pairs (ij) and
single indices s is here and in example 3 extended to j=5 in the fol-
lowing way: (¢5) «+i+6for¢=1, ..., 4. Let the 10 diagonal elements of
R be in order

(3,-3,3,-3,3,0,-17,1, — 20,20) ,
and let all other elements vanish except

Ryy = Ry = —Byy = —Rgp = 4.
We then get

K = diag(— 10,10, — 20,20, —6) ,
Q = diag(— 200,200, — 100, — 200, 200, — 400, 60, — 60, 120, — 120) .

If we replace the basis vectors e,, e,, e, and e; by e,'=5"(e, —2e,),
e, =571(2e,+ e;), e/ =5"%(2e, +e,) and e,/ =5"%(e,—2e;), we get a sys-
tem in which both R and @ have diagonal form. Thus RQ=@QE. The
basis vectors e,’ and e, correspond to the same principal curvature —5,
to which thus also the planes of curvature defined by the simple bivec-
tors e," +e,’ and e, —e,” correspond. Likewise e," and e’ correspond to
the same principal curvature 5 to which also e,’+e;" and e,’—e,’ cor-
respond, these yielding planes of curvature. The other principal curva-
tures (3,0, —7,1, —20,20) are all different and correspond to uniquely
determined planes of curvature given by e, e, e,, €5, €, and e,,, respec-
tively. The Ricci directions are unique and determine the original co-
ordinate system S. As R has not diagonal form in 8, it cannot be diag-
onalized by any orthogonal transformation in 7';.

The situation is similar if the Ricci curvatures p; are not distinct.
In spite of the freedom of choice for the Ricei directions, it is not always
possible to choose them so that they determine N planes of curvature.
We show this by an example in 5 dimensions.

ExampLE 3. As diagonal of R we take (3,2,1,4,5,6,7,5,8,9). If then
all other elements vanish except

Ris = By = —Ryg = —RBg; = 1,
the Ricci tensor has the diagonal form
diag(14,14,19,24,29);
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0,=0,= 14 implies Q,,=@Q;; and Q,; =g, and thus RQ=QR. In order
to diagonalize R by an orthogonal transformation in 7'y, we must change
the basis vectors in the plane which corresponds to the double Ricei
curvature 14. Any such change yields, however, an element R,,30.

It may be of some interest to express the condition BQ=@QR of theo-
rem 5 more explicitly in terms of the Riemann and Ricei tensors only.
For the transposed matrix of RQ we have (RQ) =Q'R’'=QR because @
and R are symmetric. Thus the condition is that R shall be symmetric.
Using the definition (30) of ¢ and the usual notation of R with four
indices, we get

(RQ)y = 2 ReQu = } 3 Ryjp (KK — Kp K 1)

v,

= % 2 R’ijv,qukKuh - % z Rij,m’K,uhKr = z RijvyKkaﬂk ’
Uy ¥

v, U v,
Then the condition RQ = @R is that the last expression shall not change,
if the index pairs (ij) and (kh) are interchanged:

Z Rijvakah = E RkthviK,uj .

v, 4 vy H
If we again introduce co- and contravariant indices, we can write the
condition so that it applies in any coordinate system:

2 BiprK K,y = 3 Byt KK

wi
vu v u

4. Conditions for the diagonizability of the curvature matrix

by an orthogonal transformation in the tangent space of V,.

In 4 dimensions we can use the notion of duality as developed by
Churchill in [2, pp. 129ff.]. We formulate the definitions in terms of the
6 x 6-matrix B given by (20).

DEeFiNITIONS. The matrix A=BAB is called the dual matrix of 4.
The bivector p = Bp = (p,, P5, P> P1> Pa» P3) i8 called the dual of the bivector
p. A matrix A (bivector p) is called selfdual if A=A (p=p), and anti-
selfdual if A= —A (p=—p).

The condition (04) for a bivector p to be simple may now be written

(40) (Bp,p) = (pp) = 0.

If p is simple, p determines in 7', the plane which contains all vectors

orthogonal to the plane of p [2, p. 129]. It is obvious that (p,q)=(p,q).
We shall obtain the condition for the possibility of diagonalizing R

by an orthogonal transformation in 7T, as a corollary of the following

more general theorem.

Math. Scand. 11 — 2
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THEOREM 6. Let A and B be symmetric N x N-matrices, N even, and
suppose that B is involutory (B2=1I,B=1). Then there exists in Ey an
orthonormal basis of the form

{v1,...,03,0,B0,, ..., Boy,}
consisting of eigenvectors of A if and only if

tr(BA¥) =0 for k=0
and AA=AA, where 4=BAB.

Proor. 1° “if”. Let 4;,...,2, be the different eigenvalues of 4, and
then also of 4=BAB-1. When 44 =AA, there exists an orthonormal
basis {v,}, referred to which both 4 and 4 have diagonal form (cf. above
p. 15). Then each v, is an eigenvector of A corresponding to a certain
eigenvalue 1, and simultaneously an eigenvector of 4 corresponding to a
certain eigenvalue A;. For every pair of eigenvalues 1,,4; we put

Y = 2 (B, v,),
where the sum is taken over those » for which
(41) Av, = 3o, and Ao, = Ao,.
For any non-negative integers & and ! we then have

P N - -
(42) z likljlyﬁ = z (BAkAlv,, v‘,) = tr (BA kAl)
s ] v=1

%, J=1
= tr(BA¥BA'B) = tr(4¥BA!) = tr(BA%“k) = 0,

because of the assumptions and the general relation tr(CD)=tr(DC).
The equations (42) for k<p, l<p form a system of p® linear equations
with the p? unknowns y;; and the determinant

IL (=2 + 0.

1<y
Hence, all y;; vanish. Now, y,; =0 means that the quadratic form (Bv,v)
has trace 0 in the subspace E,; spanned by those v, which satisfy (41).
According to the lemma in § 1, it is then possible to choose in each E,; an
orthonormal basis of vectors isotropic for B. From such a basis
{u,, ...,u,} in E;; we get an analogous basis

(43) {Bu,,...,Bu,}
in Ej;. For, if u is isotropic for B, so is Bu. Further,
ABu, = BAu, = ,Bu,, ABu, = BAu, = A,Bu,
and, B being orthogonal,
(Buy, Bu)) = (u,u,) = 6, .
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In particular, there exist in a non-empty K;; two vectors u, and Bu,
isotropic for B. If they do not span the whole E,;, the form (Bw,v) has
again trace 0 in the subspace of E,; orthogonal to %, and Bu,. Then we
get another pair of isotropic vectors u, and Bu, by the lemma in § 1
and so on until ¥, is exhausted. Applying this procedure to each E,,,
choosing bases of vectors isotropic for B in all non-empty E;; with i < j,
and completing with the corresponding bases (43) in E;;, we get a basis
in B, which, numbered suitably, has the required properties.

2° “only if”’. Suppose the vectors v, and Bv, = v,,whereu=1,2, ..., N/2
and v=u+N/2, are eigenvectors of 4 and form an orthonormal basis.
Then

(Bv,, v,) = (v, Bv,) = (v,,v,) =0,
that is, they are isotropic for B. This implies tr(B4%)=0 for k20
according to theorem 1 and the remark following its proof. Further,
because of g — BABv, = BAv, = 1,Bv, = i,v,,
Av, = ABv, = BAv,=1;Bv, = A0,

for certain ¢ and j, all of the basis vectors are also eigenvectors of 4.
This implies 44 = AA.

CorOLLARY. The curvature matrixz R has diagonal form for some ortho-
normal basis in Ty, if and only if RR = RR and tr (BR¥)=0 for k=2,3,4,5.
where B is the matriz (20).

Proor. The conditions imply, by the remark following theorem 1
and theorem 6, the existence in Eq of an orthonormal basis {v,} of eigen-
vectors of R which are dual in pairs. According to Churchill’s theorem 4
[2, p.133], such a basis corresponds to an orthonormal basis in T',.
Conversely, the bivectors v,=[e;e;] determined by a four-dimensional
basis {e;} are dual in pairs (cf. [2, p. 129]). If these v, are eigenvectors
of R, the “only if”’ in theorem 6 yields RE=RR and tr(BR¥)=0.

ReMARK 1. The single condition RE= RR is not sufficient. We show
this by an example, where selfdual and anti-selfdual eigenvectors appear.
If we take (3,-3,7,3,—3,1) for diagonal elements of R and let all
other elements vanish except R,=R, = —Ry;= —R;,=1, we get the
(uniquely determined) eigenvectors e, + e,, e, + e;, e; and e; which are
not dual in pairs. It is easily verified that RE=RR.

REMARK 2. In order to formulate the condition RR=RR in an arbi-
trary coordinate system we have to introduce a tensor corresponding to
the dual matrix R by putting

pii  _ Kn
Ry, = Ry;F",
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where (¢ji’j') and (khk'R’) are even permutations of the numbers (1234).
With this “dual curvature tensor” B our condition can be written
ERij’",Emkh = ZR_ij;mekk .

"y v

5. Some examples.

We mention here some classes of Riemannian spaces V,, at each point
of which the curvature matrix R can be reduced to diagonal form by an
orthogonal transformation in the tangent space. At every point of such
a space there exist thus N planes of curvature which are the coordinate
planes of an orthonormal system.

a) The spaces of constant curvature, §,, are obvious examples since
the curvature matrix is proportional to the unit matrix. Every plane is
a plane of curvature.

b) For spaces V, with anti-selfdual curvature matrix (= — R) the
reduction to diagonal form has been carried out by Churchill [2, pp.
149 f£.] using a result of Einstein [3]. These spaces are known to be con-
formally flat [6, p. 71].

The first condition, RR = RR, of the corollary in the preceding section
is here trivially satisfied. Also the second condition is easily verified.
For any symmetric and anti-selfdual matrix 4, any symmetric matrix C,
and the symmetric involutory matrix B we have

tr(BAC) = tr(BABBC) —tr(4BC) = —tr(CAB)

= —tr(B'A'C') = —tr(B4C) = 0,

and hence, in particular, tr(BR*) = tr(BRR*') = Ofor k = 2,3,....
¢) In every conformally flat space C, the curvature matrix R can be
reduced to diagonal form by an orthogonal transformation in the tangent
space.
This follows for example from the well-known condition

(50) Cijkn = Bigen— (0 —2)" 04K, — 0:n K s + 9 K i — 91 K s +
+k(n— 1)1 (O — Ouxgjn)} = O

for a V, to be conformally flat (cf. e.g. [4, pp. 517 £f.]). Here d,;, is the

Kronecker symbol, g,,. the fundamental tensor, and k the scalar curvature

trK. In the principal coordinate system (determined by the Ricei

directions) at a point, K, has diagonal form and g,;, =d,,. Consequently.

(50) reduces to

'R'iji] = ('n"' 2)"1{KJ]+K":"‘ k(n— 1)—1} = ‘—Ri)]b N 'l: 4: j 5

51 .
GO pi=0  for (bh) + () and + (j.i).
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These equations show that the curvature matrix too has diagonal form
in the principal system.

As mentioned above, a V, with anti-selfdual curvature matrix is a C,.
The converse is not true in general, but it follows easily from (51) that
in a C, the matrix BR—cl, where I denotes the unit 6 x 6-matrix, is anti-
selfdual for c=Fk/12.

d) If the Riemannian spaces V, and V,_,, 1<r<n—1, have the
property in question, then also their product V,x V,_, (cf. [9, p. 285])
has it. This is an obvious consequence of the definition. Examples of such
products are the recurrent spaces with positive definite metric, these
being decomposable into a V, and a Euclidean space (cf. [8, p. 173)).
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