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LIMIT THEOREMS FOR CERTAIN RANDOM WALKS

LARS GARDING!
1. Introduction.
Let x, be a stochastic variable taking the values 0, ...,n, and let
Xy Ty oo s Xy o e

be a Markov chain of such variables. It is completely specified by the
distribution of x, and the probabilities of the transitions x, - x,,,. We
assume that all transition probabilities vanish except

(1) pm) = Pla,y=m+1 |z, =m)
and
(2) Q(n>m) = P(xn+1=7n |xn=m) -

)
As a consequence, p+q=1. It is useful to visualize the chain as a random
walk in a grid of points (n,m) with 0 <m <n 2w (figure 1). The proba-
bilities of the passages

(n,m) - (n+1,m+1) and (n,m) - (n+1,m)
are then p(n,m) and q(n,m) respectively, and
Jalm) = Pz, =m)

is the probability of passing through the point (n,m). We observe that
the recursion formula

is equivalent to (1) and (2). In the special case when p is constant and
v=0, x, has a binomial distribution.

It follows from (1) and (2) that the trend of the walk at the point
n,m is in the direction of the vector

v = 'u('n,,’m) = (1,27)

provided p does not change too rapidly (see figure 1).
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Fig. 1. Fig. 2.

It is intuitively clear from the figure that if the walk concentrates
around some line m=nx as n — o and v does not oscillate too much,
then the vector v ought to have the direction of (1,x) when m is close to

na and n is large, i.e.,
p(n,nx) - «

as n —> oo, Conversely, if v drags the position vector u=(n,m) in the
direction of (1,«), i.e. if

min < x = p(n,m) > mln
and

mfn >« = p(n,m) < m/n,
we can reasonably expect the walk to concentrate around the line
m=nx. This is indeed the case and we can give a precise result as fol-
lows.

Let ¢(7) be a real function of r defined when 0 < v <1 and with values
in the same interval. We say that ¢ is centered at o, where 0 <« <1, if

T<a = gt)>T, play =x, T>a = @t) <7

and |@(7)— 7| stays away from zero together with |t —«|, that is, the
infimum of |p(7) — 7| for |7 — &| = ¢ i positive for all positive ¢ (seefigure 2).
The simplest example is a linear function

(4) w(r) = ata(rt—«) = ar+(1—-a)x,

where 0 <a<1. We shall also say that p(n,m) is centered at « if there
exists a ¢ centered at « such that

m—nx

A

0 = p(n,m) 2 g(m/n)—o(1)

and
m—nx = 0 = p(n,m) £ p(m/n)+o(1)

where o(1) refers to n — co. We have
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TrEOREM 1. If p 18 centered at x, then
(x, —no)[n
tends to 0 in probability. In other words,

P(|z, —nx| >ne) - 0

as n — oo, for every ¢>0.

Theorem 1 seems to indicate that as long as p is centered at o, the
behaviour of xz,—nx depends essentially only on the behaviour of p
when m —no« is small compared to n. This is indeed true and we have

THEOREM 2. If p is centered at o and
) pn,m) = p(m[n) + O(jmn-'—a[199) + O(n—-)

where y is defined by (4), a is allowed to be negative but 2a<1, 0<a <1
and 6,6>0, then

(xn—m)/ nt
tends to a mormally distributed wvariable with mean 0 and wvariance
o(1—x)(1—2a)-t. If 2a=1, then the same is true of

(x, —nox)[(n logn)? ,

the variance now being o(1l — x).

REMARK. The condition 2a <1 is necessary for the result. It is hard
to find a convincing heuristic explanation for this. Roughly speaking,
the condition says that the direction of the trend vector v is closer to
the direction of (1,«) than to the direction of the position vector u.
In fact, if m/n is close to «, then by (5) p is close to

xt+amnt—x) = amn+(l—a)x .

It is clear that if p=g¢(m/n) where ¢ is centered at x and twice differ-
entiable at T=« and 2¢'(x) =1, then the assumptions are fulfilled with
a=g'(«). In particular, we can take p=4(1+ Bmn-1), where 4 and B
are suitable positive constants. This case occurs in connection with cer-
tain duel problems investigated by L. E. Zachrisson and B. Nagel (unpub-
lished). Approximating (3) by a differential equation these authors were
lead to conjecture the Theorems 1 and 2 when p is a function of m/n.

Our proofs use recursion formulas for the moments

M, = E,((m—nx)’)

where E, denotes the mean with respect to the frequency function f,
of z,. They are particularly simple when p equals the function (4) in
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which case it is easy to see that the precise order af magnitude of M7,

for j even is . ) .
O(ni®),  O((nlogn)i®),  O(n%),

according as 2a<1, 2a=1 and 2a>1. This is the essential step in the
proof of Theorem 1, which is based on similar estimates for the moments
in the general case. Such estimates combined with inequalities of the
Chebyshev type also show that suitable truncations do not influence the
order of magnitude of the moments. This last observation is the basic
ingredient in the proof of Theorem 2. The proofs of both theorems give
some crude error terms, but no effort was made to improve them. It is,
however, safe to say that the convergence of Theorem 1 improves if p is
made larger for m —nx <0 and smaller for m —n« = 0. The convergence
of Theorem 2 improves when é and ¢ are made larger and a is made
smaller, as long as it stays positive, but the convergence is probably
never better than in the binomial case. On the other hand, if 6= 1,62}
and @ <0, it is probably as good.

One might ask what happens when p satisfies the assumptions of
Theorem 2 but 2a>1. Considering for simplicity the case when p is
given by (4), we can assert that then

(x,, —nx)n—

converges to a stochastic variable x with positive variance and with a
distribution depending on that of x,. More precisely, any moment of
order j of z is a linear combination of the moments of order <j of z,.

The results above indicate that if, e.g., p(n,m)=¢p(m/n) where the
graph of ¢ is allowed to touch the diagonal or cross it several times, then
one has a very complicated situation.

The methods of this paper will probably work also when one wants to
give conditions on p that imply the convergence of

where ¢ and A are simple functions of n, for instance of the form An®
with positive 4 and b.

2. Three lemmas.

We shall need a few elementary results about certain recursion for-
mulas. Let 4, a, b, ¢ be arbitrary real numbers and let r> — 1 and > 0.

Lemma 1. If
L,,; £ L(1+an"14+0(n"1%) + O(n*-1(logn)")
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then L, = O(n®+nc(logn)")

provided a=+c. If a=c, n° should be replaced by n°logn.

RemMARK. In the applications, the error term O(nc‘l(logn)’) is usually
replaced by a sum of terms of the same form with varying constants ¢
and r. Since one of them is larger than the others, the conclusion of the
lemma holds also in this slightly more general situation provided
O(n<(logn)") is replaced by the corresponding sum. The same remark
applies to the next two lemmas of this section.

Proor. Let us put L, = n°K,.

Then we get the following recursion formula for K,
(1) K, £ K,(1+0(n1+n-2) + O(n°~*-1(logn)")
and it suffices to show that this implies
K, £ O(1+nc-2(logn))
K, = 0(1+ (logn)+Y)
when ¢=a. To do this, put M, =max(0,K,). Then (1) holds for M, and
hence My —M, < M,0n*) + O(ne--Y(logn))

when ¢+a and

where s=min(1+4,2). Summing we get

n—1 n—1
M,-M, < P,,( S k—3> +'S O(ke--Y(logh)")

where P, = max(M,M,,,..., M,).
Now choose » so large that
Sk < }.

v

Then n—t
M, <P, + M, + 3 O(ke~*-Y(logk)") .

Since the right side is not decreasing, it majorizes all M, with v<k<n
and hence also P,. Consequently

n—1
P, £ 2M, + 23 O(k--Y(logk)") .

Since the right side is O(1+n¢-%(logn)") and O(1+ (logn)™+') according
as c+a and c=a, this is the desired result.
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LemMma 2. If a+b+1 then
Ln+1 = Ln(l +an~1+ O(n’lhé)) + Anb + O(nc"l(logn)’)
implies
L, = A(b+1—a) b+ + O(n®+nd+nd+1-% + ne(logn)T)

unless a is equal to b, b+1—6 or c. If this happens, the corresponding
powers of n acquire a factor logn.

Proor. WI'iting L,n — Kn + A(b+ 1 —(I/)_lnb+1

we get the recursion formula
K, = K, (1+an '+ 0(n17%)) + O(n®-1+n®~4+n-Y(logn)") .

Replacing K, by |K,| we get the same formula with = replaced by =<
and hence Lemma 1 gives the desired result.

Lemma 3. If a0 then
L,y = L,(1+an"1+0n"%)) + A(nlogn)*! + O(n°-Y(logn)")

implies L, = Aa-Y(nlogn)® + O(n®+n(logn))

provided a+c. If a=c, n° acquires the factor logn.

Proor. Inserting L, = K, + Aa-Y(nlogn)®

into the recursion formula for L, and collecting terms we get

K,y = K,(1+an1+0(n1-%) +
+ O(n*2(logn)*+ no-1-%(logn)*+ n*=(logn)") .

Applying Lemma 1 to the sequence |K,| finishes the proof.

3. Moments and absolute moments.

Let us denote by
the mean value of the function g(m) relative to the frequency function
Jn of z,. Let M = B, ((m - na))
and _ .
M) = E,(|m—n«x]9)

be the moments and absolute moments of x,—nx. They are equal
when j is even. We notice the inequalities

(1) ME1 < peek-D 4 pe2k
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(2) M1 < (nlogn)e®-D 4 (n logn)eM2,

which hold when ¢=0. The first one is obtained by majorizing
|m—n«|?*-1 by ne®-D or |m—nwx|*n-e according as |m—oan|<ne or
|m — om| = ne, respectively. The proof of (2) is similar.
Let 1>y >0 and define a function 6=0(y,n,m —an) by putting
0=1 when jm—on| £ nv
and 0 =0  when lm—om| > nr.
This function will be used to define a truncated mean value
Bi(g) = B,(6(y,n,m—na)g(m))
and truncated moments and absolute moments
L = E((m—n«)f)
and Li = Bi(m—nal).
We observe that, with an obvious definition of EL™°,
(3) \Mj,—Lj| = M},— L = Ex(|m—nalf) .

In the sections that follow we shall find it convenient to use the nota-
tion R! for any function of » which has the property that

(4) R =00+Mi+...+M) =01+ M),
the second equality being obvious.

4. Recursion formulas.
The recursion formula (1.3) shows that

Applying this to the moments we get

M., = En((m—(nJr l)ot)") + E,(p(n,m) -
((m+1) = (n+ 1)x)i = (m = (n+ 1)a)f)
After a few rearrangements this can be written as
M., = Mi + jE,((p(n, m)—x)(m—na)y-1) +
(1) + (';) (1 —2oc)En((p(n,m)-—oc)(m-—n(x)""z) +

+ (;)a(l—a)M{jz + R,

Math. Scand. 9 — 26
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where we have used the notation (3.4). Notice the special case
2) M,y = M, + §E,((p(n,m) - x)(m —naPi=1) + R

The formulas (1) and (2) will be our main tools in the sequel.

5. Order of magnitude of the moments.
It is obvious that i< i,

We shall see that under suitable assumptions, the rate of growth of M7
is considerably less.

Lemma 1. Let p be defined by (1.4), let 1>820 and >0 and assume
that

(1) pln,m) 2 p(mn)—O(ms~-1) for m<nx,
(2) p(n,m) £ py(m[n)+O0(nP-¢-1) for mZnx.
Then

(3) M, = (logn)’2 O(ni’2 +n% 4 nfi)

and, if y>max(},x,0), then

(4) B (Im —nalf) = O(n~?)

for all p>0.

ReMark 1. If a+} and a+p, the logarithmic factor in (3) is not
necessary.

ReMARK 2. Let F,(t)=P(x,<t) be the distribution function of z,.
Chebyshev’s inequality,

Fo(n(x—8)+1-F,(n(x+06)) S (on)2M% (8 > 0),

combined with (3) shows that F,(n) tends to 0 or 1 according as T<«
or T>n.

Proo¥. Since M) =1 for all n, (3) is true when j=0. We proceed by
induction. By (4.2),

(5) M%, = M%* + 2kE,((p(n,m) - &)(m—nx)?-1) + R
and hence (1) and (2) show that

M, < MZH(1+2akn-Y) + M*-1O(mf~-1) + R,
Now by (3.1)
(8) Mt < ppek-D o B Y2k
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so that we get
M2, < M1+ 2akn=1+O(n1-%)) + O(n?k-1) 4 R2-2,
Now if (3) holds for j=2k—2, we have
Rik—2 = (logn)e-1 O(nk-1 4 p2ak=D 4 5250-D)
so that we can apply Lemma 2.1. Since M2 > 0, the result is
Mik = (logn)k O(n* + n2k 4 p2ak+1-2a 4 p26k 4 52pk+1-p)

Now, if 2¢ <1,
k= 2ak+1—-20 =2 2ak

and if 2¢ =1, we have the same inequalities reversed. The same applies
to f. Hence we can cancel the third and fifth terms on the right so that
(3) follows by induction when j is even.

Next, put b=max(},a,6). By (3.2)

M#* < (nlogn)@-Db 4 (nlogn)-d M2 .
Hence, since (3) holds with j =2k, it holds also with j=2k—1.
Finally, since |m —n«|>n” in the sum on the left, we have
E7(|m —na)i) < nrG-h iM%
for all £=j. Taking k large, (4) follows.
Next, we shall see that the true orders of the moments for a permitted

p depend essentially only on the behaviour of p(n,m) when m/n is close
to «.

LeMMA 2. Let 6>0. If p(n,m) ts centered at o« and (1) and (2) are
required to hold only if —né=m—nx =<0 and 0<m—nx S nd respectively,
then the conclusions of Lemma 1 and the two remarks following it are still
true.

Proor. The assumption that p is centered at « means that p(n,m)
stays strictly above m/n for m/n <x—06 and below m/n for m/n2«x+6
when 7 is large enough. Hence (1) and (2) hold with o replaced by
some p’ = +b(t —«) with a £b < 1. Hence, if we take 1 >y >max(3,0,8),
Lemma 1 and (3.3) show that, e.g.,

\Mj,— L} < M~ L, = B, (jm—naf) = O(1)
for all j. Hence it follows from (5) that

L%, = L¥+ 2kE ((p(n,m)— ) (m —na)%-1) 4 RZ-2.
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Since =0 when |[m —n«| = dn and » is large enough, we can use (1) and
(2) in the middle term. The result is

Lz"1 < Lg"(l+.,alcn—1) + O(nf—s- 1)L2’°“ + R?""‘2
Since (6) holds with o(1) added to the right and M replaced by 2.
we deduce from this that

L, < LF(1+2akn=1+0(n=1~)) + O(n2k-1-¢) 4 R2F-2,

Hence, by induction, we get (3) for L% and hence also for M2¢. The rest
of the proof now runs as before.

6. Proof of Theorem 1.

Together with z,,#, ,, ..., consider another Markov chain z',, 2", |, ...
with transition probablhties p'(n,m) and ¢’'(n,m) corresponding to (1.1)
and (1.2). Let F,(t)=P(x,<t) and F’', ()= P(x', <t) be the distribution
functions of z, and ', respectively. We shall use the following principle
of domination:

(1 F' =F, p<pfornzv = F 2F, for n=v.
To prove this we observe that a summation of (1.3) gives
F,a(m) = p(n,m)F,(m—1) + q(n.m)F,(m) .

Since the right side is a non-decreasing function of F, and a non-
increasing function of p(n,m), (1) follows.
Now, let p be centered at «>0 and let &’ <. A look at the figure 2
makes it clear that we can choose 1>a>0 in
Y (t) = &' +a(rt—o')
in such a way that
mEna’ = p(n,m) =y (mfn)

when 7 is large enough, say n=v".
Next, put p’'=p when n<»' and

p'(m,n) = min(p(n,m), y'(m/n))

whenn =+, and let 2’,, . . . be the corresponding Markov chain determined
so that z’, and z, have the same distribution. Then (1) applies so that
F,sF,.

It is also clear that p’ is centered at «’ and that we have p'=y'(m/n)
when m/n is close to «’. Hence Lemma 5.2 can be applied so that, in
particular,
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F (o) < F' (na'") > 0

as n — oo, provided «'' <a'. Since «'’ is arbitrarily close to «', and «'
arbitrarily close to «, this means that F,(n(x—¢)) > 0 for every ¢>0.
In the same way, chosing &’ >« and 0<a <1 such that

m2nx' = p(n,m) <y’ (mln)
when » is large enough, and putting
p'(n,m) = max(p(n,m), y'(m/n)),
we conclude that Fn(((x+ s)n) — 1 for every £¢>0. The proof is finished.
7. Proof of Theorem 2.

We shall prove more precise results.

LemmA 1. Under the assumptions of Theorem 2 and if 2a <1, one has!
(1) MZ%* = (2k—1)!1 g*n* + nkOn2e-1) + (nlogn)*On—"4+n-14n-*),
(2) M*1 = pk-10(ne-t) + (logn)k n*- O(n—< +n—*+n-t),
where y is any number such that 1>y >4, §' and &' are defined by

8 = min(e,6(1—yp)), (1+8)(y—1) = —&'—1
¢ = o(l—x)(1-2a)1.

and

REMARK. In most cases we do not need logn in the error term; chosing
y so close to } that ¢ >0 we see that the moments of y,=(x, —an)/n}
tend to the moments of a normally distributed variable y with mean 0
and variance o. In other words, if K, (t)=P(y,=<t) and K(t)=P(y=<t)
are the distribution functions of y, and y respectively, then

f t dK () —~ f ¥ dK(t)

for j=0,1,2,.... It is well known that this implies that K () converges
to K(t) for all ¢, or, more generally, that

f h(t) dK (1) - f h(t) dK (£)

for every h in the space H of all piece-wise continuous functions of at
most polynomial growth. For completeness we give the proof. In fact,
by Helly’s selection theorem, we can find a subsequence L, of K, and a
non-decreasing L such that

1 Editor’s note: (26— 1)!! = 1-3-5... (2k—1).
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f h(t) dL,(t) — f h(t) dL(2)
when A € H is continuous and has compact support. But since

19 4L, (t) < A-2 f 1242 4L, (1)
Y]

tends to zero with 1/4, uniformly in 2, we see immediately that L(¢) has
finite moments of all orders and that we have the same convergence for
every continuous » € H. In particular, L and K have the same moments,
go that, by the uniqueness part of the theory of the moment problem,
L=K. Hence every convergent subsequence of K, converges to K on
the continuous elements of H so that the same holds for the sequence
K, itself. But then, K having a continuous derivative, we have con-
vergence on all of H.

Proor. Some reflection shows that the assumptions of Lemma 5.2
are true with a replaced by b>a but arbitrarily close to @, and with
f=4%. In particular, for any 1>y >} and every ¢o>0

(3) |Mi,—Li| < M, —Li = EX*(Im—nal) = O(n-0).

Let us now use the recursion formula (4.1) replacing the mean value
E,, by the truncated mean value E2 and using (3) with o =2. The result is

(4) L* = L% 4 2kE° ((p(n,m)—zx)(m-noc)z"“l) +

+ (22k) (1—20) B3 ((p(n,m) — o) (m —nox)?-2) 4

+ (22’“) x(1—a) L2 + B%S 4 0.

Now (1.5) implies that if 60 then
p(n,m)—a = (m—nx)n(a+0n@-Y)) + O(n-1-)

and consequently also pn,m)—a = O(n-1).

Inserting these estimates into the two mean values on the right in (4)

we get
g L2 = L*(1+ 2akn-1+O(n-1-00-7)) +

+ O(n=d=e) %1 4 k(2k— 1) (1 — ) L2 +
+ O =) M¥* + R¥ + O(n™?).

Now let us use (3.1) with g =3} to eliminate the odd moments that occur
on the right,
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M#1 < bt 4 iy
17 2k—3 k—$ — 2k—2
M%*-3 < pbv 4 Y22,

Since we can replace M by L on the right, the result is

(5) L%, = LZ(1+ 2akn1+0(n1-%)) +
+ (B(2k—1)x(1 — &) + O(m*™Y))L22 +
+ nk-10(n—*+n-t).

Here we have taken into account that y > } and used the definition of &’
given in the lemma. Now if we interpret —1!! as 1, (1) holds for k=0
since M)=1. We proceed by induction. Assuming (1) for k—1 and
inserting into (5) we get, after some collecting of terms,

L, = L (1+ 2akn-1+ O(n-1-)) +
+k(2k—1)!! (1l — ) ok 1nk-1 4
+nk-10(n20-1) + (n logn)¥-10(n=" +n—*+nr-1).

Hence, by Lemma 2.2, we get
L% = (2k—1)!! n¥e* + nkO(n22-1) + (nlogn)kO(n—2 +n-t+nr-1) 4+ O(n2ak),

Here 2ak <k+2a—1, so that the last term is redundant and, by virtue
of (3), (1) follows. As a consequence, we also have the estimate

M%< gkt 4 p-t Y% = O(nk-1).
Next, let us verify (2) when k=1. Using (4.1) and (3) with a suitable

ewehave g1 iy B (p(n,m)— &) + O(n-t-¥).
Here let us use (1.5) in the form
(6) p(n,m)—a = a(m—nx)n-! + QA=) + O(n-1-¢)
when 0+0. Since (1+d)(y—1)=—3—¢', we get

L., = Li(1+an-1) + O(n-t— 4 n-i-).
Hence, by Lemma 2.1,

L} = nt0Omet) + ntlogn O(n—< +n-*)

so that, by virtue of (3), (2) holds for k=1.
We proceed by induction. Using (4.1) and (3) we get

L2 = L2+ 4 (2k+ 1) Ef, ((p(n,m)—oc)(m—-na)zk) +
+ k(2k +1)(1 - 20) B, ((p(n,m) — &) (m — nox)%-1) +
+ k(2k+1)a(l—o) L + RF2.
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Here we use (6) in the first mean value and
p(n,m)—x = (m—nx)O(n-1) + O(n-?)
in the second. The result is
LZ8 = L2 (14 (2k+1)an-?) +
+ O(n—+* 4 n-t-=pnY) M* 4 O(1) L3 +
+ O(n~ %)y M1 4 R%*2

Inserting the known estimates for M2 and M2 and estimating L2
by (2) we get, after some collecting of terms,

L2 = L2114 (2k+ 1)an-T) +
+ n*-10(ne-t) + (logn)kn*—0(n—=+n-—<+n-t).
Hence, taking absolute values and using Lemma 2.1, we get
L1 = pk+iQ(no-t) 4 (logn)s+ink+10(n—< 4+ n-*+n-t) + O(n20k+a)
Here, 2ak +a < k+a, so that the last term is redundant. Hence, using

(8), we obtain (2) with k replaced by £+ 1 and the proof is finished.

Lemma 2. Under the assumptions of Theorem 2 and if a=3%, one has

(1) MZ* = @2k-1D! (a(1-«))* (nlogn)* + O(n*(logn)k-1),
(8) M%7 = O(n¥tlogn)*-1).

REMARK. These estimates and the remark of Lemma 1 show that
(x,, —nx)[(n logn)t tends to a normally distributed variable with mean 0
and variance «(1—«).

Proor. The estimate (3) for the truncated moments is still true and
(5) still holds. As before, we observe that (7) holds for £ =0 and proceed
by induction. Inserting the estimate for LZ*~? into (5) and majorizing
the error terms suitably, we get

L%, = LZF(1+kn1+0m1-%)) +
+ k(2k— l) !! ((X(l —-(x))k (n logn)k~l + O(nk_l(logn)k_z)

so that, by Lemma 2.3, (7) holds for L?* and hence also for M%. The
proof of (8) runs as before and is left to the reader.
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